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Abstract: We prove an upper bound for the ground state energy of a Bose gas consisting
of N hard spheres with radius a/N, moving in the three-dimensional unit torus A. Our
estimate captures the correct asymptotics of the ground state energy, up to errors that
vanish in the limit N — oo. The proof is based on the construction of an appropriate
trial state, given by the product of a Jastrow factor (describing two-particle correlations
on short scales) and of a wave function constructed through a (generalized) Bogoliubov
transformation, generating orthogonal excitations of the Bose—Einstein condensate and
describing correlations on large scales.

1. Introduction and Main Result

In [24], Lee-Huang-Yang predicted that the ground state energy per particle of a system
of N bosons moving in a box with volume N /p and interacting through a potential with
scattering length a is given, as N — oo, by
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up to corrections that are small, in the low density limit pa3 < 1 (see [28,32] for the
heuristics behind this formula and its relation with the expected occurrence of Bose—
Einstein condensation in dilute Bose gases). Atleading order, the validity of (1.1) follows
from the upper bound obtained in [16] and from the matching lower bound established
in [29]. Recently, also the second order term on the r.h.s. of (1.1) has been rigorously
justified. The upper bound has been shown in [35] (through a clever modification of a
quasi-free trial state proposed in [17]) and (for a larger class of interactions and using a
simpler trial state) in [3]. As for the lower bound, it has been first obtained in [20] for
integrable potentials and then in [21], for particles interacting through general potentials,
including hard-spheres. The upper bound for the case of hard-sphere potential is still an

e(p) =47ra,0[1 + (pa3)1/2+--~] (1.1)
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open question. An alternative approach to the study of the ground state energy of the
zero temperature Bose gas, still not justified rigorously but possibly valid beyond the
dilute regime, has been proposed in [26] and recently revived in [12-14].

Trapped Bose gases can be described as systems of N bosons, confined by external
fields in a volume of order one and interacting through a radial, repulsive potential V with
scattering length of the order N ~!; this scaling limit is known as the Gross—Pitaevskii
regime (see [28, Chapter 6] for an introduction, and [33,34] for reviews of more recent
results). Focussing for simplicity on systems trapped in the unit torus A, the Hamilton
operator takes the form

N N
Hy =) —Ag+Y N*V(Nx —x;))) (1.2)
j=1 i<j

and acts on Lf.(AN ), the subspace of L2(AM) consisting of functions that are symmetric
w.r.t. permutations of the N particles. Note that x; — x  is here the difference between the
position vectors of particles i and j on the torus. Equivalently, we can think of x; — x;
as the difference in R3; however, in this case, V has to be replaced by its periodisation.
As proven in [27,29,30], the ground state energy Ey of (1.2) is given, to leading order,
by

Ey =4maN +o(N) (1.3)

in the limit N — oo. For V e L3(R?), more precise information on the low-energy
spectrum of (1.2) has been determined in [8]. Here, the ground state energy was proven
to satisfy

Ey =4ma(N — 1) + epa’

1 S )’
-3 Z [p2+8na—\/m_ (;C;) i|+O(N—1/4) (1.4)
p

peAY

where A%* = 2773\{0} and

. cos(|pl)
ex=2- lim > ) (1.5)

—00 P2
p € Z3\{0} :
Ip1l, Ip2l, Ip3l <M

Additionally, the spectrum of Hy — Ex below a threshold ¢ > 0 was shown to consist
of eigenvalues having the form

> npy/Iplt+16map? + ON ). (1.6)

pe2n7Z3\{0}

A new and simpler proof of (1.4), (1.6) was recently obtained in [22], for V € L2(A).
Moreover, these results have been also extended to the non-homogeneous case of Bose
gases trapped by external fields in [11,31].

While the approach of [31] applies to V e L!(R?), the validity of (1.4), (1.6) for
bosons interacting through non-integrable potentials is still an open question. The goal of
this paper is to prove that (1.4) remains valid, as an upper bound, for particles interacting
through a hard-sphere potential.
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We consider N bosons in A = —%, %]3 c R3, with periodic boundary conditions.
We assume particles to interact through a hard-sphere potential, with radius a/N, for

some a > 0. We are interested in the ground state energy of the system, defined by
N
E™ = inf <\y, Z—ij\p> (1.7)
j=1

where the infimum is taken over all normalized wave functions ¥ € LE(AN ) satisfying
the hard-core condition

W(xg,...,xy)=0 (1.8)
almost everywhere on the set
N
U{(xl,...,xN) eRW 1 |x; —xj| <a/N}.
i<j

Theorem 1.1. Let Eﬁvs be defined as in (1.7). There exist C, ¢ > 0 such that

EM <d4ma(N — 1) + epd®

1 8ma)?
~5 Z [p2+8na—,/|p|4+167mp2— (znc;) :|+CN€ (1.9)
p

PEAY

for all N large enough, with e defined as in (1.5).

