We prove an upper bound for the ground state energy of a Bose gas consisting of N hard spheres with radius a/N, moving in the three-dimensional unit torus Λ. Our estimate captures the correct asymptotics of the ground state energy, up to errors that vanish in the limit N → ∞. The proof is based on the construction of an appropriate trial state, given by the product of a Jastrow factor (describing two-particle correlations on short scales) and of a wave function constructed through a (generalized) Bogoliubov transformation, generating orthogonal excitations of the Bose-Einstein condensate and describing correlations on large scales.
A second order upper bound for the ground state energy of a hard-sphere gas in the Gross-Pitaevskii regime
Giulia BastiMembro del Collaboration Group
;Cenatiempo Serena
Membro del Collaboration Group
;
2023-01-01
Abstract
We prove an upper bound for the ground state energy of a Bose gas consisting of N hard spheres with radius a/N, moving in the three-dimensional unit torus Λ. Our estimate captures the correct asymptotics of the ground state energy, up to errors that vanish in the limit N → ∞. The proof is based on the construction of an appropriate trial state, given by the product of a Jastrow factor (describing two-particle correlations on short scales) and of a wave function constructed through a (generalized) Bogoliubov transformation, generating orthogonal excitations of the Bose-Einstein condensate and describing correlations on large scales.File | Dimensione | Formato | |
---|---|---|---|
2022_PrePrint_CommunMathPhys399_Basti.pdf
non disponibili
Descrizione: Version of the manuscript submitted for publication.
Tipologia:
Documento in Pre-print
Licenza:
Non pubblico
Dimensione
637.06 kB
Formato
Adobe PDF
|
637.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2023_CommunMathPhys_399_Basti.pdf
accesso aperto
Descrizione: Published version
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
811.35 kB
Formato
Adobe PDF
|
811.35 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.