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Abstract: Weprove an upper bound for the ground state energy of a Bose gas consisting
of N hard spheres with radius a/N , moving in the three-dimensional unit torus �. Our
estimate captures the correct asymptotics of the ground state energy, up to errors that
vanish in the limit N → ∞. The proof is based on the construction of an appropriate
trial state, given by the product of a Jastrow factor (describing two-particle correlations
on short scales) and of a wave function constructed through a (generalized) Bogoliubov
transformation, generating orthogonal excitations of the Bose–Einstein condensate and
describing correlations on large scales.

1. Introduction and Main Result

In [24], Lee-Huang-Yang predicted that the ground state energy per particle of a system
of N bosons moving in a box with volume N/ρ and interacting through a potential with
scattering length a is given, as N → ∞, by

e(ρ) = 4πaρ
[
1 +

128

15
√

π
(ρa3)1/2 + · · ·

]
(1.1)

up to corrections that are small, in the low density limit ρa3 � 1 (see [28,32] for the
heuristics behind this formula and its relation with the expected occurrence of Bose–
Einstein condensation in dilute Bose gases). At leading order, the validity of (1.1) follows
from the upper bound obtained in [16] and from the matching lower bound established
in [29]. Recently, also the second order term on the r.h.s. of (1.1) has been rigorously
justified. The upper bound has been shown in [35] (through a clever modification of a
quasi-free trial state proposed in [17]) and (for a larger class of interactions and using a
simpler trial state) in [3]. As for the lower bound, it has been first obtained in [20] for
integrable potentials and then in [21], for particles interacting through general potentials,
including hard-spheres. The upper bound for the case of hard-sphere potential is still an
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open question. An alternative approach to the study of the ground state energy of the
zero temperature Bose gas, still not justified rigorously but possibly valid beyond the
dilute regime, has been proposed in [26] and recently revived in [12–14].

Trapped Bose gases can be described as systems of N bosons, confined by external
fields in a volume of order one and interacting through a radial, repulsive potential V with
scattering length of the order N−1; this scaling limit is known as the Gross–Pitaevskii
regime (see [28, Chapter 6] for an introduction, and [33,34] for reviews of more recent
results). Focussing for simplicity on systems trapped in the unit torus �, the Hamilton
operator takes the form

HN =
N∑
j=1

−�x j +
N∑
i< j

N 2V (N (xi − x j )) (1.2)

and acts on L2
s (�

N ), the subspace of L2(�N ) consisting of functions that are symmetric
w.r.t. permutations of the N particles. Note that xi −x j is here the difference between the
position vectors of particles i and j on the torus. Equivalently, we can think of xi − x j
as the difference in R

3; however, in this case, V has to be replaced by its periodisation.
As proven in [27,29,30], the ground state energy EN of (1.2) is given, to leading order,
by

EN = 4πaN + o(N ) (1.3)

in the limit N → ∞. For V ∈ L3(R3), more precise information on the low-energy
spectrum of (1.2) has been determined in [8]. Here, the ground state energy was proven
to satisfy

EN = 4πa(N − 1) + e�a
2

− 1

2

∑
p∈�∗

+

[
p2 + 8πa −

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+O(N−1/4)

(1.4)

where �∗
+ = 2πZ

3\{0} and

e� = 2 − lim
M→∞

∑

p ∈ Z
3\{0} :

|p1|, |p2|, |p3| ≤ M

cos(|p|)
p2

. (1.5)

Additionally, the spectrum of HN − EN below a threshold ζ > 0 was shown to consist
of eigenvalues having the form

∑

p∈2πZ3\{0}
n p

√
|p|4 + 16πap2 +O(N−1/4ζ 3) . (1.6)

A new and simpler proof of (1.4), (1.6) was recently obtained in [22], for V ∈ L2(�).
Moreover, these results have been also extended to the non-homogeneous case of Bose
gases trapped by external fields in [11,31].

While the approach of [31] applies to V ∈ L1(R3), the validity of (1.4), (1.6) for
bosons interacting through non-integrable potentials is still an open question. The goal of
this paper is to prove that (1.4) remains valid, as an upper bound, for particles interacting
through a hard-sphere potential.



A Second Order Upper Bound for the Ground State Energy 3

We consider N bosons in � = [− 1
2 ,

1
2 ]3 ⊂ R

3, with periodic boundary conditions.
We assume particles to interact through a hard-sphere potential, with radius a/N , for
some a > 0. We are interested in the ground state energy of the system, defined by

Ehs
N = inf

〈
�,

N∑
j=1

−�x j �
〉

(1.7)

where the infimum is taken over all normalized wave functions � ∈ L2
s (�

N ) satisfying
the hard-core condition

�(x1, . . . , xN ) = 0 (1.8)

almost everywhere on the set

N⋃
i< j

{
(x1, . . . , xN ) ∈ R

3N : |xi − x j | ≤ a/N
}
.

Theorem 1.1. Let Ehs
N be defined as in (1.7). There exist C, ε > 0 such that

Ehs
N ≤ 4πa(N − 1) + e�a

2

− 1

2

∑
p∈�∗

+

[
p2 + 8πa −

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+ CN−ε (1.9)

for all N large enough, with e� defined as in (1.5).

Remarks. 1) Theorem 1.1 establishes an upper bound for the ground state energy (1.7).
With minor modifications, it would also be possible to obtain upper bounds for low-
energy excited eigenvalues, agreeing with (1.6). To conclude the proof of the estimates
(1.4), (1.6) for particles interacting through hard-sphere potentials, we would need to
establish matching lower bounds. A possible approach to achieve this goal (at least
for the ground state energy) consists in taking the lower bound established in [21], for
particles in the thermodynamic limit, and to translate it to the Gross–Pitaevskii regime.

2) We believe that the statement of Theorem 1.1 and its proof can also be extended
to bosons in the Gross–Pitaevskii regime interacting through a larger class of potentials,
combining a hard-sphere potential at short distances and an integrable potential at larger
distances. This would require the extension of Lemma 2.1 to more general interactions.
To keep our analysis as simple as possible, we focus here on hard-sphere bosons.

3)Theorem1.1 and its proof could alsobe extended to systemsof N bosons interacting
through a hard-sphere potential with radius of the order N−1+κ for sufficiently small
κ > 0 (results for integrable potentials with scattering length of the order N−1+κ have
been recently discussed in [1,2,9,19]).

The proof of (1.4), (1.6) obtained in [8] is based on a rigorous version of Bogoliubov
theory, developed in [5–7]. The starting point of Bogoliubov theory is the observation
that, at low energies, the Bose gas exhibits complete condensation; all particles, up to a
fraction vanishing in the limit N → ∞, can be described by the same zero-momentum
orbital ϕ0 defined by ϕ0(x) = 1, for all x ∈ �. This, however, does not mean that the
factorized wave function ϕ⊗N

0 is a good approximation for the ground state of (1.2); in
fact, its energy does not even approximate the ground state energy to leading order. To
decrease the energy and approach (1.3), correlations are crucial. The strategy developed
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in [5–8] is based on the idea that most correlations can be inserted through the action of
(generalized) Bogoliubov transformations, having the form

T = exp

⎡
⎣1

2

∑
p∈�∗

+

ηp
(
b∗
pb

∗−p − bpb−p
)
⎤
⎦ (1.10)

where the (modified) creation and annihilation operators b∗
p, bp act on the Fock space of

orthogonal excitations of the Bose–Einstein condensate; the precise definitions are given
below, in Sect. 5 (to be more precise, the action of (1.10) has to be corrected through an
additional unitary operator, given by the exponential of a cubic, rather than quadratic,
expression in creation and annihilation operators; see [8] for details). An important
feature of (generalized) Bogoliubov transformations of the form (1.10), which plays a
major role in the derivation of (1.4), (1.6), is the fact that their action on creation and
annihilation operators is (almost) explicit. This makes computations relatively easy and
it gives the possibility of including correlations also at very large length scales.

Unfortunately,Bogoliubov transformations of the form (1.10) donot seemcompatible
with the hard-core condition (1.8). As a consequence, they do not seem appropriate to
construct trial states approximating the ground state energy of a system of particles
interacting through a hard-sphere potential. A different class of trial states, for which
(1.8) can be easily verified, consists of products having the form

�N (x1, . . . , xN ) =
N∏
j=1

f (xi − x j ) (1.11)

for a function f satisfying f (x) = 0, for all |x | < a/N (as mentioned after (1.2), also
here xi − x j is interpreted as difference on the torus). Such an ansatz was first used in the
physics literature in [4,15,23]; it is often known as Jastrow factor. In order for (1.11) to
provide a good approximation for the ground state energy, f must describe two-particle
correlations. Probably the simplest possible choice of f is given by the solution

f (x) =
{
0 if |x | < a/N
1 − a

N |x | if |x | ≥ a/N

of the zero-energy scattering equation−� f = 0,with the hard-core requirement f (x) =
0 for |x | < a/N and the boundary condition f (x) → 1, as |x | → ∞. The problem with
this choice is the fact that f has long tails; as a consequence, it is extremely difficult
to control the product (1.11). To make computations possible, we need to cutoff f at
some intermediate length scale a/N � � � 1, requiring that f (x) = 1 for |x | ≥ � (the
cutoff can be implemented in different ways; below, we will choose f as the solution
of a Neumann problem on the ball |x | ≤ � and we will keep it constant outside the
ball). Choosing � small enough (in particular, smaller than the typical distance among
particles, which is of the order N−1/3), the Jastrow factor becomes more manageable
and it is not too difficult to show that its energy matches, to leading order, the ground
state energy (1.3). In the thermodynamic limit, this was first verified in [16], using a
modification of (1.11), considering only correlations among neighbouring particles.

While Jastrow factors can lead to the correct leading order term in the ground state
energy, it seemsmuchmore difficult to use (1.11) to obtain an upper boundmatching also
the second order term on the r.h.s. of (1.9). The point is that the second order corrections
are generated by correlations at much larger length scales; to produce the term on the
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second line of (1.9) we would need to take � of order one, making computations very
difficult.

In order to prove Theorem 1.1, we will therefore consider a trial state given by the
product of a Jastrow factor (1.11), describing correlations up to a sufficiently small length
scale 1/N � � � 1, and of a wave function 
N , constructed through a Bogoliubov
transformation, describing correlations on length scales larger than �. This allows us to
combine the nice features of the Jastrow factor (in particular, the fact that it automatically
takes care of the hard core condition (1.8)) and of the Bogoliubov transformation (in
particular, their (almost) explicit action on creation and annihilation operators, which
enables us to insert correlations at large length scales).

The paper is organised as follows. In Sect. 2, we define our trial state �N as the
product of a Jastrow factor and an N -particle wave function
N , to be specified later on,
and we compute its energy. One of the contributions to the energy of �N is a three-body
term; under certain conditions on 
N (see (3.1)), we show that this term is negligible
in Sect. 3. In Sect. 4 we then prove that the remaining contributions to the energy can
be reduced (again under suitable assumptions on 
N ; see (4.4)) to the expectation of an
effective Hamiltonian H eff

N , defined in (4.3). Sections5 and 6 are devoted to the study
of H eff

N ; the goal is to find 
N so that the expectation of H eff
N produces the energy on

the r.h.s of (1.9), up to negligible errors. Here, we use the approach developed in [5–7].
In Sect. 7, we show that the chosen wave function 
N satisfies the bounds that were
used in Sects. 3 and 4. Finally, in Sect. 8, we put all ingredients together to conclude the
proof of Theorem 1.1. The proof of important properties concerning the solution of the
scattering equations is deferred to Appendix A.

2. The Jastrow Factor and Its Energy

As explained in the introduction, our trial state involves a Jastrow factor, to describe
short-distance correlations. To define the Jastrow factor, we choose 1/N � � � 1 and
we consider the ground state solution of the Neumann problem

{−� f�(x) = λ� f�(x) for a/N ≤ |x | ≤ �

∂r f�(x) = 0 if |x | = �
(2.1)

on the ball B� = {x ∈ R
3 : |x | ≤ �}, with the hard-core condition f�(x) = 0 for

|x | ≤ a/N and the normalization f�(x) = 1 for |x | = � (we denote here by ∂r the radial
derivative). We extend f� to � setting f�(x) = 1 for |x | ∈ �\B�. We have

− � f�(x) = λ�χ�(x) f�(x) (2.2)

where χ� denotes the characteristic function of B�. The following lemma establishes
properties of λ�, f�, of the difference ω�(x) = 1− f�(x) and of its Fourier coefficients

ω̂�(p) =
∫

eip·xω�(x)dx

defined for p ∈ �∗ = 2πZ
3 (since ω� has compact support inside [−1/2; 1/2]3, we

can think of the integral as being over R
3).
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Lemma 2.1. Let λ� denote the ground state eigenvalue appearing in (2.1). Then

tan
(√

λ� (� − a/N )
) = √

λ� � . (2.3)

For N� → ∞, we find

λ� = 3a

N�3

[
1 +

9

5

a

N�
+O

( a2

N 2�2

)]
. (2.4)

The corresponding eigenvector f� is given by

f�(x) = �

|x |
sin(

√
λ�(|x | − a/N ))

sin(
√

λ�(� − a/N ))
(2.5)

for all a/N ≤ |x | ≤ � ( f�(x) = 0 for |x | ≤ a/N and f�(x) = 1 for |x | > �). We find

Nλ�

∫
χ� f

2
� dx = 4πa +

24

5
π

a2

�N
+O

( a2

N 2�2

)
. (2.6)

With the notation ω�(x) = 1 − f�(x), we have ω�(x) = 0 for |x | ≥ � and, for |x | ≤ �,
the pointwise bounds

0 ≤ ω�(x) ≤ Ca

N |x | , |∇ω�(x)| ≤ Ca

N |x |2 (2.7)

for a constant C > 0. Furthermore, there exists a constant C > 0 so that

∣∣∣‖ω�‖1 − 2

5
πa

�2

N

∣∣∣ ≤ C
a2�

N 2 (2.8)

and, for all p ∈ [1, 3) and q ∈ [1, 3/2),

‖ω�‖p ≤ C�
3
p −1N−1, ‖∇ω�‖q ≤ C�

3
q −2N−1. (2.9)

Finally, for p ∈ �∗, let ω̂p denote the Fourier coefficients of ω�. Then

|ω̂�(p)| ≤ C min

{
�2

N
; 1

N |p|2 ; 1

|p|3
}

. (2.10)

We defer the proof of Lemma 2.1 to Appendix A.
With the solution f� of the Neumann problem (2.1), we consider trial states of the

form

�N (x1, . . . , xN ) = 
N (x1, . . . , xN )

N∏
i< j

f�(xi − x j ) (2.11)

for 
N ∈ L2
s (�

N ) to be specified later on. Again, xi − x j should be interpreted as
difference on the torus (or f� should be replaced with its periodic extension). Note that
a similar trial state has been used in [27]. However, for us the wave function 
N serves
a completely different purpose (in our analysis, 
N carries correlations on length scales
larger than �; in [27], on the other hand, it was a product state, describing the condensate
trapped in an external potential).
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We compute

−�x j �N (x1, . . . , xN )
∏N

i< j f�(xi − x j )
=
[

− �x j − 2
N∑

i �= j

∇ f�(x j − xi )

f�(x j − xi )
· ∇x j

]

N (x1, . . . , xN )

+
N∑

i �= j

−� f�(x j − xi )

f�(x j − xi )

N (x1, . . . , xN )

−
N∑

i,m, j

∇ f�(x j − xi )

f�(x j . − xi )
· ∇ f�(x j − xm)

f�(x j − xm)

N (x1, . . . , xN )

where the sum in the last term runs over i, j,m ∈ {1, . . . , N } all different. Noticing that
the operator on the first line is the Laplacian with respect to the measure defined by (the
square of) the Jastrow factor, and using (2.2) in the second line, we conclude that

〈�N ,

N∑
j=1

−�x j �N 〉 =
N∑
j=1

∫
|∇x j 
N (x)|2

N∏
n<m

f 2� (xn − xm)dx

+
N∑
i< j

2λ�

∫
χ�(xi − x j )|
N (x)|2

N∏
n<m

f 2� (xn − xm)dx

−
∑
i, j,k

∫ ∇ f�(x j − xi )

f�(x j − xi )
· ∇ f�(x j − xk)

f�(x j − xk)
|
N (x)|2

N∏
m<n

f 2� (xm − xn)dx

(2.12)

where we introduced the notation x = (x1, . . . , xN ) ∈ �N .

3. Estimating the Three-Body Term

In the next proposition, we control the last term on the r.h.s. of (2.12). To this end, we
need to assume some regularity on the N -particle wave function
N , appearing in (2.11)
(we will later make sure that our choice of 
N satisfies these estimates).

Proposition 3.1. Let N−1+ν ≤ � ≤ N−1/2−ν , for some ν > 0. Suppose 
N ∈ L2
s (�

N )

is such that

〈
N , (1 − �x1)(1 − �x2)(1 − �x3)
N 〉 ≤ C

(
1 +

1

N 2�3

)
(3.1)

and define �N as in (2.11). Then, for every δ > 0, there exists C > 0 such that

∣∣∣ 1

‖�N‖2
∑
i, j,k

∫ ∇ f�(x j − xi )

f�(x j − xi )
·∇ f�(x j − xk)

f�(x j − xk)
|
N (x)|2

N∏
n<m

f 2� (xn − xm)dx
∣∣∣

≤ CN�2−δ

(
1 +

1

N 2�3

)
. (3.2)

To prove this proposition, we will use the following lemma.
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Lemma 3.2. Let W : R
3 → R, with supp W ⊂ [−1/2; 1/2]3. Then W can be extended

to a periodic function (i.e. a function on the torus �) satisfying, on L2(�)⊗ L2(�), the
operator inequalities

±W (x − y) ≤C‖W‖3/2 (1 − �x )

±W (x − y) ≤C‖W‖2 (1 − �x )
3/4

for a constant C > 0, independent on W. Moreover, for every δ ∈ [0, 1/2) there exists
C > 0 such that

± W (x − y) ≤ C‖W‖1
{
1 + (−�x )

3/4+δ/2 (−�y
)3/4+δ/2

}
. (3.3)

Additionally, for any r > 1, there exists C > 0 such that

±W (x − y)W (x − z) ≤C‖W‖2r (1 − �x )
(
1 − �y

)
(1 − �z) . (3.4)

Proof. The proof is an adaptation to the torus of arguments that are, by now, standard
on R

3. For example, (3.3) follows by writing, in momentum space

∣∣〈ϕ,W (x − y)ϕ〉∣∣ =
∣∣∣

∑
p1,p2,q1,q2∈�∗

Ŵ (p1 − q1)ϕ̂(p1, p2)ϕ̂(q1, q2) δp1+p2,q1+q2

∣∣∣

≤ C‖Ŵ‖∞ sup
p∈�∗

∑
q∈�∗

+

1

1 + |q|3/2+δ|p − q|3/2+δ

× 〈
ϕ,

[
1 + (−�x )

3/4+δ/2(−�y)
3/4+δ/2]ϕ〉

≤ C‖W‖1
〈
ϕ,

[
1 + (−�x )

3/4+δ/2(−�y)
3/4+δ/2]ϕ〉 .