Remarks. 1) Theorem 1.1 establishes an upper bound for the ground state energy (1.7).
With minor modifications, it would also be possible to obtain upper bounds for low-
energy excited eigenvalues, agreeing with (1.6). To conclude the proof of the estimates
(1.4), (1.6) for particles interacting through hard-sphere potentials, we would need to
establish matching lower bounds. A possible approach to achieve this goal (at least
for the ground state energy) consists in taking the lower bound established in [21], for
particles in the thermodynamic limit, and to translate it to the Gross—Pitaevskii regime.

2) We believe that the statement of Theorem 1.1 and its proof can also be extended
to bosons in the Gross—Pitaevskii regime interacting through a larger class of potentials,
combining a hard-sphere potential at short distances and an integrable potential at larger
distances. This would require the extension of Lemma 2.1 to more general interactions.
To keep our analysis as simple as possible, we focus here on hard-sphere bosons.

3) Theorem 1.1 and its proof could also be extended to systems of N bosons interacting
through a hard-sphere potential with radius of the order N ~1** for sufficiently small
k > 0 (results for integrable potentials with scattering length of the order N ~!** have
been recently discussed in [1,2,9,19]).

The proof of (1.4), (1.6) obtained in [8] is based on a rigorous version of Bogoliubov
theory, developed in [5-7]. The starting point of Bogoliubov theory is the observation
that, at low energies, the Bose gas exhibits complete condensation; all particles, up to a
fraction vanishing in the limit N — oo, can be described by the same zero-momentum
orbital ¢g defined by po(x) = 1, for all x € A. This, however, does not mean that the
factorized wave function (p(()g’ Nisa good approximation for the ground state of (1.2); in
fact, its energy does not even approximate the ground state energy to leading order. To
decrease the energy and approach (1.3), correlations are crucial. The strategy developed
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in [5-8] is based on the idea that most correlations can be inserted through the action of
(generalized) Bogoliubov transformations, having the form

1
T=exp| 5 > np(bb*, —bpb_y) (1.10)
PEAY

where the (modified) creation and annihilation operators b}‘;, b act on the Fock space of
orthogonal excitations of the Bose—Einstein condensate; the precise definitions are given
below, in Sect. 5 (to be more precise, the action of (1.10) has to be corrected through an
additional unitary operator, given by the exponential of a cubic, rather than quadratic,
expression in creation and annihilation operators; see [8] for details). An important
feature of (generalized) Bogoliubov transformations of the form (1.10), which plays a
major role in the derivation of (1.4), (1.6), is the fact that their action on creation and
annihilation operators is (almost) explicit. This makes computations relatively easy and
it gives the possibility of including correlations also at very large length scales.

Unfortunately, Bogoliubov transformations of the form (1.10) do not seem compatible
with the hard-core condition (1.8). As a consequence, they do not seem appropriate to
construct trial states approximating the ground state energy of a system of particles
interacting through a hard-sphere potential. A different class of trial states, for which
(1.8) can be easily verified, consists of products having the form

N
Wy .oay) =[] fa = x)) (L.11)

j=1

for a function f satisfying f(x) = 0, for all |x| < a/N (as mentioned after (1.2), also
here x; — x is interpreted as difference on the torus). Such an ansatz was first used in the
physics literature in [4,15,23]; it is often known as Jastrow factor. In order for (1.11) to
provide a good approximation for the ground state energy, f must describe two-particle
correlations. Probably the simplest possible choice of f is given by the solution