To show (3.4), we proceed similarly, writing

∣∣〈ϕ,W (x − y)W (x − z)ϕ〉∣∣
=

∣∣∣
∑

Ŵ (p2 − q2)Ŵ (p3 − q3)ϕ̂(p1, p2, p3)ϕ̂(q1, q2, q3) δp1+p2+p3,q1+q2+q3

∣∣∣

≤ C sup
p

∑
q2,q3∈�∗

|Ŵ (p2 − q2)||Ŵ (p3 − q3)|
(1 + |p − q2 − q3|2)(1 + |q2|2)(1 + |q3|2)

× 〈ϕ, (1 − �x )(1 − �y)(1 − �z)ϕ〉
≤ C‖Ŵ‖2r ′ 〈ϕ, (1 − �x )(1 − �y)(1 − �z)ϕ〉

where 1/r + 1/r ′ = 1 and where we used the bound

∑
q2,q3∈�∗

1

(1 + |p − q2 − q3|2)r (1 + |q2|2)r (1 + |q3|2)r ≤ C

uniformly in p, for any r > 1. ��
We are now ready to show Proposition 3.1.
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Proof of Prop. 3.1. Using the permutation symmetry, 0 ≤ f� ≤ 1 and then Lemma 3.2
(in particular, (3.4)), the bound (2.9) and the assumption (3.1), we can estimate the
numerator in (3.2) by

∣∣∣∣∣∣
∑
i, j,k

∫ ∇ f�(x j − xi )

f�(x j − xi )
· ∇ f�(x j − xk)

f�(x j − xk)
|
N (x)|2

N∏
m<n

f 2� (xm − xn)dx

∣∣∣∣∣∣

≤ CN 3
∫

|∇ f�(x1 − x2)||∇ f�(x1 − x3)||
N (x)|2dx

≤ CN 3‖∇ f�‖2r 〈
N , (1 − �x1)(1 − �x2)(1 − �x3)
N 〉
≤ CN�

6
r −4

(
1 +

1

N 2�3

)
(3.5)

for any r > 1. As for the denominator in (3.2), we write u� = 1 − f 2� = 2ω� − ω2
� ,

with ω� defined after (2.2), and we bound (see (4.6) below for a justification of this
inequality)

N∏
n<m

f 2� (xn − xm) ≥ 1 −
N∑

n<m

u�(xn − xm).

Using ‖
N‖ = 1, Lemma 3.2 (in particular, (3.3)), the bound (2.9) and again the
assumption (3.1), we arrive at

∫
|
N (x)|2

N∏
n<m

f 2� (xi − x j )dx ≥ 1 −
N∑

n<m

∫
|
N (x)|2u�(xn − xm)dx

≥ 1 − CN 2‖u�‖1〈
N , (1 − �x1)(1 − �x2)
N 〉
≥ 1 − CN�2

(
1 +

C

N 2�3

)
≥ 1 − CN�2 − C

N�
≥ 1/2

for N−1 � � � N−1/2. Combining this estimate with (3.5) and choosing r > 1 so that
6/r − 4 > 2 − δ, we obtain the desired bound. ��

4. Reduction to an Effective Hamiltonian

Let us introduce the notation

Ekin(
N ) =
N∑
j=1

∫
|∇x j 
N (x1, . . . , xN )|2

N∏
n<m

f 2� (xn − xm)dx1 . . . dxN

Epot(
N ) =
N∑
i< j

2λ�

∫
χ�(xi − x j )|
N (x1, . . . , xN )|2

N∏
n<m

f 2� (xn − xm)dx1 . . . dxN .

(4.1)

It follows from (2.12) and Prop. 3.1 that

1

‖�N‖2 〈�N ,

N∑
j=1

−�x j �N 〉 = 1

‖�N‖2
[
Ekin(
N ) + Epot(
N )

]
+ E (4.2)
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where ±E ≤ CN�2−δ(1 + 1/(N 2�3)), provided 
N satisfies (3.1).
The goal of this subsection is to rewrite the main term on the r.h.s. of (4.2) as the

expectation, in the state 
N ∈ L2
s (�

N ), of an effective N -particle Hamiltonian having
the form

H eff
N =

N∑
j=1

−�x j + 2
N∑
i< j

∇x j · u�(xi − x j )∇x j + 2
N∑
i< j

λ�χ�(xi − x j ) f
2
� (xi − x j )

(4.3)

where u� = 1 − f 2� . To achieve this goal, we will make use of the following regularity
bounds on the wave function 
N (when we will define 
N in the next sections, we will
prove that it satisfies these estimates):

〈
N , (−�x1)
N 〉 ≤ C
N�

〈
N , (−�x1)(−�x2)
N 〉 ≤ C
N2�3

〈
N , (−�x1)(−�x2)(−�x3)
N 〉 ≤ C
N3�4

〈
N , (−�x1)(−�x2)(−�x3)(−�x4)
N 〉 ≤ C
N4�6

〈
N , (−�x1)
3/4+δ(−�x2)

3/4+δ . . . (−�xn )
3/4+δ
N 〉 ≤ C

Nn�αn

〈
N , (−�x1)(−�x2)
3/4+δ(−�x3)

3/4+δ . . . (−�xn )
3/4+δ
N 〉 ≤ C

Nn�βn (4.4)

for all n ≤ 6 and δ > 0 small enough and for sequences αn, βn defined by αn =
(7/6 + δ)n − (4/9)(1− (−1/2)n) and βn = αn + 1/2− δ. In applications (in particular,
in Prop. 4.1 below) we will only need the last two bounds in (4.4) for n = 2, 4, 6 and,
respectively, for n = 3, 4, 5. The relevant values of αn, βn are given by: α2 = 2 + 2δ,
α4 = 17/4 + 4δ, α6 = 105/16 + 6δ, β3 = 7/2 + 2δ, β4 = 19/4 + 3δ, β5 = 47/8 + 4δ.

Proposition 4.1. Consider a sequence 
N ∈ L2
s (�

N ) of normalized wave functions,

satisfying the bounds (4.4) and such that 〈
N , Heff
N 
N 〉 ≤ 4πaN + C, for a constant

C > 0 (independent of N), and for all N large enough. Suppose N−1+ν ≤ � ≤ N−3/4−ν ,
for some ν > 0. Then, there exist C, ε > 0 such that

1
‖�N ‖2

[
Ekin(
N ) + Epot(
N )

] ≤ 〈
N , Heff
N 
N 〉 − N (N−1)

2

×
〈

N ,

{[
Heff
N−2 − 4πaN

] ⊗ u�(xN−1 − xN )
}

N

〉
+ CN−ε. (4.5)

Remark. We will later prove a lower bound for H eff
N−2 − 4πaN which will allow us to

show that the second term on the r.h.s. of (4.5) is negligible, in the limit N → ∞.
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Proof. Writing again u� = 1 − f 2� , we can estimate

N∏
i< j

f 2� (xi − x j ) ≥ 1 −
∑
i< j

u�(xi − x j )

N∏
i< j

f 2� (xi − x j ) ≤ 1 −
∑
i< j

u�(xi − x j ) +
1

2

∑

i < j; m < n :
(i, j) �= (m, n)

u�(xi − x j )u�(xm − xn).

(4.6)

These bounds follow by setting h(s) = ∏N
i< j (1 − su�(xi − x j )), for s ∈ [0; 1], and by

proving that

h′(s) ≥ −
N∑
i< j

u�(xi − x j ), h′′(s) ≤
∑

i< j;m<n:
(i, j) �=(m,n)

u�(xi − x j )u�(xm − xn)

for all s ∈ (0; 1). Thus, we obtain the upper bound

Ekin Ekin(
N )

≤ N
∫

|∇x1
N (x)|2dx − N
∫

|∇x1
N (x)|2
∑
i< j

u�(xi − x j ) dx

+
N

2

∫
|∇x1
N (x)|2

∑

i < j;m < n :
(i, j) �= (m, n)

u�(xi − x j )u�(xm − xn) dx

= N
∫

|∇x1
N (x)|2(1 − (N − 1)u�(x1 − x2))dx

− N (N − 1)(N − 2)

2

∫
|∇x1
N (x)|2(1 − (N − 3)u�(x1 − x2))u�(x3 − x4) dx

+ Ekin (4.7)

where

Ekin ≤ CN 3
∫

|∇x1
N (x)|2u�(x1 − x2)u�(x1 − x3)dx

+CN 3
∫

|∇x1
N (x)|2u�(x1 − x2)u�(x2 − x3)dx

+CN 4
∫

|∇x1
N (x)|2u�(x2 − x3)u�(x2 − x4)dx

+CN 5
∫

|∇x1
N (x)|2u�(x2 − x3)u�(x4 − x5)dx

= E (1)
kin + E (2)

kin + E (3)
kin + E (4)

kin . (4.8)
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Consider the first error term on the r.h.s. of (4.8).Writing p = |ϕ0〉〈ϕ0| for the orthogonal
projection onto the condensate wave function ϕ0(x) ≡ 1, p j for p acting on the j-th
particle and q j = 1 − p j , we find

E (1)
kin = CN 3〈∇x1
N , u�(x1 − x2)u�(x1 − x3)∇x1
N 〉

≤ CN 3〈∇x1q3
N , u�(x1 − x2)u�(x1 − x3)∇x1q3
N 〉
+CN 3‖u�‖1〈∇x1p3
N , u�(x1 − x2)∇x1p3
N 〉

≤ CN 3〈∇x1q2q3
N , u�(x1 − x2)u�(x1 − x3)∇x1q2q3
N 〉
+CN 3‖u�‖1〈∇x1q2p3
N , u�(x1 − x2)∇x1q2p3
N 〉
+CN 3‖u�‖21‖∇x1p2p3
N‖2. (4.9)

With Lemma 3.2, and observing that, on the range of q, (1 − �) ≤ −C�, we obtain

E (1)
kin ≤CN 3‖u�‖23/2〈
N , (−�x1)(−�x2)(−�x3)
N 〉

+ CN 3‖u�‖1‖u�‖3/2〈
N , (−�x1)(−�x2)
N 〉 + CN 3‖u�‖21〈
N , (−�x1)
N 〉.

The term E (2)
kin can be treated like E

(1)
kin . Proceeding analogously, we also find, with (3.4),

E (3)
kin ≤CN 4‖u�‖2r 〈
N , (−�x1)(−�x2)(−�x3)(−�x4)
N 〉

+ CN 4‖u�‖21〈
N , (−�x1)
[
1 + (�x2�x3)

3/4+δ
]

N 〉

for any r > 1, and

E (4)
kin ≤CN 5‖u�‖21

〈

N , (−�x1)

[
1 + (�x2�x3)

3/4+δ + (�x2�x3�x4�x5)
3/4+δ

]

N

〉
.

From u� = 1 − f 2� = 2ω� − ω2
� , we obtain 0 ≤ u� ≤ 2ω� and thus, with (2.9),

‖u�‖r ≤ C�
3
p −1

/N (4.10)

for any p ≥ 1. From the assumption (4.4), we find

E(1)
kin , E(2)

kin ≤ C

N2�2
, E(3)

kin ≤ C

N2�2+6(1−1/r)
, E(4)

kin ≤ CN2�3 + C�1/2−2δ +
C

N2�15/8+4δ
.

Choosing δ > 0 sufficiently small and r > 1 sufficiently close to 1, we conclude that
there exist C, ε > 0 such that Ekin ≤ CN−ε, if N−1+ν ≤ � ≤ N−2/3−ν for a ν > 0, and
N ∈ N is large enough.

Let us now consider the potential energy. From (4.1), we can estimate

Epot(
N ) ≤ N (N − 1)λ�

∫
χ�(x1 − x2) f

2
� (x1 − x2)|
N (x)|2

N∏
3≤i< j

f 2� (xi − x j )dx.

With (4.6) (applied now to the product over 3 ≤ i < j), we obtain

Epot(
N )

≤ N (N − 1)λ�

∫
χ�(x1 − x2) f

2
� (x1 − x2)|
N (x)|2dx
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− N (N − 1)(N − 2)(N − 3)

2
λ�

∫
χ�(x1 − x2) f

2
� (x1 − x2)|
N (x)|2u�(x3 − x4)dx

+ Epot (4.11)

where

Epot ≤CN 6λ�

∫
χ�(x1 − x2) f

2
� (x1 − x2)|
N (x)|2u�(x3 − x4)u�(x5 − x6)dx

+ CN 5λ�

∫
χ�(x1 − x2) f

2
� (x1 − x2)|
N (x)|2u�(x3 − x4)u�(x4 − x5)dx

= E (1)
pot + E (2)

pot .

Proceeding similarly to (4.9) (introducing the projections p j , q j ), we can bound

E (1)
pot ≤CN 6λ�‖χ�‖1‖u�‖21

[
1 + 〈
N , (�x1�x2 )

3/4+δ
N 〉 + 〈
N , (�x1 . . . �x4 )
3/4+δ
N 〉

+ 〈
N , (�x1 . . . �x6 )
3/4+δ
N 〉

]

E (2)
pot ≤CN 5λ�‖χ�‖1‖u�‖1‖u�‖3/2

×
[
〈
N , (−�x1 )(�x2 . . . �x5 )

3/4+δ
N 〉 + 〈
N , (−�x1 )(�x2�x3 )
3/4+δ
N 〉

]

+ CN 5λ�‖χ�‖1‖u�‖21
[
1 + 〈
N , (�x1�x2 )

3/4+δ
N 〉 + 〈
N , (�x1 . . . �x4 )
3/4+δ
N 〉

]
.

From Lemma 2.1, we have λ� ≤ C/(N�3). From the assumption (4.4) and from (4.10),
we obtain

E (1)
pot ≤ C

[
N 3�4 + N�2−δ +

1

N�1/4+δ
+

1

N 3�41/16+6δ

]

E (2)
pot ≤ C

[
N 2�4 + �2−δ +

1

N 2�1/4+4δ
+

1

N�1/2+δ
+

1

N 3�23/8+4δ

]
.

Thus, choosing δ > 0 small enough, we can find C, ε > 0 such that Epot ≤ CN−ε, if
N−1+ν ≤ � ≤ N−3/4−ν for a ν > 0, and N ∈ N is large enough.

Finally, we consider the denominator on the r.h.s. of (4.2). With the lower bound in
(4.6) (and the assumption ‖
N‖2 = 1), we find

∫
|
N (x)|2

N∏
i< j

f 2� (xi − x j )dx ≥ 1 − N (N − 1)

2

∫
u�(x1 − x2)|
N (x)|2dx.

Observing that, by (3.3), (4.10) and by the assumption (4.4),

N (N − 1)

2

∫
|
N (x)|2u�(x1 − x2)dx

≤ CN 2‖u�‖1
[
1 + 〈
N , (�x1�x2)

3/4+δ
N 〉] ≤ C
[
N�2 +

1

N�2δ

]

we conclude, choosing δ > 0 sufficiently small and recalling that � ≤ N−3/4−ν , that

1∫ |
N (x)|2∏N
i< j f 2� (xi − x j )dx

≤ 1 +
N (N − 1)

2

∫
u�(x1 − x2)|
N (x)|2dx + CN−1−ε
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for ε > 0 small enough. Combining the last equation with (4.7), (4.11) we arrive at
(recall the assumption 〈
N , H eff

N 
N 〉 ≤ 4πaN + C)

1

‖�N‖2
[
Ekin(
N ) + Epot(
N )

]

≤
[
1 +

N (N − 1)

2

∫
u�(x1 − x2)|
N (x)|2dx + CN−3/2

]

×
[
〈
N , H eff

N 
N 〉 − N (N − 1)

2
〈
N ,

[
H eff
N−2 ⊗ u�(xN−1 − xN )

]

N 〉 + CN−ε

]

≤ 〈
N , H eff
N 
N 〉 + N (N − 1)

2
〈
N , H eff

N 
N 〉
∫

|
N (x)|2u�(xN−1 − xN )dx

− N (N − 1)

2
〈
N ,

[
H eff
N−2 ⊗ u�(xN−1 − xN )

]

N 〉 + CN−ε

≤ 〈
N , H eff
N 
N 〉 − N (N − 1)

2〈

N ,

{[
H eff
N−2 − 4πaN

] ⊗ u�(xN−1 − xN )
}

N

〉
+ CN−ε.

��

5. Properties of the Effective Hamiltonian

Motivated by the results of the last sections, in particular by (2.12), by Prop. 3.1 and by
Prop. 4.1, we would like to choose 
N ∈ L2

s (�
N ) as a good trial state for the effective

Hamiltonian H eff
N defined in (4.3) (i. e. 
N should lead to a small expectation of H eff

N
and, at the same time, it should satisfy the bounds (4.4)). Since u� = 1 − f 2� is small,
unless particles are very close, we can think of H eff

N as a perturbation of

H�,N =
N∑
j=1

−�x j + 2λ�

N∑
i< j

χ�(xi − x j ). (5.1)

Keeping in mind that, by (2.4), λ� � 3a/N�3 and that 1/N � � � 1, (5.1) looks like
the Hamilton operator of a Bose gas in an intermediate scaling regime, interpolating
between mean-field and Gross–Pitaevskii limits. The validity of Bogoliubov theory in
such regimes has been recently established in [6]. The goal of this section is to apply
the strategy of [6] to the Hamilton operator (4.3). This will lead to bounds for the
operator H eff

N and, eventually, to an ansatz for 
N . While part of our analysis in this
section can be taken over from [6], we need additional work to control the effect of the
difference u� = 1− f 2� , appearing in the kinetic and the potential energy in the effective
Hamiltonian (4.3).