0 if |x| <a/N

f(x)={1— v il > a/N

of the zero-energy scattering equation —A f = 0, with the hard-core requirement f (x) =
0 for |x| < a/N and the boundary condition f(x) — 1, as [x| = oo. The problem with
this choice is the fact that f has long tails; as a consequence, it is extremely difficult
to control the product (1.11). To make computations possible, we need to cutoff f at
some intermediate length scale a/N < £ < 1, requiring that f(x) = 1 for |x| > £ (the
cutoff can be implemented in different ways; below, we will choose f as the solution
of a Neumann problem on the ball |x| < ¢ and we will keep it constant outside the
ball). Choosing ¢ small enough (in particular, smaller than the typical distance among
particles, which is of the order N~1/3), the Jastrow factor becomes more manageable
and it is not too difficult to show that its energy matches, to leading order, the ground
state energy (1.3). In the thermodynamic limit, this was first verified in [16], using a
modification of (1.11), considering only correlations among neighbouring particles.
While Jastrow factors can lead to the correct leading order term in the ground state
energy, it seems much more difficult to use (1.11) to obtain an upper bound matching also
the second order term on the r.h.s. of (1.9). The point is that the second order corrections
are generated by correlations at much larger length scales; to produce the term on the
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second line of (1.9) we would need to take £ of order one, making computations very
difficult.

In order to prove Theorem 1.1, we will therefore consider a trial state given by the
product of a Jastrow factor (1.11), describing correlations up to a sufficiently small length
scale /N « £ < 1, and of a wave function @, constructed through a Bogoliubov
transformation, describing correlations on length scales larger than £. This allows us to
combine the nice features of the Jastrow factor (in particular, the fact that it automatically
takes care of the hard core condition (1.8)) and of the Bogoliubov transformation (in
particular, their (almost) explicit action on creation and annihilation operators, which
enables us to insert correlations at large length scales).

The paper is organised as follows. In Sect.2, we define our trial state Wy as the
product of a Jastrow factor and an N -particle wave function @y, to be specified later on,
and we compute its energy. One of the contributions to the energy of Wy is a three-body
term; under certain conditions on @y (see (3.1)), we show that this term is negligible
in Sect. 3. In Sect. 4 we then prove that the remaining contributions to the energy can
be reduced (again under suitable assumptions on ® y; see (4.4)) to the expectation of an
effective Hamiltonian H;f,ff, defined in (4.3). Sections 5 and 6 are devoted to the study
of H]f,ff; the goal is to find @y so that the expectation of H,‘:’,ff produces the energy on
the r.h.s of (1.9), up to negligible errors. Here, we use the approach developed in [5-7].
In Sect.7, we show that the chosen wave function ®p satisfies the bounds that were
used in Sects. 3 and 4. Finally, in Sect. 8, we put all ingredients together to conclude the
proof of Theorem 1.1. The proof of important properties concerning the solution of the
scattering equations is deferred to Appendix A.

2. The Jastrow Factor and Its Energy
As explained in the introduction, our trial state involves a Jastrow factor, to describe

short-distance correlations. To define the Jastrow factor, we choose 1/N < £ <« 1 and
we consider the ground state solution of the Neumann problem

{—Afe(x) = Ao fe(x) for a/N < |x| <¢ @D

o fe(x) =0 if |x|=4¢

on the ball By = {x € R? : |x| < ¢}, with the hard-core condition f;(x) = 0 for
|x] < a/N and the normalization fy(x) = 1 for |x| = £ (we denote here by 9, the radial
derivative). We extend fy to A setting fy(x) = 1 for |[x| € A\ B,;. We have

— Afe(x) = Aexe(x) fo(x) (2.2)

where x, denotes the characteristic function of By. The following lemma establishes
properties of A¢, f, of the difference w¢(x) = 1 — fy(x) and of its Fourier coefficients

@(p) = / e’ wy(x)dx

defined for p € A* = 277> (since w, has compact support inside [—1/2; 1/2]3, we
can think of the integral as being over R?).
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Lemma 2.1. Let A; denote the ground state eigenvalue appearing in (2.1). Then

tan (v/2e (€ — a/N)) = /A €. (2.3)

For N{ — oo, we find

3a 9 a a’
The corresponding eigenvector fy is given by
t sin(vA¢(|x| — a/N))
x| sin(v/A¢(€ — a/N))
foralla/N < |x| <L (fe(x) =0for|x| <a/N and fo(x) =1 for |x| > £). We find

Sfe(x) = (2.5)

24 a? a?
2 g _
N}\,[/\X[fe dx =4ma+ ?ﬂm+o<w) (26)
With the notation w¢(x) = 1 — fi(x), we have w¢(x) = 0 for |x| > £ and, for |x| < ¢,
the pointwise bounds

0 <awe(x) <

Vo)) < —2 @.7)
_ wr(X)| < —— .
= Nix| t Nix|2

for a constant C > 0. Furthermore, there exists a constant C > 0 so that

2 a’e
||wl||1—§7mﬁ SCW (2.8)
and, forall p € [1,3) and q € [1,3/2),
211 E I
lwellp =Clr N7, |[Vaxlly = Cla "N~ (2.9)