To determine the spectrum of (4.3), it is useful to factor out the condensate and to
focus instead on its orthogonal excitations. To this end, following [25], we define a
unitary map UN : L2

s (�
N ) → F≤N

+ = ⊕N
n=0 L

2⊥(�)⊗sn , requiring that

UNψ = {α0, α1, . . . , αN } ∈ F≤N
+ (5.2)

if

ψ = α0ϕ
⊗N
0 + α1 ⊗s ϕ

⊗(N−1)
0 + · · · + αN .
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Here ϕ0(x) ≡ 1 for all x ∈ � denotes the condensate wave function, and L2⊥(�) is
the orthogonal complement of ϕ0 in L2(�). The action of the unitary operator UN is
determined by the rules

UN a∗
0a0U

∗
N = N − N+

UN a∗
pa0U

∗
N = a∗

p

√
N − N+ = √

Nb∗
p

UN a∗
0ap U

∗
N = √

N − N+ ap = √
Nbp

UN a∗
paq U

∗
N = a∗

paq . (5.3)

where N+ denotes the number of particles operator on F≤N
+ (it measures therefore the

number of excitations of the condensate) and where we introduced modified creation
and annihilation operators b∗

p, bp satisfying the commutation relations

[bp, b∗
q ] =

(
1 − N+

N

)
δp,q − 1

N
a∗
qap, [bp, bq ] = [b∗

p, b
∗
q ] = 0 (5.4)

and

[a∗
r as, b

∗
p] = δp,sb

∗
r , [a∗

r as, bp] = −δr,bs . (5.5)

On the truncated Fock space F≤N
+ , we can define the excitation Hamiltonian Leff

N =
UN H eff

N U∗
N . To compute Leff

N , we first rewrite (4.3) in momentum space, using the for-
malism of second quantization, as

H eff
N =

∑
p∈�∗

p2a∗
pap −

∑
p,q,r∈�∗

p · (p + r )̂u�(r)a
∗
p+r a

∗
q−r apaq

+ λ�

∑
p,q,r∈�∗

̂χ� f 2� (r)a∗
p+r a

∗
qaq+r ap. (5.6)

Then, we apply (5.3). This will produce a constant term, as well as contributions that are
quadratic, cubic and quartic in (modified) creation and annihilation operators. Following
Bogoliubov’s method, we would like to eliminate cubic and quartic terms. This would
reduce Leff

N to a quadratic expression, whose spectrum could be computed through diag-
onalizationwith a (generalized) Bogoliubov transformation. As explained in [6], though,
cubic and quartic terms in Leff

N are not negligible (they contribute to the energy to order
�−1). Before proceeding with the diagonalization, we need to extract relevant contribu-
tions to the energy from cubic and quartic terms. As in [6], we do so by conjugating Leff

N
with a (generalized) Bogoliubov transformation removing short-distance correlations
characterising low-energy states. To reach this goal, we fix �0 � �, small, but of order
one, independent of N . Similarly as in (2.1), we define f�0 to be the ground state solution
of the Neumann problem for the hard sphere potential in the ball B�0 . Extending f�0 to
the box �, we find

−� f�0(x) = λ�0χ�0(x) f�0(x)

with f�0(x) = 0 for |x | = a/N (the eigenvalue λ�0 is approximately given by (2.4),
of course with � replaced by �0). For a/N ≤ |x | ≤ �0, we can then define g�0(x) =
f�0(x)/ f�(x). We can also extend g�0 to �, setting g�0(x) = lim|y|↓a/N g�0(y) for all
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|x | ≤ a/N and g�0(x) = 1 for all x ∈ �\B�0 . A simple computation shows that g�0

solves the equation

− ∇[
f 2� ∇g�0

]
+ λ�χ� f

2
� g�0 = λ�0χ�0 f

2
� g�0 (5.7)

with the Neumann boundary condition ∂r g�0(x) = 0 for |x | = �0 (this follows eas-
ily from the observation that, for � ≤ |x | ≤ �0, g�0(x) = f�0(x)). Conversely, it is
interesting to observe that, integrating (5.7) against g�0 , we find∫

f 2� |∇g�0 |2dx + λ�

∫
χ� f

2
� g

2
�0
dx = λ�0

∫
χ�0 f

2
� g

2
�0
dx . (5.8)

With (2.1), we find
∫

|∇( f�g�0)|2dx = λ�0

∫
χ�0 |( f�g�0)|2dx (5.9)

which implies that (5.7) is solved by g�0 = f�0/ f�.
With g�0 , we define η̌(x) := −N (1 − g�0(x)). Some properties of g�0 , η̌ and of

their Fourier coefficients are collected in the next lemma, whose proof is deferred to
Appendix A. We introduce here the notation

V�(x) = 2Nλ�χ�(x) f
2
� (x). (5.10)

Lemma 5.1. We have η̌(x) = 0 for |x | ≥ �0. For |x | ≤ �0, we have the bounds

|η̌(x)| ≤ Ca

|x | + �
, |∇η̌(x)| ≤ Ca

(|x | + �)2
. (5.11)

Furthermore∣∣∣∣
∫

V�(x)g�0(x)dx − 8πa

∣∣∣∣ =
∣∣∣∣2Nλ�

∫
χ�(x) f

2
� (x)g�0(x)dx − 8πa

∣∣∣∣ ≤ CN−1

∣∣∣∣
∫

V�(x)g�0(x)e
−i p·xdx

∣∣∣∣ =
∣∣∣∣2Nλ�

∫
χ�(x) f

2
� (x)g�0(x)e

−i p·xdx
∣∣∣∣ ≤ C

�2 p2

(5.12)

and, analogously,
∣∣∣2Nλ�0

∫
χ�0(x) f

2
� (x)g�0(x)dx − 8πa

∣∣∣ ≤ CN−1

∣∣∣2Nλ�0

∫
χ�0(x) f

2
� (x)g�0(x)e

−i p·xdx
∣∣∣ ≤ C

p2
.

(5.13)

Recall the definition u� = 1 − f 2� . For p ∈ �∗
+, let

Dp = −
∑
r∈�∗

p · (p + r)û�(r)ηp+r (5.14)

and denote by ηp the Fourier coefficients of η̌. Then (5.7) takes the form

p2ηp + Dp + Nλ�

(
̂χ� f 2� ∗ ĝ�0

)
(p) = Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(p). (5.15)
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or, equivalently, with the definition (5.10),

p2ηp + Dp +
1

2
V̂�(p) +

1

2N

(
V̂� ∗ η

)
(p) = Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(p). (5.16)

We have

η0 = −2

5
πa�20 +O

(a2�0
N

)
+O

(
a�2

)
(5.17)

and, for p ∈ �∗
+,

|ηp| ≤ C min

{
1

|p|2 ; 1

�2|p|4
}

|Dp| ≤ C min

{
1

N�
; 1

�2|p|2
}

.

(5.18)

In particular, this implies
∑
q∈�∗

+

|q|r |ηq |2 ≤ C�1−r (5.19)

for all 1 < r < 5.

Using the coefficients ηp, for p ∈ �∗
+, we define now

B(η) = 1

2

∑
p∈�∗

+

ηp
(
b∗
pb

∗−p − bpb−p
)

(5.20)

and we introduce the renormalized excitation Hamiltonian

Geff
N ,� = e−B(η)UN H eff

N U∗
Ne

B(η). (5.21)

As explained in [6], conjugation with the generalized Bogoliubov transformation eB(η)

models correlations up to scales of order one (determined by the radius �0 of the ball used
to define g�0 ). It extracts important contributions to the energy from terms inLeff

N that are
quartic in creation and annihilation operators. This will allow us to approximate Geff

N by
the sumof a constant and of a quadratic expression in creation and annihilation operators,
whose ground state energywill be computed by simple diagonalization (through a second
Bogoliubov transformation).Unfortunately, conjugationwith eB(η) also produces several
error terms, which need to be bounded. For 1 < r < 5, we consider the positive operator

P(r) =
∑
p∈�∗

+

|p|r a∗
pap (5.22)

acting onF≤N
+ . The growth ofP(r) (and of products ofP(r) withmoments of the number

fo particles operator) under the action of B(η) is controlled by the next lemma.

Lemma 5.2. Let B(η) be defined as in (5.20). Then, for every n ∈ N and r ∈ (1; 5)
there is C > 0 such that, for all t ∈ [0; 1],

e−t B(η)(N+ + 1)net B(η) ≤ C(N+ + 1)n

e−t B(η)P(r)(N+ + 1)net B(η) ≤ C
(
P(r) + �1−r )(N+ + 1)n .

(5.23)
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Proof. The proof of the first bound in (5.23) is standard and can be found for example
in [10, Lemma 6.1]. As for the second inequality, let us consider the case n = 0. For
any ξ ∈ F≤N

+ and t ∈ [0; 1] we write

〈ξ, e−t B(η)P(r)et B(η)ξ 〉 = 〈ξ,P(r)ξ 〉 +
∫ t

0
ds 〈ξ, e−sB(η)

[
P(r), B(η)

]
esB(η)ξ 〉

(5.24)

where

[P(r), B(η)] =
∑
q∈�∗

+

|q|rηqb∗
qb

∗−q + h.c..

By Cauchy-Schwarz’s inequality and (5.19) we get
∣∣〈ξ, [P(r), B(η)]ξ 〉∣∣ ≤ C

∑
q∈�∗

+

|q|r |ηq |‖aqξ‖‖a∗
qξ‖

≤ C
∑
q∈�∗

+

|q|r |ηq |‖aqξ‖[‖aqξ‖ + ‖ξ‖] ≤ C〈ξ,P(r)ξ 〉 + �1−r‖ξ‖2.

Inserting this into (5.24) and using Gronwall’s Lemma, we obtain the desired bound.
The proof for n ≥ 1 is similar, we omit further details. ��

With Lemma 5.2 we are ready to establish the form of Geff
N ,�, up to errors which are

negligible on our trial state. We use the notation (recall the definition (5.10) of V�)

K =
∑
p∈�∗

+

p2a∗
pap, and V� = 1

2N

∑

p, q ∈ �∗
+, r ∈ �∗ :

r �= −p,−q

V̂�(r)a
∗
p+r a

∗
qapaq+r .

(5.25)

Proposition 5.3. LetGeff
N ,� be defined as in (5.21), with B(η) as in (5.20), with � ≥ N−1+ν

for some ν > 0 and �0 > 0 small enough (but fixed, independent of N). Let P(r) be
defined as in (5.22). Then, for any 0 < κ < ν/2 we have

Geff
N ,� ≥ 4πaN − C(N+ + 1) − C

N κ
P(2+κ)(N+ + 1). (5.26)

On the other hand, using the notation γp = cosh(ηp) and σp = sinh(ηp), let

CN ,� = (N − 1)

2
V̂�(0) +

∑
p∈�∗

+

[
p2σ 2

p + V̂�(p)(σ
2
p + σpγp)

+
1

2N

∑
q �=0

V̂�(p − q)ηpηq + Dpηp

]
(5.27)

with Dp defined in (5.14). Denote also

QN ,� =
∑
p∈�∗

+

[
Fpa

∗
pap +

1

2
Gp

(
b∗
pb

∗−p + bpb−p

)]
(5.28)
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with

Fp = p2(σ 2
p + γ 2

p ) + (V̂� ∗ ĝ�0)(p)(γp + σp)
2

Gp = 2p2γpσp + (V̂� ∗ ĝ�0)(p)(γp + σp)
2 + 2Dp.

(5.29)

Then

Geff
N ,� = CN ,� +QN ,� + EN ,� (5.30)

where

±EN ,� ≤ C√
N�

(K + V� + P(5/2))(N+ + 1)

and K and V� are defined in (5.25).

Proof. According to (5.6) we can decompose

Geff
N ,� = GN ,� + JN ,�

with

GN ,� = e−B(η)UN

⎡
⎣∑

p∈�∗
p2a∗

pap +
1

2N

∑
p,q,r∈�∗

V̂�(r)a
∗
p+r a

∗
qaq+r ap

⎤
⎦U∗

Ne
B(η)

(5.31)

and

JN ,� = −e−B(η)UN

⎡
⎣ ∑

p,q,r∈�∗
p · (p + r )̂u�(r)a

∗
p+r a

∗
q−r apaq

⎤
⎦U∗

Ne
B(η). (5.32)

We can compute Geff
N ,� with tools developed in [6]. From Propositions 7.4–7.7 of [6], we

obtain, on the one hand, the lower bound

GN ,� ≥ (N − 1)

2
V̂�(0) +

∑
p∈�∗

+

[
p2ηp + V̂�(p) +

1

2N
(V̂� ∗ η)(p)

]
ηp

+
∑
p∈�∗

+

[
p2ηp +

1

2
V̂�(p) +

1

2N
(V̂� ∗ η)(p)

](
bpb−p + b∗

pb
∗−p

) − C(N+ + 1)

(5.33)

and, on the other hand, the approximation

GN ,� = (N − 1)

2
V̂�(0)

+
∑
p∈�∗

+

[
p2σ 2

p + V̂�(p)σ
2
p + V̂�(p)γpσp +

1

2N

∑
q∈�∗

+

V̂�(p − q)ηpηq
]

+
∑
p∈�∗

+

[
2p2σ 2

p + V̂�(p)(γp + σp)
2]b∗

pbp +K + V�
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+
∑
p∈�∗

+

[
p2σpγp +

1

2
V̂�(p)(γp + σp)

2 +
1

2N

∑
q∈�∗

+

V̂�(p − q)ηq
]

×(
bpb−p + b∗

pb
∗−p

)
+ EG (5.34)

where

±EG ≤ C√
N�

(K + V� + 1)(N+ + 1).

Some care is required here when we apply results from [6]. First of all, the interaction
potential considered in [6] has the form N 3βW (Nβx), for some0 < β < 1. The potential
V�(x) = 2Nλ�χ�(x) f 2� (x) appearing in (5.31) has this form only if we approximate
f� � 1 and λ� � 3a/(N�3). A closer inspection to [6] shows, however, that (5.34) does
not rely on the precise form of the interaction potential but instead only on the bounds

sup
q∈�∗

+

∑

r ∈ �∗
r �= −q

|V̂�(r)|
|q + r |2 ≤ C�−1,

∑

r ∈ �∗, q ∈ �∗
+

r �= −q

|V̂�(r)|
|q + r |2|q|2 ≤ C�−2

which are the analog of [6, Eq. (7.5) and (7.75)] and follow from ‖V̂�‖∞ ≤ C and
‖V̂�‖2 ≤ C�−3/2. Moreover, the estimate (5.34) was proven in [6] under the assumption
that W = λV , for a sufficiently small λ > 0. This assumption was used in [6] to make
sure that the �2-norm of η is sufficiently small. As later shown in [8], smallness of ‖η‖
can also be achieved by choosing the parameter �0 small enough, with no restriction on
the size of the interaction potential.1 Finally, in [6], the choice of η was slightly different
from the definition given after (5.7) (the presence of the second term on the r.h.s. of
(5.6) affects the choice of η, as we will see shortly). However, the derivation of (5.34)
does not depend on the exact form of η, but rather on bounds, proven in Lemma 5.1, that
holds for both choices of η. This explains why (5.34) holds true, for sufficiently small
values of �0.

Let us now consider (5.32). With (5.3) we find

UN

[
−

∑
p,q,r∈�∗

p · (p + r )̂u�(r)a
∗
p+r a

∗
q−r apaq

]
U∗

N = Z1 + Z2 + Z3

with

Z1 = − (N − N+) û�(0)
∑
p∈�∗

+

p2a∗
pap

Z2 = − √
N

∑

p, r ∈ �∗
+ :

p + r �= 0

p · (p + r) û�(r)
(
b∗
p+r a

∗−r ap + h.c.
)

Z3 = −
∑

r ∈ �∗, p, q ∈ �∗
+ :

r �= −p, q

p · (p + r) û�(r)a
∗
p+r a

∗
q−r apaq . (5.35)

1 In [6], smallness of the potential was more importantly used to establish Bose–Einstein condensation for
low-energy states; here, we do not need to show Bose–Einstein condensation, because we are only interested
in an upper bound on the energy.
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Using Lemma 2.1 to bound ‖û�‖∞ ≤ ‖u�‖1 ≤ C‖ω�‖1 ≤ C�2N−1 and Lemma 5.2 (in
particular, the second inequality in (5.23), with r = 2), we find

|〈ξ, e−B(η)Z1e
B(η)ξ 〉| ≤ CN‖u�‖1‖(K + 1)1/2eB(η)ξ‖2 ≤ C�‖(K + 1)1/2ξ‖2

because N+ ≤ CK. As for the term Z2, we have, from ‖u�‖2 ≤ C‖ω�‖2 ≤ C�1/2/N
and by Lemma 5.2,

|〈eB(η)ξ, Z2e
B(η)ξ 〉|

≤ √
N
( ∑

p,r∈�∗
+:

p+r �=0

|p + r |2‖ap+r a−r e
B(η)ξ‖2

)1/2( ∑
p,r∈�∗

+:
p+r �=0

|̂u�(r)|2|p|2 ‖apeB(η)ξ‖2
)1/2

≤ C
√
N ‖u�‖2‖K1/2N 1/2

+ eB(η)ξ‖‖K1/2eB(η)ξ‖
≤ C(�N )−1/2‖(K + 1)1/2(N+ + 1)1/2ξ‖2.

Hence, we obtain

JN ,� = Z3 +
∫ 1

0
e−t B(η)[Z3, B(η)]et B(η)dt + E1

with

±E1 ≤ C(N�)−1/2(K + 1)(N+ + 1).

Using (5.5) we find

[Z3, B(η)] =
3∑

i=1

Wi

with

W1 =
∑
p∈�∗

+

Dp
(
b∗
pb

∗−p + bpb−p
)

W2 = −
∑

r∈�∗, p,q∈�∗
+:

p+r, q−r �=0

p · (p + r) û�(r)ηq−r
(
b∗
pb

∗
r−qa

∗
qap+r + h.c.

)

W3 = −
∑

r∈�∗, p,q∈�∗
+:

p+r, q−r �=0

p · (p + r) û�(r)ηp+r
(
b∗−p−r b

∗
qa

∗
paq−r + h.c.

)
.

For any t ∈ [0; 1], we have (using again ‖u�‖2 ≤ C�1/2/N and ‖η‖2 ≤ C , from (5.18))

|〈et B(η)ξ,W2e
t B(η)ξ 〉|

≤
[ ∑
r∈�∗, p,q∈�∗

+:
p+r, q−r �=0

|p|2‖aqbr−qbp(N+ + 1)−1/2et B(η)ξ‖
]1/2

×
[ ∑
r∈�∗, p,q∈�∗

+:
p+r, q−r �=0

|̂u�(r)|2|ηq−r |2|p + r |2‖ap+r (N+ + 1)1/2et B(η)ξ‖
]1/2

≤ ‖u�‖2‖η‖2‖K1/2(N+ + 1)1/2et B(η)ξ‖2 ≤ C�1/2(N�)−1‖K1/2(N+ + 1)1/2ξ‖2.
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The contribution of W3 can be bounded similarly. Hence,

JN ,� = Z3 +W1 +
∫ 1

0
dt

∫ t

0
ds e−sB(η)

[
W1, B(η)

]
esB(η) + E2

with

±E2 ≤ C√
N�

(K + 1)(N+ + 1).