Finally, for p € A*, let ®,, denote the Fourier coefficients of w;. Then

loe(p)| < C '{62 ! l } (2.10)
wr(p)l < Cmin{ —; ——; —= 1. .
N’ Nipi*" |p®
We defer the proof of Lemma 2.1 to Appendix A.
With the solution f; of the Neumann problem (2.1), we consider trial states of the
form

N
\IJN(xl, con ,xN) = CDN(xl, “on ,xN) Hfg(xi — xj) (2.11)

i<j

for oy € L?(AN ) to be specified later on. Again, x; — x; should be interpreted as
difference on the torus (or f; should be replaced with its periodic extension). Note that
a similar trial state has been used in [27]. However, for us the wave function ® y serves
a completely different purpose (in our analysis, @y carries correlations on length scales
larger than ¢; in [27], on the other hand, it was a product state, describing the condensate
trapped in an external potential).
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We compute
—Ay WXy, ..., xN) V fe(xi — xi)
= =[-a 22 L2 vy o)
Hi<jff(xi—xj) i) Jelxj — xi)
N
—Afe(xj — xi)
+Zﬂ+H¢N(X1,...,XN)
i#/ exy A
Vfexj —xi)  Vfe(xj — xm)
—Z Dy(x1, ..., xXN)
im, fé(xj - Xi) fl(xj — Xm)
J
where the sum in the last term runs over i, j, m € {1, ..., N} all different. Noticing that

the operator on the first line is the Laplacian with respect to the measure defined by (the
square of) the Jastrow factor, and using (2.2) in the second line, we conclude that

N
Wy, 3 A W) = / Ve, oy 2 [T £ — i
j=1 n<m
+ZZM/XZ(xi —xj)| oy )| H f¢ @ = xm)dx
i<j n<m
V felxj — x;) er(xj—x 2
- N®X)| (xm — xn)dx
l%/ f((XJ —X;) fé(x ern f[ " "
(2.12)
where we introduced the notation x = (x1,...,xyN) € AN,

3. Estimating the Three-Body Term

In the next proposition, we control the last term on the r.h.s. of (2.12). To this end, we
need to assume some regularity on the N-particle wave function @y, appearing in (2.11)
(we will later make sure that our choice of @ satisfies these estimates).

Proposition 3.1. Let N~'*" < ¢ < N7'/27Y, for some v > 0. Suppose ®y € LE(AN)
is such that

1
(Pn, (1 = AT = Ap)(1 = Ayy)Py) = C (1 + W) (3.1

and define Wy as in (2.11). Then, for every § > 0, there exists C > 0 such that

fexj —xi)  folxj —

n<m

1 Vfelxj —xi) sz(xj ) B
‘||\IJN||2 ;{/ |q> )] Hfg (xp xm)dx‘

<CNe 91+ ! ) (3.2)
- N2¢3

To prove this proposition, we will use the following lemma.
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Lemma 3.2. Let W : R3 — R, with supp W C [—1/2; 1/213. Then W can be extended
to a periodic function (i.e. a function on the torus A) satisfying, on L2(A) ® LZ(A), the
operator inequalities

W —y) <CIWl32 (1 —Ay)
+W(x —y) <CIWa (1 — A

for a constant C > 0, independent on W. Moreover, for every é € [0, 1/2) there exists
C > 0 such that

W —y) = CIWI {1+ (-a0¥42 (—a,) 2 (3.3)
Additionally, for any r > 1, there exists C > 0 such that
EW(x = )W —2) <CIWIZ (1= A9 (1 - Ay) (1= As). (3.4)

Proof. The proof is an adaptation to the torus of arguments that are, by now, standard
on R3. For example, (3.3) follows by writing, in momentum space

(@, W(x — y)p)| = ’ Z W(p1 —qD@(p1. p2)9(q1, 42) 8p14pr.gi+ao
P1,P2:q1,q2€A*

< C[Wlloo sup Z
peEA* geA

1
1+ |q|3/2+5|p _ q|3/2+5

% <(p’ [1 + (_Ax)3/4+5/2(_Ay)3/4+5/2](p>
< C”W“]((ﬁ, [1 + (_Ax)3/4+8/2(_Ay)3/4+5/2](p> .