With (5.4), we compute

[
W1, B(η)

] =
4∑

i=1

Xi + h.c.

where

X1 =
∑
p∈�∗

+

Dpηp

X2 =
∑
p∈�∗

+

Dpηp

[(
1 − N+

N

)(
1 − N+ + 1

N

)
− 1

]

X3 = 2
∑
p∈�∗

+

Dpηp a
∗
p

(
1 − N+ + 2

N

)(
1 − N+ + 1

N

)
ap

X4 = − 1

N

∑
p,q∈�∗

+

Dpηq a
∗
pa

∗−p

[
2

(
1 − N+

N

)
− 3

N

]
aqa−q .

With (5.18), we find, for any t ∈ [0; 1],

|〈et B(η)ξ, X2e
t B(η)ξ 〉| ≤ C

N

[ ∑
p∈�∗

+
|p|≤�−1

1

|p|2 +
∑
p∈�∗

+
|p|≥�−1

1

�2|p|4
]
‖(N+ + 1)1/2et B(η)ξ‖2

≤ C(N�)−1‖(N+ + 1)1/2ξ‖2.
Again from (5.18), we have |Dpηp| ≤ C(N�)−1 for all p ∈ �∗

+. Thus

|〈et B(η)ξ, X3e
t B(η)ξ 〉| ≤ C(N�)−1‖N 1/2

+ et B(η)ξ‖2 ≤ C(N�)−1‖(N+ + 1)1/2ξ‖2.
As for the expectation of X4, using (5.18) we obtain

|〈et B(η)ξ, X4e
t B(η)ξ 〉|

≤ C

N

( ∑
p,q∈�∗

+

|Dp|2
|p|2 ‖a−qaq e

t B(η)ξ‖2
)1/2

×
( ∑

p,q∈�∗
+

|ηq |2|p|2‖apa−p e
t B(η)ξ‖2

)1/2

≤ C

N�1/2
‖K1/2N 1/2

+ et B(η)ξ‖‖N+e
t B(η)ξ‖ ≤ C

N�
‖(K + 1)1/2(N+ + 1)ξ‖2.
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We conclude that

JN ,� = Z3 +W1 + X1 + E3
with

±E3 ≤ C√
N�

(K + 1)(N+ + 1).

Let us now go back to control the term Z3, as defined in (5.35). We can estimate, for
any κ > 0,

|〈ξ, Z3ξ 〉| ≤ C
( ∑

r ∈ �∗, p, q ∈ �∗
+ :

p + r, q − r �= 0

|p|2+κ |ω̂�(r)|
|p + r |κ ‖apaqξ‖2

)1/2

×
( ∑

r ∈ �∗, p′, q ′ ∈ �∗
+ :

p′ − r, q ′ + r �= 0

|p′|2+κ |ω̂�(r)|
|p′ − r |κ ‖ap′aq ′ξ‖2

)1/2

≤ C

N κ
〈ξ,P(2+κ)N+ξ 〉

where we used the change of variables p′ = p + r, q ′ = q − r and the bound

sup
p∈�∗

+

∑
r∈�∗: r �=−p

|ω̂�(r)|
|p − r |κ ≤ CN−κ (5.36)

valid for any κ > 0. To prove (5.36), we use the bound (2.10) for |ω̂�(r)|. More precisely,
we consider separately the sets where i) |p − r | < N and |r | < N (here we use
|ω̂�(r)| ≤ C/(N |r |2) and we estimate |r |−2|p − r |−κ � |r |−2−κ + |p − r |−2−κ ), ii)
|p−r | ≥ N and |r | ≥ N (here we apply |ω̂�(r)| ≤ C/|r |3 and we use |r |−3|p−r |−κ �
|r |−3−κ+|p−r |−3−κ ), iii) |p−r | < N and |r | ≥ N (herewe estimate |ω̂�(r)| ≤ CN−3),
iv) |p − r | ≥ N and |r | < N (here we use |ω̂�(r)| ≤ C/(N |r |2) and we estimate
|p − r |−κ ≤ CN−κ ).

Thus, for any κ > 0, we arrive at

JN ,� =
∑
p∈�∗

+

Dpηp +
∑
p∈�∗

+

Dp
(
b∗
pb

∗−p + bpb−p
)
+ EJ

where

± EJ ≤ C√
N�

(K + 1)(N+ + 1) +
C

N κ
P(2+κ)(N+ + 1). (5.37)

Combining the last estimate with (5.33), we obtain

Geff
N ,� ≥ (N − 1)

2
V̂�(0) +

∑
p∈�∗

+

[
p2ηp + Dp + V̂�(p) +

1

2N
(V̂� ∗ η)(p)

]
ηp

+
∑
p∈�∗

+

[
p2ηp + Dp +

1

2
V̂�(p) +

1

2N
(V̂� ∗ η)(p)

](
bpb−p + b∗

pb
∗−p

)

− C(N+ + 1) − C

N κ
P(2+κ)(N+ + 1)



24 G. Basti, S. Cenatiempo, A. Olgiati, G. Pasqualetti, B. Schlein

now with the restriction 0 < κ < ν/2 (from � ≥ N−1+ν , it then follows that N� ≥
N ν ≥ N 2κ ; thus, the first term on the r.h.s. of (5.37) can be controlled by the second).
With the scattering equation (5.16) and using the bound on the second line of (5.13), we
obtain

Geff
N ,� ≥ N

2

∫
V�(x)g�0(x)dx − C(N+ + 1) − C

N κ
P(2+κ)(N+ + 1)

for any 0 < κ < ν/2. With (5.12), we find (5.26).
On the other hand, combining (5.37) with (5.34), we arrive at

Geff
N ,� = (N − 1)

2
V̂�(0)

+
∑
p∈�∗

+

[
p2σ 2

p + V̂�(p)σ
2
p + V̂�(p)γpσp +

1

2N

∑
q∈�∗

+

V̂�(p − q)ηpηq + Dpηp
]

+
∑
p∈�∗

+

[
p2σpγp +

1

2
V̂�(p)(γp + σp)

2 +
1

2N

∑
q∈�∗

+

V̂�(p − q)ηq + Dp
]

× (
bpb−p + b∗

pb
∗−p

)

+
∑
p∈�∗

+

[
2p2σ 2

p + V̂�(p)(γp + σp)
2]b∗

pbp +K + V� + ẼN ,�

where

± ẼN ,� ≤ C√
N�

(K + V� + 1)(N+ + 1) +
C

N κ
P(2+κ)(N+ + 1)

for any 0 < κ < 1. Observing that

∣∣∣ 1
N

∑
p∈�∗

+, q∈�∗
V̂�(p − q)ηq(σp + γp)

2〈ξ, b∗
pbpξ 〉

∣∣∣ ≤ C

N�
‖(N+ + 1)1/2ξ‖2

∣∣∣ 1
N

∑
p∈�∗

+, q∈�∗
V̂�(p − q)ηq

(
(σp + γp)

2 − 1
)〈ξ, bpb−pξ 〉

∣∣∣ ≤ C

N�
‖(N+ + 1)1/2ξ‖2

∣∣∣
∑
p∈�∗

+

p2〈ξ, (b∗
pbp − a∗

pap)ξ 〉
∣∣∣ ≤ C

N
‖K1/2N 1/2

+ ξ‖2

and that

〈ξ,V� ξ 〉 = 1

2N

∑
p,q∈�∗

+,r∈�∗
r �=−p,−q

V̂�(r)〈ξ, a∗
p+r a

∗
qaq+r apξ 〉

≤ 1

2N

∑
p,q∈�∗

+,r∈�∗
r �=−p,−q

|V̂�(r)

|q + r |2 |p + r |2‖ap+r aqξ‖2 ≤ C

N�
‖K1/2N 1/2

+ ξ‖2

we arrive at (5.30), choosing κ = 1/2. ��



A Second Order Upper Bound for the Ground State Energy 25

6. Diagonalization of the Effective Hamiltonian

According to Prop. 5.3, we need to find a good ansatz for the ground state of the quadratic
HamiltonianQN ,�, defined in (5.28). To this end, we are going to conjugate Geff

N ,� with a
second generalized Bogoliubov transformation, diagonalizing QN ,�. In order to define
the appropriate Bogoliubov transformation, we first need to establish some properties
of the coefficients Fp,Gp, defined in (5.29).

Lemma 6.1. Suppose � ≥ N−1+ν , for some ν > 0. Then there exists a constant C > 0
such that

p2/2 ≤ Fp ≤ C(1 + p2), |Gp| ≤ C

p2
, |Gp| < Fp

for all N ∈ N large enough.

Proof. Recall the notations γp = cosh(ηp) and σp = sinh(ηp). With (σ 2
p + γ 2

p ) ≤ C
(from the boundedness of ηp) and (5.13) in Lemma 5.1, we immediately obtain Fp ≤
C(1 + p2). To prove the lower bound for Fp, let us first consider |p| > �−1/2. With
(σ 2

p + γ 2
p ) = cosh(2ηp) ≥ 1, we find Fp ≥ p2 − C ≥ p2/2, if N is large enough (so

that � is small enough). For |p| ≤ �−1/2, we use (̂χ� f 2� ∗ ĝ�0)(0) > 0 to estimate
(

̂χ� f 2� ∗ ĝ�0

)
(p) >

(
̂χ� f 2� ∗ ĝ�0

)
(p) −

(
̂χ� f 2� ∗ ĝ�0

)
(0) .

With
∣∣∣
(

̂χ� f 2� ∗ ĝ�0

)
(p) −

(
̂χ� f 2� ∗ ĝ�0

)
(0)

∣∣∣ ≤ C |p|
∫

|x |χ�(x) f
2
� (x)g�0(x)dx ≤ C�

7
2

we conclude that

Fp ≥ p2 − C�1/2 ≥ p2

2
.

Next, we show |Gp| ≤ C/p2. With the scattering equation (5.16), we obtain

Gp = 2Nλ�0(
̂χ�0 f

2
� ∗ ĝ�0)(p) + 2p2(γpσp − ηp) + (V̂� ∗ ĝ�0)(p)

[
(γp + σp)

2 − 1
]
.

Since
∣∣γpσp − ηp

∣∣ =
∣∣∣1
2
sinh(2ηp) − ηp

∣∣∣ ≤ C
∣∣ηp

∣∣3 ≤ C

|p|6
∣∣(γp + σp)

2 − 1
∣∣ =

∣∣∣ sinh(2ηp) + cosh(2ηp) − 1
∣∣∣ ≤ C |ηp| ≤ C

p2
(6.1)

and using (5.13) we obtain |Gp| ≤ C/p2, as claimed.
It remains to show |Gp| ≤ Fp. To this end, we write

Fp − Gp = p2
(
γp − σp

)2 − 2Dp

Fp + Gp = [
p2 + 2(V̂� ∗ ĝ�0)(p)

]
(γp + σp)

2 + 2Dp .

ByLemma5.1we have
∣∣Dp

∣∣ ≤ C/(N�). Hence,wefind, for N large enough, Fp−Gp ≥
p2 −C/(N�) ≥ 0 and, similarly as in the proof of Fp ≥ p2/2 (distinguishing small and
large |p|), Fp + Gp ≥ Cp2 − C/(N�) > 0. This shows that Fp > |Gp| and concludes
the proof of the lemma. ��
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With Lemma 6.1, using in particular the bound |Gp| < Fp, we can define, for every
p ∈ �∗

+, τp ∈ R through the identity

tanh(2τp) = −Gp

Fp
.

Equivalently,

τp = 1

4
log

1 − Gp/Fp

1 + Gp/Fp
. (6.2)

From Lemma 6.1 we obtain

|τp| ≤ C
|Gp|
Fp

≤ C

|p|4 (6.3)

for all p ∈ �∗
+. With the coefficients τp, we define the antisymmetric operator

B(τ ) = 1

2

∑
p∈�∗

+

τp
(
b∗
pb

∗−p − bpb−p
)

(6.4)

and we consider the generalized Bogoliubov transformation eB(τ ).

Lemma 6.2. Let τp be defined as in (6.2). Then, for every n ∈ N and any r ∈ (0; 5)
there exists a constant C > 0 such that

eB(τ )(K + V� + P(r) + 1)(N+ + 1)neB(τ ) ≤ C(K + V� + P(r) + 1)(N+ + 1)n . (6.5)

Proof. Proceeding as in [6, Lemma 5.4] and using that, by (6.3), ‖τ‖1, ‖τ‖2 and ‖τ‖H2

are all bounded uniformly in � and N , we find

eB(τ )(K + V� + 1)(N+ + 1)eB(τ ) ≤ C(K + V� + 1)(N+ + 1).

The growth of P(r)(N+ +1) can be controlled as in Lemma 5.2, with the only difference
that now

∑
q∈�∗

+
|q|r |τq |2 ≤ C , for all 0 < r < 5. For n ≥ 1, we can proceed similarly.

��
The reason why we are interested in the Bogoliubov transformation eB(τ ) is that it

diagonalizes the quadratic operator QN ,� defined as in Prop. 5.3.

Lemma 6.3. Let QN ,� be defined as in (5.28), and τp as in (6.2). Then, we have

e−B(τ )QN ,�e
B(τ ) = 1

2

∑
p∈�∗

+

[
−Fp +

√
F2
p − G2

p

]
+
∑
p∈�∗

+

√
F2
p − G2

p a∗
pap + δN ,�

where

±δN ,� ≤ C

N
(K + 1)(N + 1) .

Proof. The proof of Lemma 6.3 follows exactly as in [8, Lemma 5.3], using Lemma 6.1
(which implies ‖τ‖1 ≤ C), Lemma 5.2 and Lemma 6.2. ��
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With the generalized Bogoliubov transformation eB(η), we define a new excitation
Hamiltonian Meff

N ,� : F≤N
+ → F≤N

+ , setting2

Meff
N ,� = e−B(τ )Geff

N ,�e
B(τ ). (6.6)

Since the generalized Bogoliubov transformation eB(τ ) diagonalizes the quadratic part
of Geff

N ,�, the vacuum vector � ∈ F≤N
+ is a good trial state forMeff

N ,�. This correspond to

the trial state 
N = U∗
Ne

B(η)eB(τ )� ∈ L2
s (�

N ) for the Hamiltonian H eff
N .

Proposition 6.4. Let Meff
N ,� be as defined in (6.6), with B(τ ) as in (6.4) and Geff

N ,� as in

(5.21), with � ≥ N−1+ν for some ν > 0 and �0 > 0 small enough. Then, we have

〈�,Meff
N ,��〉 = 4πa(N − 1) + e�a

2

− 1

2

∑
p∈�∗

+

[
p2 + 8πa −

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+O(N−ν/2)

with e� defined as in (1.5).

Proof. With (5.30) and Lemma 6.2, we have

Meff
N ,� = CN ,� + e−B(τ )QN ,�e

B(τ ) + E ′
N ,�

with

±E ′
N ,� ≤ C

(N�)1/2
(K + V� + P(5/2) + 1)(N+ + 1) .

With Lemma 6.3 and the assumption � ≥ N−1+ν , we obtain

〈�,Meff
N ,��〉 = CN ,� +

1

2

∑
p∈�∗

+

[
−Fp +

√
F2
p − G2

p

]
+O(N−ν/2) (6.7)

with CN ,�, Fp and Gp defined as in (5.27) and (5.29). We rewrite

CN ,� = (N − 1)

2
V̂�(0) +

∑
p∈�∗

+

[
p2η2p + V̂�(p)ηp +

1

2N
(V̂� ∗ η)(p)ηp + Dpηp

]

+
∑
p∈�∗

+

[
p2(σ 2

p − η2p) + V̂�(p)
(
σ 2
p + γpσp − ηp

) − 1

2N
V̂�(p)ηpη0

]
.

(6.8)

With the scattering equation (5.16) we find

CN ,� = (N − 1)

2
V̂�(0) +

∑
p∈�∗

+

[ 1
2
V̂�(p)ηp + Nλ�0

(
̂(χ�0 f

2
� ) ∗ ĝ�0

)
(p)ηp

]

+
∑
p∈�∗

+

[
p2(σ 2

p − η2p) + V̂�(p)
(
σ 2
p + γpσp − ηp

) − 1

2N
V̂�(p)ηpη0

]
.

2 Instead of considering first (in Sect. 5) the action of B(η) and then (here in Sect. 6) the action of B(τ ),
we could have combined both unitary maps into a single Bogoliubov transformation exp(B(ρ)), with ρ inter-
polating between η, for large momenta, and τ , for small momenta. We chose to keep the two transformations
apart, because this allowed us to apply several results from [6].
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Recalling that V� = 2Nλ�χ� f 2� we obtain, switching to position space,

CN ,� = N (N − 1)λ�

∫
χ�(x) f

2
� (x)dx + Nλ�

∫
χ�(x) f

2
� (x)η̌(x)dx

+ Nλ�0

∫
χ�0(x) f

2
� (x)g�0(x)η̌(x)dx − Nλ�

̂(χ� f 2� )(0)η0

− Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(0)η0

+
∑
p∈�∗

+

[
p2(σ 2

p − η2p) + V̂�(p)(σ
2
p + γpσp − ηp) − 1

2N
V̂�(p)ηpη0

]
.

With η̌ = N (g�0 − 1), we arrive at

CN ,� = N (N − 1)λ�

∫
χ�(x) f

2
� (x)dx + N 2λ�

∫
χ�(x) f

2
� (x)g�0(x)dx

− N 2λ�

∫
χ�(x) f

2
� (x)dx + N 2λ�0

∫
χ�0(x) f

2
� (x)g2�0(x)dx

− N 2λ�0

∫
χ�0(x) f

2
� (x)g�0(x)dx − Nλ�

̂(χ� f 2� )(0)η0

− Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(0)η0

+
∑
p∈�∗

+

[
p2(σ 2

p − η2p) + V̂�(p)(σ
2
p + γpσp − ηp) − 1

2N
V̂�(p)ηpη0

]
.

With (5.7) and since g�0 satisfies Neumann boundary conditions, we notice that

λ�

∫
B�0

χ�(x) f 2� (x)g�0(x)dx − λ�0

∫
B�0

χ�0(x) f
2
� (x)g�0(x)dx

= ∫
B�0

∇(
f 2� (x)∇g�0(x)

)
dx = 0 .

Thus, using f�0 = f�g�0 , we conclude that
3

CN ,� = N (N − 1)λ�0

∫
χ�0(x) f

2
�0

(x)dx

+Nλ�0

∫
χ�0(x) f

2
�0

(x)dx − Nλ�

∫
χ�(x) f

2
� (x)dx

−Nλ�
̂(χ� f 2� )(0)η0 − Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(0)η0

+
∑
p∈�∗

+

[
p2(σ 2

p − η2p) + V̂�(p)(σ
2
p + γpσp − ηp) − 1

2N
V̂�(p)ηpη0

]
. (6.9)

To bound the terms on the second line of (6.9), we use Lemma 2.1 to show that
∣∣∣Nλ�0

∫
χ�0(x) f

2
�0

(x)dx − 4πa
∣∣∣ ≤ C

N�0∣∣∣Nλ�

∫
χ�(x) f

2
� (x)dx − 4πa

∣∣∣ ≤ C

N�
.

3 Instead of applying the scattering equation on the first line of (6.8), we could have switched to position
space and argued as in (5.8) to reconstruct the term on the r.h.s. of (5.9); this would have given an alternative
derivation of (6.9).



A Second Order Upper Bound for the Ground State Energy 29

Similarly, we find

−Nλ�
̂(χ� f 2� )(0)η0 − Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(0)η0 = −8πaη0 +O((N�)−1) .

As for the terms on the fourth line, the last contribution can be bounded, using that
|η0| ≤ C , by

∣∣∣ 1

2N

∑
p∈�∗

+

V̂�(p)ηpη0

∣∣∣ ≤ C

N�
.

To handle the other terms on the fourth line of (6.9), we combine themwith the first term
in the sum on the r.h.s. of (6.7). Recalling (5.29), we find (using again � ≥ N−1+ν)

∑
p∈�∗

+

[
p2(σ 2

p − η2p) + V̂�(p)(σ
2
p + γpσp − ηp) − 1

2
Fp

]

= −
∑
p∈�∗

+

[
p2

2
+
1

2
(V̂� ∗ ĝ�0)(p) + p2η2p + (V̂� ∗ ĝ�0)(p)ηp

]
+O(N−ν)

(6.10)

where we bounded, using |σ 2
p + γpσp − ηp| ≤ C |ηp|2 ≤ C/|p|4 (see (6.1)),

∣∣∣
∑
p∈�∗

+

(
V̂�(p) − (V̂� ∗ ĝ�0)(p)

)
(σ 2

p + γpσp − ηp)

∣∣∣ ≤ C

N�
.

As for the remaining term on the r.h.s. of (6.7), we can write

F2
p − G2

p = |p|4 + 2p2(V̂� ∗ ĝ�0)(p) + Ap

with the notation

Ap = −4Dp

(
(V̂� ∗ ĝ�0)(p)(γp + σp)

2 + Dp + 2p2γpσp

)
.

From (5.18),we have |Dp| ≤ C/(N�). Thus,with (γp+σp)
2 ≤ C and |γpσp| ≤ C |p|−2,

we obtain |Ap| ≤ C/(N�). Using this bound and the observation that |p|4 + 2p2(V̂� ∗
ĝ�0)(p) and |p|4 + 2p2(V̂� ∗ ĝ�0)(p) + Ap are positive and bounded away from zero we
write

√
F2
p − G2

p =
√

|p|4 + 2p2(V̂� ∗ ĝ�0)(p)

+
Ap√

|p|4 + 2p2(V̂� ∗ ĝ�0)(p) + Ap +
√

|p|4 + 2p2(V̂� ∗ ĝ�0)(p)
.

Expanding the square roots in the denominator around p2, we easily find (using again
|Ap| ≤ C/(N�)),

∑
p∈�∗

+

Ap√
|p|4 + 2p2(V̂� ∗ ĝ�0)(p) + Ap +

√
|p|4 + 2p2(V̂� ∗ ĝ�0)(p)
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=
∑
p∈�∗

+

Ap

2p2
+O(N−ν) .

Combining the last two equations with (6.7), (6.9), (6.10), we find

〈�,Meff
N ,��〉 = N (N − 1)λ�0

∫
χ�0 (x) f

2
�0

(x)dx − 8πaη0

+
1

2

∑

p∈�∗
+

[
− p2 − (V̂� ∗ ĝ�0 )(p) +

√
|p|4 + 2p2(V̂� ∗ ĝ�0 )(p) +

(
(V̂� ∗ ĝ�0 )(p)

)2
2p2

]

−
∑

p∈�∗
+

[
p2η2p + (V̂� ∗ ĝ�0 )(p)ηp − Ap

4p2
+

(
(V̂� ∗ ĝ�0 )(p)

)2
4p2

]
+O(N−ν/2) .

(6.11)

Estimating |(γp + σp)
2 − 1| ≤ C |ηp| ≤ C/|p|2 and |γpσp − ηp| ≤ Cη3p ≤ C/|p|6 (see

(6.1)), we obtain
∑
p∈�∗

+

Ap

4p2
= −

∑
p∈�∗

+

Dp

p2

[
2p2ηp + (V̂� ∗ ĝ�0)(p) + Dp

]
+O(N−ν) .

Solving the scattering equation (5.16) for Dp, we obtain
∑
p∈�∗

+

Ap

4p2
= −

∑
p∈�∗

+

Dp

p2

[
p2ηp +

1

2
(V̂� ∗ ĝ�0)(p) + Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(p)

]
+O(N−ν) .

Inserting this bound in the last line of (6.11), we get

∑
p∈�∗

+

[
p2η2p + (V̂� ∗ ĝ�0)(p)ηp − Ap

4p2
+

(
(V̂� ∗ ĝ�0)(p)

)2
4p2

]

=
∑
p∈�∗

+

[
p2ηp +

1

2
(V̂� ∗ ĝ�0)(p) + Dp

]
ηp

+
∑
p∈�∗

+

1

2
(V̂� ∗ ĝ�0)(p)

[
ηp +

(V̂� ∗ ĝ�0)(p)

2p2
+
Dp

p2

]

+
∑
p∈�∗

+

Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(p)

p2
Dp +O(N−ν) .

With the scattering equation (5.16), we find

∑
p∈�∗

+

[
p2η2p + (V̂� ∗ ĝ�0)(p)ηp − Ap

4p2
+

(
(V̂� ∗ ĝ�0)(p)

)2
4p2

]

=
∑
p∈�∗

+

Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(p)

p2

[
p2ηp +

1

2
(V̂� ∗ ĝ�0)(p) + Dp

]
+O(N−ν)

=
∑
p∈�∗

+

[
Nλ�0

(
̂χ�0 f

2
� ∗ ĝ�0

)
(p)

]2
p2

= 9a2

�60

∑
p∈�∗

+

χ̂2
�0

(p)

p2
+O(N−ν)
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where in the last step we used Lemma 2.1 and Lemma 5.1. From (6.11), we conclude
that

〈�,Meff
N ,��〉 = N (N − 1)λ�0

∫
χ�0(x) f

2
�0

(x)dx − 8πaη0 − 9a2

�60

∑
p∈�∗

+

χ̂�0(p)
2

p2

− 1

2

∑
p∈�∗

+

eN (p) +O(N−ν/2) (6.12)

where we introduced the notation

eN (p) = p2 + (V̂� ∗ ĝ�0)(p) −
√

|p|4 + 2p2(V̂� ∗ ĝ�0)(p) −
(
(V̂� ∗ ĝ�0)(p)

)2
2p2

.

Expanding the square root, we find that |eN (p)| ≤ C |p|−4, uniformly in N and �. This
allows us to cut the sum to |p| ≤ �−1, with a negligible error. For |p| ≤ �−1, we can
then compare (V̂� ∗ ĝ�0)(p)with (V̂� ∗ ĝ�0)(0) and then with V̂�(0). Proceeding similarly
to [8, Eq. (5.26)-(5.27)], we conclude that

∑
p∈�∗

+

eN (p) =
∑
p∈�∗

+

[
p2 + 8πa −

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+O(� log �) . (6.13)

Finally, let us compute the last term on the first line on the r.h.s. of (6.12). Using the
expressions (see [8, Eq. (5.5), (5.29) and (5.33)]):

χ̂�0(p) = 4π�0

|p|2
(
sin(�0|p|)

�0|p| − cos(�0 p)

)

̂(χ�0 | · |2)(p) = 4π�30

|p|2
(

−6 sin(�0|p|)
�30|p|3

+
6 cos(�0 p)

�20|p|2
+
3 sin(�0|p|)

�0|p| − cos(�0 p)

)

̂(χ�0 | · |−1)(p) = 4π

|p|2
(
1 − cos(�0 p)

)

we can rewrite

−9a2

�60

∑

p∈�∗
+

χ̂�0 (p)
2

p2
= − 12π

a2

�30

∑

p∈�∗
+

χ̂�0 (p)

|p|2 +
3a2

2�60

∑

p∈�∗
+

χ̂�0 (p) · ̂(χ�0 | · |2)(p)

− 9

2

a2

�40

∑

p∈�∗
+

χ̂�0 (p)
2 +

3a2

�30

∑

p∈�∗
+

χ̂�0 (p) · ̂(χ�0 | · |−1)(p) .

(6.14)

From [8, Eq. (5.31)] we have

− 12π
a2

�30

∑
p∈�∗

+

χ̂�0(p)

|p|2 = 6πa2
(
I0 − 1

�0
− 4

15
π�20

)
(6.15)

where

I0 = 1

3π
− 2

3π
lim

M→∞
∑

p ∈ �∗
+ :

|pi | ≤ M

cos(|p|)
p2

.



32 G. Basti, S. Cenatiempo, A. Olgiati, G. Pasqualetti, B. Schlein

Computing the different terms on the r.h.s. of (6.14) and using (6.15) we obtain

−9a2

�60

∑
p∈�∗

+

χ̂�0(p)
2

p2
= 6πaI0 − 24

5
π
a2

�0
− 16

5
π2a2�20 .

Inserting (6.13), (2.6), (5.17) and the last equation in (6.12), we conclude that

〈�,Meff
N ,��〉 = 4πa(N − 1) + e�a

2

− 1

2

∑
p∈�∗

+

[
p2 + 8πa −

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+O(N−ν/2)

with e� defined as in (1.5). ��

7. Bounds on the Trial State

We introduce some operators to control the regularity of our trial state. First of all, we
recall the definition of the operator P(r), defined in (5.23) for 1 < r < 5. Furthermore,
we need some observables acting of several particles. For n ∈ N, we define

Tn =
∑

p1,...,pn∈�∗
+

p21 . . . p2n a
∗
p1 . . . a∗

pnapn . . . ap1 . (7.1)

Since η has limited decay in momentum space (see (5.18)), we will only be able to
control the expectation of Tn for n = 2, 3, 4. To control some error terms, it is also
important to use less derivatives on each particle. We define, for δ > 0 small enough
(we will later impose the condition δ ∈ (0; 1/6)),

A(δ)
n =

∑
p1,...,pn∈�∗

+

|p1|3/2+δ . . . |pn|3/2+δa∗
p1 . . . a∗

pnapn . . . ap1 . (7.2)

We will be able to control the expectation of A(δ)
n , for all n ∈ N. Additionally, we will

also need the observable

S(ε,δ)
n =

∑
p1,...,pn∈�∗

+

|p1|2+ε|p2|3/2+δ . . . |pn|3/2+δa∗
p1 . . . a∗

pnapn . . . ap1 . (7.3)

All these operators act on the excitation Fock space F≤N
+ . In order to bound their

expectation on our trial state, we need to control their growth under the action of B(η),
similarly as we did in Lemma 5.2 for P(r).

Lemma 7.1. For n ∈ N\{0} and 0 < δ < 1/6, we consider A(δ)
n as in (7.2). We define

recursively the sequence αn (depending on the parameter δ) by setting α1 = 1/2 + δ,
α2 = 2 + 2δ and

αn = [
αn−1 + αn−2

]
/2 + 7/4 + 3δ/2 . (7.4)

Then, for every k ∈ N, there exists a constant C > 0 (depending also on n and δ) such
that



A Second Order Upper Bound for the Ground State Energy 33

〈eB(η)ξ,A(δ)
n (N+ + 1)keB(η)ξ 〉 ≤ C�−αn

{
‖(N+ + 1)k/2ξ‖2 +

n∑
j=1

〈ξ,A(δ)
j (N+ + 1)kξ 〉

}

(7.5)

for all ξ ∈ F≤N
+ .

For n ∈ N\{0}, let
In = {(ε, δ) ∈ (−1; 3) × (0; 1/6) : ε + 2δ < 3/2(n−1)} .

For (ε, δ) ∈ In, we consider S(ε,δ)
n as in (7.3). Moreover, we define the sequence βε

n =
αn + 1/2 + ε − δ, with αn as in (7.4) (the sequence βε

n depends also on δ; since this
dependence does not play an important role in the proof, we do not make it explicit in
the notation). Then, for every k ∈ N, there exists a constant C > 0 (depending also on
n, ε, δ) such that

〈eB(η)ξ,S(ε,δ)
n eB(η)ξ 〉 ≤ C�−βε

n

{
‖ξ‖2 +

n∑
j=1

sup
ε,δ∈I j

〈ξ,S(ε,δ)
j ξ 〉

}
(7.6)

for all ξ ∈ F≤N
+ .

For n ∈ {2, 3, 4}, we can also control the growth of the operator Tn, defined in (7.2).
We find

〈eB(η)ξ, T2eB(η)ξ 〉 ≤ C�−3〈ξ,
(
1 + P(4) + T2

)
ξ 〉

〈eB(η)ξ, T3eB(η)ξ 〉 ≤ C�−4〈ξ,
(
1 + P(4) + Z4,2 + T3

)
ξ 〉

〈eB(η)ξ, T4eB(η)ξ 〉 ≤ C�−6〈ξ,
(
1 + P(4) + Z4,4 + Z4,2,2 + T4

)
ξ 〉

(7.7)

for every ξ ∈ F≤N
+ . Here we introduced the notation (for m = 2, 4)

Z4,2 =
∑

p1,p2∈�∗
+:

p1 �=±p2

|p1|4 p22 a∗
p1a

∗
p2ap2ap1 , Z4,4 =

∑
p1,p2∈�∗

+:
p1 �=±p2

|p1|4|p2|4 a∗
p1a

∗
p2ap2ap1

Z4,2,2 =
∑

p1,p2,p3∈�∗
+:

p1 �=±p2,±p3

|p1|4 p22 p23 a∗
p1a

∗
p2a

∗
p3ap3ap2ap1 .

(7.8)

Finally, we will also need an improvement of (7.6), for n = 3. For ε > −1, 0 < δ < 1/6
with ε + δ < 1, we find

〈eB(η)ξ,S(ε,δ)
3 eB(η)ξ 〉 ≤ C�−3−ε−2δ

{
〈ξ,

[
1 + P(4) + Z4,2

]
ξ 〉 + sup

(ε,δ)∈I3
〈ξ, S(ε,δ)

3 ξ 〉
}

(7.9)

for all ξ ∈ F≤N
+ (observe that, in (7.6), βε

3 = 7/2 + ε + 2δ).

Remark. The sequence αn defined in (7.4) is given explicitly by

αn =
(
7

6
+ δ

)
n − 4

9

(
1 −

(
−1

2

)n)
. (7.10)



34 G. Basti, S. Cenatiempo, A. Olgiati, G. Pasqualetti, B. Schlein

Proof. We begin with (7.5).We consider k = 0; the case k > 0 can be handled similarly.
For n ≥ 1 and 0 < δ < 1/6, we set

F (δ)
n (t) = 〈et B(η)ξ,A(δ)

n et B(η)ξ 〉 .

For n ≥ 2, we compute

dF (δ)
n

dt
(t) = 〈et B(η)ξ,

[
A(δ)

n , B(η)
]
et B(η)ξ 〉

=
∑

p1,...,pn∈�∗
+

|p1|3/2+δ . . . |pn|3/2+δ

× 〈et B(η)ξ,
[
a∗
p1 . . . a∗

pnapn . . . ap1 , B(η)
]
et B(η)ξ 〉.

With the identity

[
a∗
p1 . . . a∗

pn apn . . . ap1 , b
∗
q

]
=

n∑
j=1

δq,p j b
∗
p j
a∗
p1 . . . a∗

p j−1
a∗
p j+1

. . . a∗
pn apn . . . ap j+1ap j−1 . . . ap1

we find
[
a∗
p1 . . . a∗

pnapn . . . ap1 , b
∗
qb

∗−q

]

=
n∑
j=1

δp j ,−qb
∗
qb

∗
p j
a∗
p1 . . . a∗

p j−1
a∗
p j+1

. . . a∗
pnapn . . . ap j+1ap j−1 . . . ap1

+
n∑
j=1

δp j ,qb
∗
p j
a∗
p1 . . . a∗

p j−1
a∗
p j+1

. . . a∗
pnapn . . . ap j+1ap j−1 . . . ap1b

∗−q .

Thus
[
a∗
p1 . . . a∗

pnapn . . . ap1 , b
∗
qb

∗−q

]

=
n∑
j=1

(δp j ,−q + δp j ,q) b
∗
qb

∗−qa
∗
p1 . . . a∗

p j−1
a∗
p j+1

. . . a∗
pnapn . . . ap j+1ap j−1 . . . ap1

+
n∑
j=1

∑
i �= j

δp j ,qδpi ,−qb
∗
qb

∗−qa
∗
p1 . . . a∗

p j−1
a∗
p j+1

. . . a∗
pi−1

a∗
pi+1 . . . a∗

pn

×apn . . . ap j+1ap j−1 . . . api+1api−1 . . . ap1 . (7.11)

Therefore, we can bound

∣∣∣dF
(δ)
n

dt
(t)

∣∣∣ ≤ C
∑

p1,...,pn−1,q∈�∗
+

|ηq ||q|3/2+δ|p1|3/2+δ . . . |pn−1|3/2+δ

× ‖aqap1 . . . apn−1e
t B(η)ξ‖‖a∗−qap1 . . . apn−1e

t B(η)ξ‖
+ C

∑
p1,...,pn−2,q∈�∗

+

|ηq ||q|3+2δ|p1|3/2+δ . . . |pn−2|3/2+δ

× ‖aqap1 . . . apn−2e
t B(η)ξ‖‖a∗−qap1 . . . apn−2e

t B(η)ξ‖ (7.12)
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for a constant C depending on n. Estimating ‖a∗−qζ‖ ≤ ‖a−qζ‖ + ‖ζ‖ and applying
Cauchy-Schwarz’s inequality, we obtain, for any n ≥ 3,

∣∣∣dF
(δ)
n

dt
(t)

∣∣∣ ≤C‖η‖∞F(δ)
n (t) + CF(δ)

n (t)
1
2 F(δ)

n−1(t)
1
2

[ ∑

q∈�∗
+

|q|3/2+δη2q

] 1
2

+ C
[
sup
q∈�∗

+

|q|3/2+δηq
]
F(δ)
n−1(t) + CF(δ)

n−1(t)
1
2 F(δ)

n−2(t)
1
2

[ ∑

q∈�∗
+

|q|9/2+3δη2q
] 1
2
.