To show (3.4), we proceed similarly, writing

(o, W(x =W (x —2)9)|

= ‘ D W(p2—a)W(p3 = g)@(p1, 2. pIP@1: 42, 43) Spysprsps.ar+arsas

<cap ¥ W (p2 — a2)|IW(p3 — g3)|
- (1P = g2 = sP) (T +1g2P) (L + g3 )
q2.q3€A

X (g, (1 = A (1= A1 — A)g)
< CIWI2 (e, (1 — A1 — A1 — A)g)

where 1/r + 1/r’ = 1 and where we used the bound

1
Z (L+1p —q2— @31 (1 +1q21?)" (1 + |g3]?)" =¢
q2,3€N*

uniformly in p, for any r > 1. O

We are now ready to show Proposition 3.1.
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Proof of Prop. 3.1. Using the permutation symmetry, 0 < f; < 1 and then Lemma 3.2
(in particular, (3.4)), the bound (2.9) and the assumption (3.1), we can estimate the
numerator in (3.2) by

N
DN (01 [ ] £7Com — x)dx

m<n

Z/ foz(x'j_— )'Ci) ' er()fj_— xp)
) Sl —x) felg - )
<CN? / IV fe(x1 — x|V fe(xp — x3)]| Dy (x)2dx
S CN3V el H@n, (1= Ax) (1 — Ay (1 — Ay,)dy)

) (3.5)

S-4(y
< CN/( ( o

for any r > 1. As for the denominator in (3.2), we write uy = 1 — fz2 = 2wy — a)%,
with w, defined after (2.2), and we bound (see (4.6) below for a justification of this
inequality)

N N
[T 7 —xm) = 1= ueCen — xm).

n<m n<m

Using ||®x| = 1, Lemma 3.2 (in particular, (3.3)), the bound (2.9) and again the
assumption (3.1), we arrive at

N N
f oy [] 20 —xpdx=1-)" / D () Putg (i — xm)dx

n<m n<m

> 1= CN?lue1{®n, (1 — Ay — Ay,)Dy)

c
zl—CN€2(1+ )zl—CNZZ——zl/Z
Ne

C
N2¢3
for N~! « £ « N~1/2. Combining this estimate with (3.5) and choosing > 1 so that
6/r —4 > 2 — §, we obtain the desired bound. |

4. Reduction to an Effective Hamiltonian

Let us introduce the notation

N N
Exin(®y) = Z/|vx_,q>N(x1,...,xN)|2 [ £2G = xm)dx: ... dxy
j=1

n<m

N N
Epor(Py) = sze/mxi —xpl®n e, xn) P[] 7 G — x)dox . dxy.
i<j n<m
4.1)
It follows from (2.12) and Prop. 3.1 that

N

1 1
||\,IJN||2 (\I"N’ Z _ij' “IlN> = —||\-IIN||2 [Ekin(q)N) + Epot(q)N)] +& (42)
j=1
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where £ < CN£278(1 + 1/(N?£3)), provided @y satisfies (3.1).

The goal of this subsection is to rewrite the main term on the r.h.s. of (4.2) as the
expectation, in the state ® € LE(AN ), of an effective N-particle Hamiltonian having
the form

N N N
HY' =" —Ay +2) Vi g = X))V, +2 ) hexe(xi — X)) f7 (i = x;)
j=1 i<j i<j

4.3)

where uy = 1 — ff. To achieve this goal, we will make use of the following regularity
bounds on the wave function ®y (when we will define ® y in the next sections, we will
prove that it satisfies these estimates):

(D, (—A)DN) <= &
(Dn, (A (—Ag) D) < S
(On, (—An) (—A)(=Ag)Oy) < 57
(DN, (—Ar)(—An) (~Ag) (—Ar)PN) < 57
(D, (D)D) (A )Py < 5l
(P, (~ A (AP (A (=AY ey < 55 (44

foralln < 6 and § > 0 small enough and for sequences «,, 8, defined by o, =
(7/6+8)n — (4/9)(1 — (—1/2)") and B, = o, + 1/2 — 8. In applications (in particular,
in Prop. 4.1 below) we will only need the last two bounds in (4.4) for n = 2,4, 6 and,
respectively, for n = 3,4, 5. The relevant values of «;,, B, are given by: ar = 2 + 26,
oy = 17/4+ 465, 06 = 105/16 + 68, B3 = T/2+ 26, Ba = 19/4 + 36, B5 = 47/8 + 46.