With Lemma 5.1, we arrive at

∣∣∣dF
(δ)
n

dt
(t)

∣∣∣ ≤ CF (δ)
n (t) + C�−1/2−δF (δ)

n−1(t) + C�−7/4−3δ/2F (δ)
n−1(t)

1
2 F (δ)

n−2(t)
1
2 .

(7.13)

This bound is also valid for n = 2, setting F (δ)
0 (t) = ‖ξ‖2. If n = 1, we can use (5.23)

to estimate

F (δ)
1 (t) ≤ C�−1/2−δ

[‖ξ‖2 + 〈ξ,A(δ)
1 ξ 〉]

for all t ∈ [0; 1]. Inserting this bound on the r.h.s. of (7.13) (with n = 2), we obtain

F (δ)
2 (t) ≤ CF (δ)

2 (0) + C�−2−2δ〈ξ,
[‖ξ‖2 +A(δ)

1

]
ξ 〉 ≤ C�−2−2δ〈ξ,

[
1 +A(δ)

1 +A(δ)
2

]
ξ 〉 .

Defining the coefficients αn iteratively, as in (7.4), by simple induction we conclude
from (7.13) that, for all n ∈ N, there exists a constant C > 0 such that

F (δ)
n (t) ≤ C�−αn

〈
ξ,
[
1 +

n∑
j=1

A(δ)
j

]
ξ
〉
. (7.14)

Let us consider (7.6), again for k = 0. For n ≥ 1, (ε; δ) ∈ In , t ∈ [0; 1], we define

G(ε,δ)
n (t) = 〈et B(η)ξ,S(ε,δ)

n et B(η)ξ 〉 .

Proceeding similarly to (7.13) we find, for n ≥ 2 (with the convention that G(ε,δ)
0 (t) = 0

and F (δ)
0 (t) = ‖ξ‖2 for all t ∈ [0; 1]),



36 G. Basti, S. Cenatiempo, A. Olgiati, G. Pasqualetti, B. Schlein

∣∣∣dG
(ε,δ)
n (t)

dt

∣∣∣ ≤CG(ε,δ)
n (t) + C�−1/2−δG(ε,δ)

n−1 (t) + C�−7/4−3δ/2 G(ε,δ)
n−1 (t)

1
2 G(ε,δ)

n−2 (t)
1
2

+ C�−1−εF (δ)
n−1(t) + C�−2−δ−ε/2+θ/2 G(ε+θ,δ)

n−1 (t)
1
2 F (δ)

n−2(t)
1
2

(7.15)

for a θ > ε +2δ. The second line arises from the contributions to the commutator (7.11)
where q coincides with the variable raised to the power 2 + ε. In fact, the contribution
from the first term in (7.11) can be estimated by

∑
q,p1,...,pn−1∈�∗

+

|ηq ||q|2+ε|p1|3/2+δ . . . |pn−1|3/2+δ

× ‖aqap1 . . . apn−1e
t B(η)ξ‖‖a∗−qap1 . . . apn−1e

t B(η)ξ‖

≤ C‖η‖∞G(ε,δ)
n (t) + CG(ε,δ)

n (t)
1
2 F (δ)

n−1(t)
1
2

[∑
q

η2q |q|2+ε
] 1
2

≤ CG(ε,δ)
n (t) + C�−1−εF (δ)

n−1(t) .

The contribution from the second term on the r.h.s. of (7.11), on the other hand, can be
bounded by

∑
q,p1,...,pn−2∈�∗

+

|ηq ||q|7/2+ε+δ|p1|3/2+δ . . . |pn−2|3/2+δ

× ‖aqap1 . . . apn−2e
t B(η)ξ‖‖a∗−qap1 . . . apn−2e

t B(η)ξ‖

≤ C
[
sup
q

|ηq ||q|3/2+δ
]
G(ε,δ)

n−1 (t) + CG(ε+θ,δ)
n−1 (t)

1
2 F (δ)

n−2(t)
1
2

[∑
|q|5+ε+2δ−θη2q

] 1
2

≤ CG(ε,δ)
n−1 (t) + C�−2−δ−ε/2+θ/2G(ε+θ,δ)

n−1 (t)
1
2 F (δ)

n−2(t)
1
2

for a θ > ε + 2δ (this condition is needed to apply (5.19), in Lemma 5.1).
If n = 1, we use again (5.23) to estimate

G(ε,δ)
1 (t) ≤ C�−1−ε

{
‖ξ‖2 + 〈ξ,S(ε,δ)

1 ξ 〉
}

≤ C�−βε
1

{
‖ξ‖2 + sup

(ε,δ)∈I1
〈ξ,S(ε,δ)

1 ξ 〉
}

for all ε < 3 (G(ε,δ)
1 does not depend on δ). Inserting this bound in (7.15), we arrive at

∣∣∣dG
(ε,δ)
2 (t)

dt

∣∣∣ ≤ CG(ε,δ)
2 (t) + C�−5/2−ε−δ

{
‖ξ‖2 + sup

(ε,δ)∈I1
〈ξ,S(ε,δ)

1 ξ 〉
}

if we can find θ > 0 such that θ > ε+2δ and ε+θ < 3, i.e. if ε+δ < 3/2 (this condition
is certainly true, if ε+2δ < 3/2). By Gronwall’s lemma (noticing that βε

2 = 5/2+ε+δ),
we conclude that

G(ε,δ)
2 (t) ≤ C�−βε

2

{
‖ξ‖2 + sup

(ε,δ)∈I1
〈ξ,S(ε,δ)

1 ξ 〉 + sup
(ε,δ)∈I2

〈ξ,S(ε,δ)
2 ξ 〉

}
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for all δ ∈ (0; 1/6), ε ∈ (−1; 3) such that ε + 2δ < 3/2. Now, we proceed by induction.
We fix n ∈ N and we assume that for all j ≤ n − 1 there exists a constant C > 0 such
that

G(ε,δ)
j (t) ≤ C�

−βε
j

{
‖ξ‖2 +

j∑
i=1

sup
(ε,δ)∈Ii

〈ξ,S(ε,δ)
i ξ 〉

}

for all δ ∈ (0; 1/6) and all ε ∈ (−1; 3) with ε + δ < 3/2( j−1) and all t ∈ [0; 1]. Then,
using also (7.14), (7.15) implies that

∣∣∣dG
(ε,δ)
n (t)

dt

∣∣∣ ≤ CG(ε,δ)
n (t) + C�−βε

n

{
‖ξ‖2 +

n−1∑
i=1

sup
(ε,δ)∈Ii

〈ξ,S(ε,δ)
i ξ 〉

}
(7.16)

if we can show that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βε
n ≥ βε

n−1 + δ − 1/2

βε
n ≥ 7/4 + 3δ/2 + (βε

n−1 + βε
n−2)/2

βε
n ≥ 1 + ε + αn−1

βε
n ≥ 2 + δ + ε/2 − θ/2 + βε+θ

n−1/2 + αn−2/2

(7.17)

and if we can find θ ∈ R such that θ > ε + 2δ and ε + θ + 2δ < 3/2(n−2), i. e. if
ε + 2δ < 3/2(n−1). To verify (7.17), we use that βε

n = αn + 1/2 + ε − δ. The first and
the third conditions in (7.17) are equivalent to

αn ≥ αn−1 + 1/2 + δ

which follows easily from the explicit formula (7.10). The second and the fourth con-
ditions are immediate consequences of the recursive definition (7.4) of the coefficients
αn . From (7.16), by Gronwall’s lemma we conclude that

G(ε,δ)
n (t) ≤ C�−βε

n

{
‖ξ‖2 +

n∑
i=1

sup
(ε,δ)∈Ii

〈ξ,S(ε,δ)
i ξ 〉

}
(7.18)

for all δ ∈ (0; 1/6), ε ∈ (−1; 3) with ε + 2δ < 3/2(n−1).
Next, we show (7.7). For t ∈ [0; 1] and for n = 2, 3, 4, we set

Hn(t) = 〈et B(η)ξ, Tnet B(η)ξ 〉 .

Proceeding as in the proof of (7.12), we find
∣∣∣dH2(t)

dt

∣∣∣ ≤C
∑

p,q∈�∗
+

|ηq | q2 p2 ‖aqapet B(η)ξ‖‖a∗−qape
t B(η)ξ‖

+ C
∑
q∈�∗

+

|ηq | |q|4‖aqet B(η)ξ‖‖a∗−qe
t B(η)ξ‖ .

(7.19)

Using ‖a∗−qζ‖ ≤ ‖a−qζ‖+‖ζ‖ and Cauchy-Schwarz’s inequality we obtain, with (5.23)
and (5.19),

∣∣∣dH2(t)

dt

∣∣∣ ≤ CH2(t) + C�−2〈ξ, (1 + P(2))ξ 〉 + C�−3〈ξ, (1 + P(4))ξ 〉 .
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By Gronwall’s lemma, we conclude that

H2(t) ≤ C�−3〈ξ,
(
1 + T (2) + P(4))ξ 〉 (7.20)

for all t ∈ [0; 1].
Analogously to (7.19), we find
∣∣∣dH3(t)

dt

∣∣∣ ≤C
∑

q,p1,p2∈�∗
+

|ηq | q2 p21 p22 ‖aqap1ap2et B(η)ξ‖‖a∗−qap1ap2e
t B(η)ξ‖

+ C
∑

q,p∈�∗
+

|ηq | |q|4 p2‖aqapet B(η)ξ‖‖a∗−qape
t B(η)ξ‖ .

Thus
∣∣∣dH3(t)

dt

∣∣∣ ≤CH3(t) + C�−1H2(t) + C
∑

q,p∈�∗
+

|ηq ||q|4 p2‖aqapet B(η)ξ‖‖apet B(η)ξ‖ .

(7.21)

To control the last term, we distinguish the contribution
∑
q∈�∗

+

|ηq ||q|6‖a2qet B(η)ξ‖‖aqet B(η)ξ‖ ≤ C〈et B(η)ξ,P(4)(N+ + 1)et B(η)ξ 〉

≤ C�−3〈ξ,P(4)(N+ + 1)ξ 〉 (7.22)

arising from terms with p = q, a similar contribution from terms with p = −q and the
contribution arising from terms with p �= −q, q, which can be bounded, with Cauchy-
Schwarz’s inequality, by

∑
q,p∈�∗

+: p �=−q,q

|ηq ||q|4 p2‖aqapet B(η)ξ‖‖apet B(η)ξ‖

≤ C�−3/2W 1/2
4,2 (t)〈et B(η)ξ,P(2)et B(η)ξ 〉1/2

≤ W4,2(t) + C�−4〈ξ, (1 + P(2))ξ 〉 (7.23)

where we applied (5.23) and we defined

W4,2(t) =
∑

p1,p2∈�∗
+: p1 �=−p2,p2

|p1|4 p22 ‖ap1ap2et B(η)ξ‖2. (7.24)

To compute the derivative ofW4,2, we proceed once again as in (7.12), noticing however
that, because of the restriction to p1 �= −p2, p2, the contribution from the second term
on the r.h.s. of (7.11) vanishes. We find, with (5.23),
∣∣∣dW4,2(t)

dt

∣∣∣ ≤ C
∑

q,p∈�∗
+: p �=−q

|ηq ||q|4 p2‖aqapet B(η)ξ‖‖a∗−qape
t B(η)ξ‖

+ C
∑

q,p∈�∗
+: p �=−q

|ηq |q2|p|4‖aqapet B(η)ξ‖‖a∗−qape
t B(η)ξ‖

≤ CW4,2(t) + C�−3〈et B(η)ξ,P(2)et B(η)ξ 〉 + C�−1〈et B(η)ξ,P(4)et B(η)ξ 〉
≤ CW4,2(t) + C�−4〈ξ,

(
1 + P(4))ξ 〉 .
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By Gronwall’s lemma, we conclude (recalling (7.8)) that

W4,2(t) ≤ C�−4〈ξ,
(
1 + P(4) + Z4,2

)
ξ 〉 (7.25)

for all t ∈ [0; 1]. Inserting this estimate in (7.23), and then, together with (7.22), in
(7.21), we obtain (using also that P(4)N+ ≤ Z4,2)

∣∣∣dH3(t)

dt

∣∣∣ ≤ CH3(t) + C�−1H2(t) + C�−4〈ξ,
(
1 + P(4) + Z4,2

)
ξ 〉 .

With (7.20) and Gronwall’s lemma, we conclude that

H3(t) ≤ C�−4〈ξ,
(
1 + T (3) + Z4,2 + P(4))ξ 〉 . (7.26)

To control H4, we proceed again as we did to show (7.21) and we bound
∣∣∣dH4(t)

dt

∣∣∣ ≤CH4(t) + C�−1H3(t)

+ C
∑

q,p1,p2∈�∗
+

|ηq ||q|4 p21 p22‖aqap1ap−2e
t B(η)ξ‖‖ap1ap2et B(η)ξ‖ .

In the last term, if q = ±p1 or q = ±p2, we find terms that can be bounded using (5.18)
and (7.26) (and the trivial estimate T2N+ ≤ T3) by∑

q,p∈�∗
+

|ηq ||q|6 p2‖aqa±qape
t B(η)ξ‖‖a±qape

t B(η)ξ‖

≤ C�−2
∑

q,p∈�∗
+

q2 p2‖aqapN 1/2
+ et B(η)ξ‖‖a±qape

t B(η)ξ‖

≤ C�−2〈et B(η)ξ, T2(N+ + 1)et B(η)ξ 〉 ≤ C�−6〈ξ, (1 + T3 + Z4,2 + P(4))ξ 〉 .

(7.27)

Contributions from terms with q �= ±p1,±p2, on the other hand, can be estimated (with
(7.20)) by

∑
q,p1,p2: q �=±p1,±p2

|ηq ||q|4 p21 p22‖aqap1ap2et B(η)ξ‖‖ap1ap2et B(η)ξ‖

≤ C�−3/2W 1/2
4,2,2(t)〈et B(η)ξ, T2 et B(η)ξ 〉1/2

≤ CW4,2,2(t) + C�−6〈ξ, (1 + T2 + P(4))ξ 〉 (7.28)

where we defined

W4,2,2(t) =
∑

p1,p2,p3∈�∗
+: p1 �=±p2,±p3

|p1|4 p22 p23 ‖ap1ap2ap3et B(η)ξ‖2.

We compute
∣∣∣dW4,2,2(t)

dt

∣∣∣
≤ C

∑
q,p2,p3∈�∗

+: q �=±p2,±p3

|ηq ||q|4 p22 p23‖aqap1ap2et B(η)ξ‖‖a∗−qap1ap2e
t B(η)ξ‖

+ C
∑

q,p1,p2∈�∗
+: p1 �=±q,±p2

q2|ηq ||p1|4 p22‖aqap1ap2et B(η)ξ‖‖a∗−qap1ap2e
t B(η)ξ‖

+ C
∑

q,p∈�∗
+: q �=±p

|p|4|q|4|ηq | ‖aqapet B(η)ξ‖‖a∗−qape
t B(η)ξ‖
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which leads to
∣∣∣dW4,2,2(t)

dt

∣∣∣ ≤ CW4,2,2(t) + C�−6〈ξ, (1 + P(4) + Z4,2)ξ 〉 + CW4,4(t) (7.29)

where

W4,4(t) =
∑

q,p∈�∗
+: q �=±p

|q|4|p|4‖aqapet B(η)ξ‖2

satisfies the estimate
∣∣∣dW4,4(t)

dt

∣∣∣ ≤ C
∑

q,p∈�∗
+: q �=p

|p|4|q|4ηq‖aqapet B(η)ξ‖‖a∗
q
ape

t B(η)ξ‖

≤ CW4,4(t) + C�−6〈ξ, (1 + P(4))ξ 〉 .

Thus, recalling the definition (7.8), we find

W4,4(t) ≤ C�−6〈ξ, (1 + P(4) + Z4,4)ξ 〉 .

Inserting this bound in (7.29), we obtain

W4,2,2(t) ≤ C�−6〈ξ, (1 + P(4) + Z4,2 + Z4,2,2)ξ 〉 .

Plugging the last equation in (7.28) and using (7.27), we arrive at

H4(t) ≤ C�−6〈ξ, (1 + P(4) + Z4,4 + Z4,2,2 + T4)ξ 〉 .

Finally, we prove (7.9). For ε > −1, δ ∈ (0; 1/6) with ε + δ < 1, we define

J (ε,δ)(t) = 〈et B(η)ξ,S(ε,δ)
3 et B(η)ξ 〉 .

Proceeding as in the proof of (7.15), we find

∣∣∣d J
(ε,δ)(t)

dt

∣∣∣ ≤C J (ε,δ)(t) + C�−1−εF (δ)
2 (t) + C�−1/2−δG(ε,δ)

2 (t)

+
∑

p,q∈�∗
+

|ηq ||q|7/2+ε+δ|p|3/2+δ‖apaqet B(η)ξ‖‖apet B(η)ξ‖

+
∑

p,q∈�∗
+

|ηq ||q|3+2δ|p|2+ε‖apaqet B(η)ξ‖‖apet B(η)ξ‖ .

Recalling the definition (7.24), we can estimate (distinguishing p = q from p �= q)
∑

p,q∈�∗
+

|ηq ||q|7/2+ε+δ|p|3/2+δ‖apaqet B(η)ξ‖‖apet B(η)ξ‖

≤C〈et B(η)ξ,P(3+ε+2δ)(N+ + 1)et B(η)ξ 〉
+ CW4,2(t)

1
2

( ∑
q∈�∗

+

η2q |q|3+2ε+2δ
) 1

2 〈et B(η)ξ,P(1+2δ)et B(η)ξ 〉 1
2

≤ C〈et B(η)ξ,P(3+ε+2δ)et B(η)ξ 〉 + C�−1−ε−δW4,2(t)
1
2 〈et B(η)ξ,P(1+2δ)et B(η)ξ 〉 1

2
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and, similarly,

∑
p,q∈�∗

+

|ηq ||q|3+2δ |p|2+ε‖apaqet B(η)ξ‖‖apet B(η)ξ‖

≤ C〈et B(η)ξ,P(3+ε+2δ)(N+ + 1)et B(η)ξ〉 + C�− 1
2−2δW4,2(t)

1
2 〈et B(η)ξ,P(2+2ε)et B(η)ξ〉 1

2 .

With Lemma 5.2, with (7.14), (7.18) and (7.25), we conclude that

∣∣∣d J
(ε,δ)(t)

dt

∣∣∣ ≤ C J (ε,δ)(t) + C�−3−ε−2δ
{
〈ξ,

(
1 + P(4) +Z4,2

)
ξ〉 + sup

(ε,δ)∈I2

〈ξ,S(ε,δ)
2 ξ〉

}

for all t ∈ [0; 1]. By Gronwall’s lemma, we obtain (7.9). ��

8. Proof of Theorem 1.1

With the unitary operator UN as in (5.2), with η as introduced after (5.7) and τ as in
(6.2), we define 
N ∈ L2

s (�
N ) setting


N = U∗
Ne

B(η)eB(τ )�. (8.1)

We recall that we assumed N−1+ν ≤ � ≤ N−3/4−ν (see Prop. 4.1) and �0 > 0 small
enough (independent of N ). From Prop. 6.4, we find that

〈
N , H eff
N 
N 〉 = 〈�,Meff

N ,��〉
= 4πa(N − 1) + e�a

2

− 1

2

∑
p∈�∗

+

[
p2 + 8πa −

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+O(N−ε)

(8.2)

for a sufficiently small ε > 0.
Additionally, with Lemma 7.1we obtain important regularity estimates for
N . From

(7.7) (and from (5.23) in Lemma 5.2), we find C > 0 such that

〈
N , (−�x1)
N 〉 ≤ C
N�

〈
N , (−�x1)(−�x2)
N 〉 ≤ C
N2�3

〈
N , (−�x1)(−�x2)(−�x3)
N 〉 ≤ C
N3�4

〈
N , (−�x1)(−�x2)(−�x3)(−�x4)
N 〉 ≤ C
N4�6

. (8.3)

From (7.5) we find, for n ∈ N and 0 < δ < 1/6, a constant C > 0 such that

〈
N , (−�x1)
3/4+δ/2 . . . (−�xn )

3/4+δ/2
N 〉 ≤ C

Nn�αn
. (8.4)

From (7.6) in Lemma 7.1, we find, for n ∈ N and for every ε ∈ (−1; 3), δ ∈ (0; 1/6)
such that ε + 2δ < 3/2n−1, a constant C > 0 such that

〈
N , (−�x1)
1+ε/2(−�x2)

3/4+δ/2 . . . (−�xn )
3/4+δ/2
N 〉 ≤ C

Nn�βε
n

. (8.5)
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Let us prove (8.5), the other bounds can be shown similarly. First of all,we symmetrize
the expectation on the l.h.s. of (8.5), writing

〈
N ,(−�x1)
1+ε/2(−�x2)

3/4+δ/2 . . . (−�xn )
3/4+δ/2
N 〉

= 1(N
n

)
∑

1≤i1<···<in≤N

〈
N , (−�xi1
)1+ε/2(−�xi2

)3/4+δ/2 . . . (−�xin )
3/4+δ/2
N 〉 .

Next, we express the observable in second quantized form and we apply the rules (5.3).
We find

〈
N , (−�x1)
1+ε/2(−�x2)

3/4+δ/2 . . . (−�xn )
3/4+δ/2
N 〉

≤ C

Nn

∑
p1,...,pn∈�∗

+

|p1|2+ε|p2|3/2+δ . . . |pn|3/2+δ

× 〈eB(η)eB(τ )�, a∗
p1 . . . a∗

pnapn . . . ap1e
B(η)eB(τ )�〉 .

With (7.6), we conclude that

〈
N , (−�x1)
1+ε/2(−�x2)

3/4+δ/2 . . . (−�xn )
3/4+δ/2
N 〉

≤ C

Nn�βε
n

{
1 +

n∑
j=1

sup
ε,δ∈I j

〈eB(τ )�, S(ε,δ)
j eB(τ )�〉

}
.

To control the growth of S(ε,δ)
j , we can proceed exactly as in the proof of Lemma 7.1; the

difference is that, by (6.3), |τp| ≤ C/|p|4, uniformly in N , � (this should be compared
with the bound (5.18), for the coefficients ηp). As a consequence, for 0 < r < 5, we
find

∑
p∈�∗

+

|p|r |τp|2 ≤ C

and thus the analog of the bounds in Lemma 7.1, with B(η) replaced by B(τ ), holds
uniformly in �. This observation leads to (8.5).

With 
N as in (8.1), we define the trial function �N ∈ L2
s (�

N ) by

�N (x) = 
N (x) ·
N∏
i< j

f�(xi − x j ) .

The presence of the Jastrow factor guarantees that�N satisfies the hard-sphere condition
(1.8). Combining (2.12), Prop. 3.1 and Prop. 4.1, we obtain

〈�N ,
∑N

j=1 −�x j �N 〉
‖�N‖2 ≤ 〈
N , H eff

N 
N 〉 − N (N − 1)

2〈

N ,

{[
H eff
N−2 − 4πaN

] ⊗ u�(xN−1 − xN )
}

N

〉
+ CN−ε.

(8.6)

Here we used (8.3), (8.4) and (8.5) to verify the assumption (3.1) of Prop. 3.1 and
the assumption (4.4) for Prop. 4.1. Moreover, we used (8.2) to verify the condition
〈
N , H eff

N 
N 〉 ≤ 4πaN + C in Prop. 4.1.
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Inserting (8.2) on the r.h.s. of (8.6), we arrive at

〈�N ,
∑N

j=1 −�x j �N 〉
‖�N‖2

≤ 4πa(N − 1) + e�a
2 − 1

2

∑
p∈�∗

+

[
p2 + 8πa −

√
|p|4 + 16πap2 − (8πa)2

2p2

]

− N (N − 1)

2
〈
N ,

{[
H eff
N−2 − 4πaN

] ⊗ u�(xN−1 − xN )
}

N

〉
+ CN−ε.

(8.7)

To conclude the proof of Theorem 1.1, we still have to show that the contribution on the
last line is negligible, in the limit N → ∞.

From (5.26) in Prop. 5.3, we find

H eff
N−2 − 4πaN ≥ U∗

N−2e
B(η)

{
− C(N+ + 1) − CN−κP(2+κ)(N+ + 1)

}
e−B(η)UN−2

(8.8)

for 0 < κ < ν/2. Notice here that both sides of the equation are operators on the Hilbert
space L2

s (�
N−2) describing states with (N − 2) particles.

For μ > 0 to be chosen small enough, we can estimate

(N+ + 1) ≤ CNμ + C(N+ + 1)χ(N+ ≥ Nμ) ≤ CNμ + CN−mμ(N+ + 1)m+1 (8.9)

for any m ∈ N. Thus, the contribution arising from the first term in the parenthesis on
the r.h.s. of (8.8) can be bounded by

N (N − 1)

2

〈

N ,

{[
U∗

N−2e
B(η)(N+ + 1)e−B(η)UN−2

]
⊗ u�(xN−1 − xN )

}

N

〉

≤ CN 2+μ〈
N , u�(xN−1 − xN )
N 〉
+ CN 2−mμ

〈

N ,

{[
U∗

N−2e
B(η)(N+ + 1)m+1e−B(η)UN−2

]
⊗ u�(xN−1 − xN )

}

N

〉
.

Using ‖u�‖1 ≤ C�2/N and (3.3) in the first and ‖u�‖∞ ≤ C in the second term (by
Lemma 2.1), we obtain

N (N − 1)

2

〈

N ,

{[
U∗

N−2e
B(η)(N+ + 1)e−B(η)UN−2

]
⊗ u�(xN−1 − xN )

}

N

〉

≤ CN 1+μ�2〈
N , (1 − �x1)(1 − �x2)
N 〉
+ CN 2−mμ

〈
eB(η)eB(τ )�, (N+ + 1)m+1eB(η)eB(τ )�

〉
.

Here we used Lemma 5.2 to control the growth of (N+ +1)m+1 under the action of B(η).
Moreover,withq = 1−|ϕ0〉〈ϕ0|denoting the projection onto the orthogonal complement
to the condensate wave function ϕ0 in L2(�) and with q j = 1⊗· · ·⊗q⊗· · ·⊗1 acting
as q on the j-th particle, we estimated, on the N -particle space L2

s (�
N ),

U∗
N−2 N+UN−2 ⊗ 1 =

N−2∑
j=1

q j ≤
N∑
j=1

q j = U∗
NN+UN (8.10)
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(with a slight abuse of notation,N+ denotes the number of particles operators onF≤(N−2)
+

on the l.h.s. and the number of particles operator on F≤N
+ on the r.h.s.). Using again

Lemma 5.2 (and Lemma 6.2, for the action of B(τ )), together with the bounds in (8.3),
we conclude that

N (N − 1)

2

〈

N ,

{[
U∗

N−2e
B(η)(N+ + 1)e−B(η)UN−2

]
⊗ u�(xN−1 − xN )

}

N

〉

≤ N 1+μ�2
(
1 +

1

N 2�3

)
+ CN 2−mμ ≤ CN−ε

(8.11)

choosing first μ > 0 small enough and then m ∈ N large enough.
Let us now focus on the contribution of the second term in the parenthesis on the

r.h.s. of (8.8). Also here, we use (8.9) to estimate

N 1−κ(N − 1)

2

〈

N ,

{[
U∗

N−2e
B(η)P(2+κ)(N+ + 1)e−B(η)UN−2

]

⊗ u�(xN−1 − xN )
}

N

〉

≤ CN 2−κ+μ
〈

N ,

{[
U∗

N−2e
B(η)P(2+κ)e−B(η)UN−2

] ⊗ u�(xN−1 − xN )
}

N

〉

+ CN 2−κ−mμ
〈

N ,

{[
U∗

N−2e
B(η)P(2+κ)(N+ + 1)m+1e−B(η)UN−2

]

⊗ u�(xN−1 − xN )
}

N

〉

= R1 + R2 .

To bound R2, we can estimate ‖u�‖∞ ≤ C , we can apply Lemma 5.2 to control the
growth ofP(2+κ)(N+ +1)m+1 under conjugation with eB(η) and we can proceed similarly
as in (8.10) to replace UN−2 with UN . We find

R2 ≤ CN 2−κ−mμ
〈
eB(η)eB(τ )�,

(
P(2+κ) + �−1−κ

)
(N+ + 1)m+1eB(η)eB(τ )�

〉
.

Applying again Lemma 5.2 (and then Lemma 6.2 for the action of B(τ )), we conclude
that

R2 ≤ CN 2−κ−mμ�−1−κ . (8.12)

As for the term R1, we first use (3.3) in Lemma 3.2 to estimate, for δ > 0 small enough,

R1 ≤ CN 2−κ+μ‖u�‖1
〈

N ,

{[
U∗

N−2e
B(η)P(2+κ)e−B(η)UN−2

] ⊗ 1
}

N

〉

+ CN 2−κ+μ‖u�‖1
× 〈


N ,
{[
U∗

N−2e
B(η)P(2+κ)e−B(η)UN−2

] ⊗ (�xN−1�xN )3/4+δ/2}
N
〉

= R11 + R12 . (8.13)

To control R12, we apply Lemma 5.2 to bound

U∗
N−2e

B(η)P(2+κ)e−B(η)UN−2 ≤ CU∗
N−2

[
P(2+κ) + �−1−κ

]
UN−2

= C
[ N−2∑

j=1

(−�x j )
1+κ/2 + �−1−κ

]
.
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Thus

R12 ≤ CN−1−κ+μ�2
〈
eB(η)eB(τ )�,

[
S(κ,δ)
3 + �−1−κA(δ)

2

]
eB(η)eB(τ )�

〉
.

With (7.5) and with (7.9) from Lemma 7.1, we conclude that

R12 ≤ CNμN −̃ε (8.14)

for some ε̃ > 0, if δ is chosen small enough, and 0 < κ < ν/2.
It turns out that the term R11 is more subtle; here we cannot afford the error arising

from conjugation ofP(2+κ) with e−B(η). Instead,we have to use the fact thatwe conjugate
back with eB(η) when we take expectation in the state 
N = eB(η)eB(τ )�. The two
generalized Bogoliubov transformations do not cancel identically (because one acts on
(N −2) particles, the other on N ), but of course their combined action produces a much
smaller error. We will make use of the following lemma.

Lemma 8.1. For r ∈ (1; 4] we have
e−B(η)P(r)eB(η) = P(r) +

∑
p∈�∗

+

|p|rηp

(
b∗
pb

∗−p + h.c.
)
+
∑
p∈�∗

+

|p|rη2p + X1 (8.15)

with

±X1 ≤ C(N+ + 1) + CN−1(P(r) + �1−r )(N+ + 1).

Moreover,

e−B(η)
∑
p∈�∗

+

|p|rηp(b
∗
pb

∗−p + h.c.)eB(η)

=
∑
p∈�∗

+

|p|rηp
[
b∗
pb

∗−p + bpb−p
]
+ 2

∑
p∈�∗

+

|p|rη2p + X2 (8.16)

with

±X2 ≤ C(N+ + 1) + CN−1(P(r) + �1−r )(N+ + 1).

We defer the proof of Lemma 8.1 to the end of the section, showing first how it can
be used to estimate the error R11 and to conclude the proof of Theorem 1.1. Notice first
that 2 + κ ≤ 4 since κ < ν/2 and ν is small enough. We can therefore apply Lemma 8.1
to find

〈
N ,
{[
U∗

N−2e
B(η)P(2+κ)e−B(η)UN−2

] ⊗ 1
}

N 〉

≤ 〈

N

{
U∗

N−2P(2+κ)UN−2 ⊗ 1
}

N 〉 +

∑
p∈�∗

+

|p|2+κη2p

+
∑
p∈�∗

+

|p|2+κηp
〈

N

{
U∗

N−2

[
b∗
pb

∗−p + h.c.
]
UN−2 ⊗ 1

}

N 〉

+ C〈
N ,
{
U∗

N−2

[
1 + N−1(P(2+κ) + �−1−κ

)]
(N+ + 1)UN−2 ⊗ 1

}

N 〉.

We observe that

U∗
N−2P(2+κ)UN−2 ⊗ 1 =

N−2∑
j=1

(−�x j )
2+κ ≤

N∑
j=1

(−�x j )
2+κ = U∗

NP(2+κ)UN
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and that, similarly,

U∗
N−2

[
1 + N−1(P(2+κ) + �−1−κ

)]
(N+ + 1)UN−2

≤ U∗
N

[
1 + N−1(P(2+κ) + �−1−κ

)]
(N+ + 1)UN .

Moreover, we find

∑
p∈�∗

+

|p|2+κηpU
∗
N−2

[
b∗
pb

∗−p + h.c.
]
UN−2 = 1

N − 2

∑
p∈�∗

+

|p|2+κηp
[
a∗
pa

∗−pa0a0 + h.c.
]

= 1

N − 2

N−2∑
i< j

[
θ(xi − x j )(pi ⊗ p j ) + h.c.

]

= 1

N − 2

N∑
i< j

[
θ(xi − x j )(pi ⊗ p j ) + h.c.

]

− 1

N − 2

∑
i< j : j=N−1,N

[
θ(xi − x j )(pi ⊗ p j ) + h.c.

]

with θ defined by the Fourier coefficients θ̂p = |p|2+κηp, and with p j denoting the
orthogonal projection p = |ϕ0〉〈ϕ0| on the condensate wave function acting on the j-
particle. Rewriting the first term in second quantized form (but now, on the N -particle
space), we find

∑
p∈�∗

+

|p|2+κηpU
∗
N−2

[
b∗
pb

∗−p + h.c.
]
UN−2

= N

N − 2

∑
p∈�∗

+

|p|2+κηpU
∗
N

[
b∗
pb

∗−p + h.c.
]
UN

− 1

N − 2

∑
i< j : j=N−1,N

[
θ(xi − x j )(pi ⊗ p j ) + h.c.

]
.

Therefore, we find

〈

N ,

{[
U∗

N−2e
B(η)P(2+κ)e−B(η)UN−2

] ⊗ 1
}

N

〉

≤ 〈
eB(η)eB(τ )�,P(2+κ)eB(η)eB(τ )�

〉
+
∑
p∈�∗

+

|p|2+κη2p

− N

N − 2

∑
p∈�∗

+

|p|2+κηp
〈
eB(η)eB(τ )�,

(
b∗
pb

∗−p + bpb−p
)
eB(η)eB(τ )�

〉

+
1

N − 2

∑
i< j : j=N−1,N

〈

N ,

[
θ(xi − x j )(pi ⊗ p j ) + h.c.

]

N 〉

+C〈eB(η)eB(τ )�,
[
1 + N−1(P(2+κ) + �−1−κ

)]
(N+ + 1)eB(η)eB(τ )�〉.

(8.17)
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Applying again Lemma 8.1 to the first and third terms on the r.h.s. of (8.17), and
Lemma 5.2 to the last, we obtain

〈

N ,

{[
U∗

N−2e
B(η)P(2+κ)e−B(η)UN−2

] ⊗ 1
}

N

〉

≤ 〈
eB(τ )�,P(2+κ)eB(τ )�

〉
+

[
2 − 2N

N − 2

] ∑
p∈�∗

+

|p|2+κη2p

− 2

N − 2

∑
p∈�∗

+

|p|2+κηp〈eB(τ )�,
[
b∗
pb

∗−p + bpb−p
]
eB(τ )�〉

+
1

N − 2

∑
i< j : j=N−1,N

〈

N ,

[
θ(xi − x j )(pi ⊗ p j ) + h.c.

]

N

〉

+ C〈eB(τ )�,
[
1 + N−1(P(2+κ) + �−1−κ

)]
(N+ + 1)eB(τ )�〉.

(8.18)

With the properties of τ (see Lemma 6.2) it is easy to check that all expectations in the
state eB(τ )� are bounded, uniformly in N , �. Moreover, by (5.19), we find

[
2 − 2N

N − 2

] ∑
p∈�∗

+

|p|2+κη2p ≤ C

N�1+κ
.

Finally, we can estimate the term on the fourth line in (8.18) by

∣∣∣ 1

N − 2

∑
i< j : j=N−1,N

〈

N ,

[
θ(xi − x j )(pi ⊗ p j ) + h.c.