Proposition 4.1. Consider a sequence &y € L?(AN ) of normalized wave functions,
satisfying the bounds (4.4) and such that (®y, H ;ﬁ‘ ®y) < 4maN + C, for a constant

C > 0(independent of N ), and for all N large enough. Suppose N~1*V < ¢ < N=3/4=v,
for some v > 0. Then, there exist C, & > 0 such that

ez [Exin(®8) + Epot(@N)] < (@, Hy dyy) — HE=D

x(on [Hi, — 4maN] @ uetiv-r —xw) jox)+CN=E @5)

Remark. We will later prove a lower bound for Hﬁ,ff_2 — 4maN which will allow us to
show that the second term on the r.h.s. of (4.5) is negligible, in the limit N — oo.
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Proof. Writing againuy = 1 — fzz, we can estimate

N
erz(xi —xj)=1- Zuz(xi —Xxj)

i<j i<j

N

Hfzz(xi —xj)<1-— Zuz(xi —Xj) +% Z we(X; — xj)ue(Xm — Xp).
i<j 1<j i<j;m<n:
(i, j) # (m,n)

4.6)

These bounds follow by setting A (s) = ]_[fv<j(1 —sug(x; — x;)), for s € [0; 1], and by
proving that

N
h(s) = — Zue(xi —xj), h'(s) < Z ue(x; — xj)ug(xm — Xp)
i<j i<jiym<n:

(i, j)#(m,n)

for all s € (0; 1). Thus, we obtain the upper bound

Exin  Exin(Pn)
< N/|vxld>N<x>|2dx—N/|vxl<bN(x>|ZZue(x,- — x;) dx

i<j

N
+ 5/ IV @y ()] Do el — xueCon — xp) dx
i<jim<n:
(i, ) # (m,n)
= N/ [V @v®)P(1 = (N = Dug(x1 — x2))dx

N(N —1)(N -2
_ N 2)( ) /IVXICDN(X)lz(l — (N = ug(x1 — x2))ue(x3 — x4) dx

+ Ein 4.7

where
Eiin < CN? / IV @ (0P (x1 — ) (xr — x3)dx
+CN? f Vi, @ (%) 71 (x1 — x2)ug (x2 — x3)dx
+CN* / Vi, @ (%) 71 (x2 — x3)ug (X2 — x4)dx

+CN° / |V, @ (%) 21 (x2 — x3)ug (x4 — x5)dX

_ o () (3) 4)
= Ean + Ein *+ Ein * Exin- (4.8)
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Consider the first error term on the r.h.s. of (4.8). Writing p = |¢p) (¢o| for the orthogonal
projection onto the condensate wave function ¢o(x) = 1, p; for p acting on the j-th
particle and q; = 1 — p;, we find
5&3 = CN*(Vy, @, ug(x1 — x2)ue(x1 — x3) Vs, D)
< CN* (Vo 3@y, ug(x1 — x2)ug(x) — x3) Vi, 43Op)
+CN? gl 1{Vx, P3P, e (1 — x2) Vi, P3ON)
< CN*} (Vi q2a3 @, g (x1 — x2)u(x1 = x3) Vi, G203 ®n)
+CN>luell (Ve 42p3 @, e (61 = 22) Vi, 42p30N)
+CN? (e |71 Vi, p2p3 P 7. (4.9)

With Lemma 3.2, and observing that, on the range of q, (1 — A) < —CA, we obtain

S < CNJluell3 5 (@ (—Ax) (A (= Ay Py)
+ CN? gl lluellz2{@n, (—Ax) (= Ax)Dy) + CN3ug| 3@y, (— Ay Py).

2) 1

The term 5kin can be treated like 5151 ). Proceeding analogously, we also find, with (3.4),

n

i < CN* el @n, (A (—AL) (—Ag) (—AL)PN)
+ CNHugl3(@n, (—A)[1+ (A Ar) Y+ 0y)
for any r > 1, and

4
ES < CNNuel3{@n, (—AD[1+ (A A4 4+ (A Ay Ay A4 ]y ).

Fromu; = 1 — f} = 2w; — o}, we obtain 0 < u; < 2wy and thus, with (2.9),

3
luell, < CE»~'/N (4.10)
for any p > 1. From the assumption (4.4), we find

1) o2 c 3) c “) 2,3 1/2-25 C
Ein» Ekin = N22® Skin = N3 ave(—1/n) Ein = CN"E +CL * N2 158448

Choosing § > 0 sufficiently small and » > 1 sufficiently close to 1, we conclude that
there exist C, ¢ > 0 such that Eiy, < CN &, if N~V < ¢ < N"23Vforav > 0, and
N e Nis large enough.

Let us now consider the potential energy. From (4.1), we can estimate

N
Epor(®n) < N(N = DAy / XeCrr —x2) fE G — x| on 0P [ f72 0 — xj)dx.
3<i<j
With (4.6) (applied now to the product over 3 < i < j), we obtain
Epot(q)N)

< N(N — )iy / Xe(r1 — x2) f2(x1 — x2)| Dy (%) [*dx
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N(N —1)(N —-2)(N -3
- M X 5 ) ) re f Xe(r1 — x2) f7 (x1 — x2) | @y (%) 1 (x3 — x4)dx

+ Epot 4.11)

where
Epot <CNO>y / xe(x1 — x2) [ (x1 — x2) | @ (%) Pue (x3 — x4)ug (x5 — x6)dx

+CN / Xe (61 = x2) 21 — x2)| Dy (0 Pate (x5 — xa)ue (xs — x3)dx
[€)] 2)
- gpot + gpot

Proceeding similarly to (4.9) (introducing the projections p, q;), we can bound
EW < CNShalle e B[+ (@, (A )40 0y) + (@, (Asy ... A V4 )
+ (D, (Ay ... AX6)3/4+5<DN)]
2
) < CNSxellxelnlluel uells 2

X [( @, (80) By - 8 ON) + (O, (A1) (B AV Oy

+CNTll el e 3 [1+ (@, (A A4 B) + (D, (A, - A Y4 D) |

From Lemma 2.1, we have A, < C/(N£3). From the assumption (4.4) and from (4.10),
we obtain

1 1
M 304 4 N o2 4
Epot = C[N CHNET st N3g41/16+66]
1 1 1
@ 204 4 25
Epot = C[N CH T s s N3£23/8+48]'

Thus, choosing § > 0 small enough, we can find C, & > 0 such that £,y < CN~°, if
N~ <¢ < N-3*Vforav >0,and N € Nis large enough.

Finally, we consider the denominator on the r.h.s. of (4.2). With the lower bound in
(4.6) (and the assumption ||®y |2 = 1), we find

N(N

al 1
[ 1on P [T 200~ xpax=1 - D = e mpa.

i<j
Observing that, by (3.3), (4.10) and by the assumption (4.4),

N —1
M/M’N(X” ue(xy — x2)dx

1
< OVl [1+ (0w, (A )50 < [ N2+ 1]

we conclude, choosing § > 0 sufficiently small and recalling that £ < N =3/4=v that

1
[1eN®PTIY 200 —xpdx ~

N(N —1
+ M 5 )/ug(xl—x2)|<I>N(X)|2dX+CN_1_S
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for ¢ > 0 small enough. Combining the last equation with (4.7), (4.11) we arrive at
(recall the assumption (P, H;,ffCDN) <4maN +C)

1
w [Ekin((DN) + Epot((DN)]

[1 + w / e (x) — x2)| Dy (%) 2dx + CN—3/2]

<

NV -

x [(@n. HEoN) (@, [HET @ ueCin—1 — x)]@n) + CN |

NN —-1)

< (by, H O y) + 5

(dy, H D) / 1D N (%) [Pue (xn—1 — xn)dx

N(N —1) _
- (@, [HET, ® ue(xy—1 — xn)]®N) + CN~F
. N(N —-1)
< (dy, H @ y) — —5

<(DN, {[HX/fEZ — 47TCLN] Que(xy_1 — xN)}(DN>+ CN~E.

5. Properties of the Effective Hamiltonian

Motivated by the results of the last sections, in particular by (2.12), by Prop. 3.1 and by
Prop. 4.1, we would like to choose o € L?(AN ) as a good trial state for the effective
Hamiltonian H ]f,ﬁ defined in (4.3) (i. e. @ should lead to a small expectation of Hﬁ,ﬁ
and, at the same time, it should satisfy the bounds (4.4)). Since uy; = 1 — fe2 is small,
unless particles are very close, we can think of Hlf,ff as a perturbation of

N N
Hyy =) Ay +200 ) xe(xi —xj). (5.1)
j=1 i<j

Keeping in mind that, by (2.4), Ay ~ 3a/N¢3 and that /N < £ < 1, (5.1) looks like
the Hamilton operator of a Bose gas in an intermediate scaling regime, interpolating
between mean-field and Gross—Pitaevskii limits. The validity of Bogoliubov theory in
such regimes has been recently established in [6]. The goal of this section is to apply
the strategy of [6] to the Hamilton operator (4.3). This will lead to bounds for the
operator Hfi,ff and, eventually, to an ansatz for ®y. While part of our analysis in this
section can be taken over from [6], we need additional work to control the effect of the
difference uy = 1 — f 22’ appearing in the kinetic and the potential energy in the effective
Hamiltonian (4.3).