]

N 〉

∣∣∣

≤ C
∣∣〈
N , θ(x1 − x2)(p1 ⊗ p2)
N 〉∣∣.

Since p1θ(x1 − x2)p1 = p1θ̂0 = 0 and, similarly, p2θ(x1 − x2)p2 = 0, we have
∣∣〈
N , θ(x1 − x2)(p1 ⊗ p2)
N 〉∣∣ = ∣∣〈
N , (q1 ⊗ q2)θ(x1 − x2)(p1 ⊗ p2)
N 〉∣∣

≤ ‖θ‖2‖(q1 ⊗ q2)
N‖‖
N‖.
With ‖θ‖2 = ‖θ̂‖2 ≤ C�−3/2−κ , for 0 < κ < 1/2, and with

‖(q1 ⊗ q2)
N‖2 ≤ CN−2〈
N ,
[ N∑
i=1

qi
]2


N
〉

= CN−2〈eB(η)eB(τ )�, (N+ + 1)2eB(η)eB(τ )�〉 ≤ CN−2

we conclude that
∣∣∣ 1

N − 2

∑
i< j : j=N−1,N

〈

N ,

[
θ(xi − x j )(pi ⊗ p j ) + h.c.

]

N 〉

∣∣∣ ≤ C

N�3/2+κ
.

Therefore, we obtain
∣∣∣〈
N ,

{[
U∗

N−2e
B(η)P(2+κ)e−B(η)UN−2

] ⊗ 1
}

N

〉∣∣∣ ≤ C

N�3/2+κ
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for � ≤ N−2/3. Since ‖u�‖1 ≤ C�2/N by Lemma 2.1, the error term R11 introduced in
(8.13) is bounded by

R11 ≤ CN−κ+μ�1/2−κ ≤ CNμ�1/2.

With (8.14), we find

R1 ≤ CNμN −̃ε

for ε̃ > 0 small enough. Combining this bound with (8.12) we conclude, choosing first
μ > 0 small enough and then m ∈ N sufficiently large, that

N (N − 1)

2

∣∣∣〈
N ,
{[
U∗

N−2e
B(η)P(2+κ)(N+ + 1)e−B(η)UN−2

] ⊗ u�(xN−1 − xN )
}

N

〉∣∣∣
≤ CN−ε

for a sufficiently small ε > 0. Together with (8.8) and (8.11), this estimate implies that

−N (N − 1)

2

〈

N ,

{[
H eff
N−2 − 4πaN

] ⊗ u�(xN−1 − xN )
}

N

〉 ≤ CN−ε.

From (8.7), we obtain

〈�N ,
∑N

j=1 −�x j �N 〉
‖�N‖2 ≤ 4πa(N − 1) + e�a

2

− 1

2

∑
p∈�∗

+

[
p2 + 8πa −

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+ CN−ε.

We conclude the proof of Theorem 1.1 by giving the proof of Lemma 8.1.

Proof (of Lemma 8.1). With (5.5), we can compute [P(r), B(η)] to show that

e−B(η)P(r)eB(η) = P(r) +
∫ 1

0
ds e−sB(η)

∑
p∈�∗

+

|p|rηp

[
b∗
pb

∗−p + bpb−p

]
esB(η).

(8.19)

Furthermore, expanding the integrand on the r.h.s. of (8.19), we write

e−sB(η)
∑
p∈�∗

+

|p|rηp

[
b∗
pb

∗−p + bpb−p

]
esB(η)

=
∑
p∈�∗

+

|p|rηp

[
b∗
pb

∗−p + bpb−p

]

+
∫ s

0
dt e−t B(η)

∑
p∈�∗

+

|p|rηp

[
b∗
pb

∗−p + bpb−p, B(η)
]
et B(η).

(8.20)
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Let us compute the last commutator. With (5.4), we find

∑
p∈�∗

+

|p|rηp

[
b∗
pb

∗−p + bpb−p, B(η)
]

= 1

2

∑
p,q∈�∗

+

|p|rηpηq
[
bpb−p, b

∗
qb

∗−q

]
+ h.c.

= 2
∑
p∈�∗

+

|p|rη2p + �

with

� = 4
∑
p∈�∗

+

|p|rη2pa∗
p

[(
1 − N+ + 2

N

)(
1 − N+ + 1

N

)
− 1

2N 2

]
ap

+ 2
∑
p∈�∗

+

|p|rη2p
[(

1 − N+ + 1

N

)(
1 − N+

N

)
− 1

]

− 1

N

∑
p,q∈�∗

+

|p|rηpηqa
∗
qa

∗−q

[
2

(
1 − N+

N

)
− 3

N

]
apa−p + h.c..

To control the last term, we write a∗
qa

∗−qapa−p = a∗
qapa

∗−qa−p − δ−q,pa∗
qa−p and we

bound, for an arbitrary ξ ∈ F≤N
+ ,

∣∣∣ 1
N

∑
p,q∈�∗

+

|p|rηpηq〈ξ, a∗
qapa

∗−qa−pξ 〉
∣∣∣

≤ 1

N

∑
p,q∈�∗

+

|p|r |ηp||ηq |‖a∗
paqξ‖‖a∗−qa−pξ‖

≤ 1

N

∑
p,q∈�∗

+

|p|r |ηp||ηq |
[‖apaqξ‖ + ‖aqξ‖][‖a−qa−pξ‖ + ‖a−pξ‖].

With Cauchy-Schwarz’s inequality and with the bounds r ≤ 4, |ηp| ≤ C |p|−2, we find

±� ≤ C(N+ + 1) + CN−1
(
P(r) + �1−r

)
(N+ + 1).

Inserting this back in (8.20) and using (5.23) we obtain

e−sB(η)
∑
p∈�∗

+

|p|rηp

[
b∗
pb

∗−p + bpb−p

]
esB(η) =

∑
p∈�∗

+

|p|rηp

[
b∗
pb

∗−p + bpb−p

]

+2s
∑
p∈�∗

+

|p|rη2p + �̃

again with

±�̃ ≤ C(N+ + 1) + CN−1
(
P(r) + �1−r

)
(N+ + 1).

Setting s = 1, this proves (8.16). Plugging now (8.16) in (8.19) and integrating over s
we find (8.15). ��
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Appendix A: Properties of One-Particle Scattering Equations

In this section we provide the proof of Lemma 2.1 and Lemma 5.1.We start with Lemma
2.1, where we describe properties of the solution of the eigenvalue equation (2.2).

Proof of Lemma 2.1. By standard arguments, the ground state solution of (2.1) is radial.
Thus, we consider the ansatz f�(x) = m�(|x |)/|x |, which leads to the equation

m′′(r) + λ�m(r) = 0

for r ∈ [a/N ; �], with the boundary conditions m(a/N ) = 0, m′(�) = 1 and m(�) = �.
From m(a/N ) = 0 and m(�) = �, we obtain

m(r) = � sin(
√

λ�(r − a/N ))

sin(
√

λ�(� − a/N ))

for all r ∈ [a/N ; �]. This proves (2.5). Imposing m′(�) = 1, we arrive at

tan
(√

λ� (� − a/N )
) = √

λ� � (A.1)

which shows (2.3). This equation allows us to estimate the eigenvalue λ�. As already
shown in [18, Lemma A.1], we find

λ� = 3a

N�3

(
1 +O(a/N�)

)
(A.2)

which implies that
√

λ�(� − a/N ) � √
λ�� � (N�)−1/2 � 1. With tan s = s + s3/3 +

2 s5/15 +O(s7), we obtain

√
λ� � = √

λ�

(
� − a/N

)
+
1

3
λ
3/2
�

(
� − a/N

)3 + 2

15
λ
5/2
�

(
� − a/N

)5 +O
(
(N�)−7/2)

http://creativecommons.org/licenses/by/4.0/
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which leads to (2.4).
With (A.2) for λ�, we can expand the expression (2.5). We find, for a/N ≤ |x | ≤ �,

f�(x) = 1 − a

N |x | +
3a

2N�
− a2

2N 2�|x | − a|x |2
2N�3

+O
( a2

N 2�2

)

∂r f�(x) = a

N |x |2 − a|x |
N�3

+O
( a2

N 2�2|x |
)
. (A.3)

With these approximations, we obtain (2.6), (2.7), (2.8) and (2.9). Finally, we show
(2.10). An explicit computation (using also the eigenvalue equation (A.1)) gives

ω̂p = χ̂�(p) − 2π�

sin
(√

λ� (� − a/N )
)
∫ �

a/N
dr r sin

(√
λ� (r − a/N )

)

×
∫ π

0
dθ sin θ e−i |p|r cos θ

= λ�

λ� − p2
4π�

p2

[ sin(|p|�)
|p|� − cos |p|�

]
− 4π

|p|(λ� − p2)

sin(|p|a/N )

cos(
√

λ�(� − aN ))
.

For |p| ≥ �−1, we have |λ� − p2| ≥ cp2. With (A.2), we easily find |ω̂p| ≤ C/(Np2),
if �−1 ≤ |p| ≤ N , and |ω̂p| ≤ C/|p|3, if |p| > N . From (2.8), we also have |ω̂p| ≤
‖ω‖1 ≤ C�2/N for all p ∈ �∗; this implies (2.10). ��
Next, we show Lemma 5.1, devoted to the properties of the solution of (5.7).

Proof of Lemma 5.1. We begin with (5.11). From the definition g�0(x) = f�0(x)/ f�(x)
and the explicit expression (2.5) we have

g�0(x) = �0

�

sin(
√

λ�0(|x | − a/N ))

sin(
√

λ�0(�0 − a/N ))

sin(
√

λ�(� − a/N ))

sin(
√

λ�(|x | − a/N ))
. (A.4)

for all a/N ≤ |x | ≤ �. Expanding, we find g�0(x) = 1 + O(a/N�) and thus |η̌(x)| ≤
Ca/� ≤ Ca/(|x | + �) for all a/N ≤ |x | ≤ �. For |x | ≥ �, g�0(x) = f�0(x) and (2.7)
implies that |η̌(x)| ≤ Ca/|x | ≤ Ca/(|x | + �). Finally, for |x | ≤ a/N , we defined

g�0(x) = lim|y|↓a/N
g�0(y) = 1 − 3a

2N�
+O

( 1

N 2�2

)

which gives |η̌(x)| ≤ Ca/� ≤ Ca/(|x | + �). This shows the first estimate in (5.11). To
bound ∇η̌, we proceed similarly. For a/N ≤ |x | ≤ �, we find

∂r f�(x) = f�(x)

( √
λ�

tan
(√

λ�(r − a/N )
) − 1

r

)
(A.5)

and thus

∂r η̌(x) = Ng�0(x)

( √
λ�

tan
(√

λ�(|x | − a/N )
) −

√
λ�0

tan
(√

λ�0(|x | − a/N )
)
)

. (A.6)

With |g�0(x)| ≤ C and expanding tan s = s + O(s3), we find |∇η̌(x)| ≤ Ca/�2 ≤
Ca/(|x | + �)2, for all a/N ≤ |x | ≤ �. For |x | ≥ �, we have g�0(x) = f�0(x) and the
estimate |∇η̌(x)| ≤ Ca/(|x | + �)2 follows from (2.7).
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Next, we show (5.12). With (5.7) (noticing that the flux of f 2� ∇g�0 through the spheres|x | = a/N and |x | = �0 vanishes), we have

2Nλ�

∫
χ�(x) f

2
� (x)g�0(x)dx = 2Nλ�0

∫
χ�0(x) f

2
� (x)g�0(x)dx

= 2Nλ�0

∫
χ�0(x)dx + 2Nλ�0

∫
χ�0(x)( f� f�0 − 1)(x)

since g�0(x) = f�0(x)/ f�(x). With Lemma 2.1 we have

∣∣∣2Nλ�0

∫
χ�0(x)dx − 8πa

∣∣∣ ≤ CN−1

and
∣∣∣2Nλ�0

∫
χ�0(x) f�(x)( f�0(x) − 1)dx

∣∣∣ ≤ C‖ω�0‖1 ≤ C/N

∣∣∣2Nλ�0

∫
χ�0(x)( f�(x) − 1)dx

∣∣∣ ≤ C‖ω�‖1 ≤ C�2/N .

This proves the first bound in (5.12) and also in (5.13). To show the second bound in
(5.12), we compute (with a slight abuse of notationwewrite here, for r > 0, f�(r), g�0(r)
to indicate the values of f�(x), g�0(x), for |x | = r )

2Nλ�

∫
χ�(x) f

2
� (x)g�0(x)e

−i p·xdx

= 4πNλ�

|p|
∫ �

a/N
r f 2� (r)g�0(r) sin(|p|r)dr

= 4πNλ�

|p|2
∫ �

a/N

[
( f 2� (r) + 2r f�(r) ∂r f�(r))g�0(r) + r f 2� (r)∂r g�0(r)

]
cos(|p|r)dr

− 4π�Nλ�

|p|2 g�0(�) cos(|p|�).

From Lemma 2.1, we have f�(r), r |∂r f�(r)| ≤ C . From (5.11), we find (recalling that
g�0 = 1 + η̌/N ) that |∂r g�0(r)| ≤ C/(N�2). With the bound (2.4) (or (A.2)) for λ�, we
conclude that

∣∣∣2Nλ�

∫
χ�(x) f

2
� (x)g�0(x)e

−i p·xdx
∣∣∣ ≤ C

�2 p2
.

The second bound in (5.13) can be proven analogously (on the r.h.s. � is then replaced
by �0, which is chosen of order one).
Equations (5.15), (5.16) follow directly from (5.7). As for (5.17), we rewrite

η0 =
∫

η̌(x) dx =
∫

|x |<�

η̌(x) dx − N
∫

|x |>�

ω�0(x) dx . (A.7)

Using (2.8),(A.3) and the fact that g�0(x) = 1 + O(a/N�) for |x | < �, we obtain

η0 = −N
∫

ω�0(x) dx +
∫

|x |<�

η̌(x) dx + N
∫

|x |<�

ω�0(x) dx
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= −2

5
πa�20 +O

(a2�0
N

)
+O(a�2).

To prove (5.18), we consider the Fourier coefficients Dp defined in (5.14) and the
corresponding function Ď(x) = −∇ · [( f 2� (x) − 1)∇η̌(x)

]
. For any p ∈ �∗, we have

|Dp| ≤
∫

a/N≤|c|≤�

|Ď(x)|dx . (A.8)

For a/N ≤ |x | ≤ �, we find

Ď(x) = 2 f�(x)(∂r f�)(x)(∂r η̌)(x) + ( f 2� (x) − 1)�η̌(x)

= Ng�0(x)(λ� − λ�0)( f
2
� (x) − 1) − 2(∂r η̌)(x)

(∂r f�)(x)

f�(x)

(A.9)

where in the second line we used the definition η̌ = N (g�0 − 1) = N ( f�0/ f� − 1) and
the scattering equation (2.1) for f� and f�0 to replace

�η̌(x) = −2N
∇ f�(x)

f�(x)
· ∇g�0(x) + N (λ� − λ�0)g�0(x).

Using (A.4) to bound |g�0(x)| ≤ C , (2.7) to show | f 2� (x) − 1| ≤ Ca/(N |x |) and using
(A.5), (A.6) to control the second term on the r.h.s. of (A.9), we find

∣∣Ď(x)
∣∣ ≤ Ca

|x | (λ� − λ�0) ≤ Ca2

N |x |�3 (A.10)

for all a/N ≤ |x | ≤ �. Inserting (A.10) in (A.8), we arrive at

|Dp| ≤ C/(N�). (A.11)

From the scattering equation (5.15), we can estimate

|ηp| ≤ C

|p|2
(
|Dp| + |(V̂� ∗ ĝ�0)(p)| + |Nλ�0(

̂χ�0 f
2
� ∗ ĝ�0)(p)|

)
. (A.12)

Combining (A.11) with the first bounds in (5.12), (5.13), we immediately conclude that
|ηp| ≤ C/p2. To prove the remaining bounds in (5.18), we write

Dp = 4π

|p|
∫ �

a/N
r Ď(r) sin(|p|r)dr = 4π

|p|2
∫ �

a/N

[
Ď(r) + r ∂r Ď(r)

]
cos(|p|r)dr.

(A.13)

From (A.9) we get

∂r Ď(r) = ∂r η̌(r)(λ� − λ�0)( f
2
� (r) − 1) + Ng�0(r)(λ� − λ�0)2 f�(r)∂r f�(r)

− 2∂r
(
(∂r η̌)(r)

(∂r f�)(r)

f�(r)

)
.

(A.14)
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Using the bounds |∂r η̌(r)| ≤ Cr−2, |∂r f�(r)| ≤ (CNr2)−1, the boundness of f� and
g�0 and (2.4) we easily see that the first line of (A.14) is bounded byO

(
(N�3r2)−1

)
. As

for the second line of (A.14), we find, using (A.5) and (A.6),

− ∂r

(
(∂r η̌)(r)

(∂r f�)(r)

f�(r)

)

= Ng�0 (r)

[( √
λ�

tan
(√

λ�(r − a/N )
) −

√
λ�0

tan
(√

λ�0 (r − a/N )
)
)2( √

λ�

tan
(√

λ�(r − a/N )
) − 1

r

)

+

(
λ�

sin2
(√

λ�(r − a/N )
) − λ�0

sin2
(√

λ�0 (r − a/N )
)
)( √

λ�

tan
(√

λ�(r − a/N )
) − 1

r

))

−
( √

λ�

tan
(√

λ�(r − a/N )
) −

√
λ�0

tan
(√

λ�0 (r − a/N )
)
)(

1

r2
− λ�

sin2
(√

λ�(r − a/N )
)
)]

.

Expanding 1/ tan(s) = 1/s + s/3 + O(s3) and 1/ sin2(s) = 1/s2 + 1/3 + O(s2), we
obtain

∣∣∣∂r
(
(∂r η̌)(r)

(∂r f�)(r)

f�(r)

)∣∣∣ ≤ C

r2
(λ� − λ�0) ≤ C

N�3r2
.

Thus, |r∂r Ď(r)| ≤ C/(N�3r) ≤ C/�3 for all a/N ≤ |x | ≤ �. Combined with (A.10)
and (A.13), we conclude that

|Dp| ≤ C

p2�2
.

Inserting this estimate in (A.12), together with the second bounds in (5.12), (5.13), we
obtain |ηp| ≤ C/(�2|p|4), which finishes the proof of (5.18). Equation (5.19) is a simple
consequence of (5.18). ��
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