To determine the spectrum of (4.3), it is useful to factor out the condensate and to
focus instead on its orthogonal excitations. To this end, following [25], we define a

unitary map Uy : L2(AN) — FV = @, L2 (A)®", requiring that
Uny = {a0, a1, ..., ay} € FEV (5.2)
if

oN-1)

N
Vo= aopy " + o) Qg tay.
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Here ¢g(x) = 1 for all x € A denotes the condensate wave function, and Lf_(A) is

the orthogonal complement of ¢g in L2(A). The action of the unitary operator Uy is
determined by the rules

Uyagao Uy, = N — N,
Uy ayaoUy = ap/N — Ny = x/ﬁb;
Uy aga, U = /N — Nya, = VNb,

Uy ajaq Uy = ayay. (5.3)

where N, denotes the number of particles operator on .7-'+SN (it measures therefore the
number of excitations of the condensate) and where we introduced modified creation
and annihilation operators b%, b, satisfying the commutation relations

N, 1
[by. b}] = ( - W+> Sp.a = Nqap by bl =10}, b51=0  (54)
and

la)as, b;] =8psby, lafag, byl = =6, b;. (5.5)

On the truncated Fock space ]—"EN, we can define the excitation Hamiltonian E%f =

Uy H]f,fo;‘\‘,. To compute LS, we first rewrite (4.3) in momentum space, using the for-
malism of second quantization, as

ff ~
Hy' = Z prayap — Z p-(p+nuray,,a;_,apaq
peEA* p q,reA*
+ A Z X@f( ()@, ayaqrap. (5.6)
p.q.reA*

Then, we apply (5.3). This will produce a constant term, as well as contributions that are
quadratic, cubic and quartic in (modified) creation and annihilation operators. Following
Bogoliubov’s method, we would like to eliminate cubic and quartic terms. This would
reduce [,eff to a quadratic expression, whose spectrum could be computed through diag-
onahzatlon witha ( generahzed) Bogoliubov transformation. As explained in [6], though,
cubic and quartic terms in Le are not negligible (they contribute to the energy to order

¢~ 1. Before proceeding w1th the diagonalization, we need to extract relevant contribu-
tions to the energy from cubic and quartic terms. As in [6], we do so by conjugating E‘}\ff
with a (generalized) Bogoliubov transformation removing short-distance correlations
characterising low-energy states. To reach this goal, we fix £9 > ¢, small, but of order
one, independent of N. Similarly as in (2.1), we define f, to be the ground state solution
of the Neumann problem for the hard sphere potential in the ball By,. Extending fy, to
the box A, we find

_Afﬁ()(x) = )\K()XK() (x)fE() (x)

with f,(x) = 0 for |x| = a/N (the eigenvalue X, is approximately given by (2.4),
of course with ¢ replaced by £p). For a/N < |x| < £y, we can then define g¢,(x) =
Sfeo(x)/fe(x). We can also extend g, to A, setting g¢,(x) = limyy| a/n g¢,(y) for all
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|x| < a/N and g (x) = 1 for all x € A\By,. A simple computation shows that g,
solves the equation

— V[f2V8e] + rexe fE8eo = Moxeo [7 800 (5.7

with the Neumann boundary condition 9,g¢,(x) = 0 for |x| = £o (this follows eas-
ily from the observation that, for £ < |x| < £, g¢y(x) = fi,(x)). Conversely, it is
interesting to observe that, integrating (5.7) against g¢,, we find

/ F21Vge,Pdx + 1 / Xef7ge,dx = g, f Xeo £ 80,dx. (5.8)

With (2.1), we find

/ IV fege)Pdx = hay / ol fegen) 2dx (5.9)

which implies that (5.7) is solved by g¢, = fo,/fe-

With gg,, we define 7(x) := —N(1 — gg,(x)). Some properties of g¢,, 7 and of
their Fourier coefficients are collected in the next lemma, whose proof is deferred to
Appendix A. We introduce here the notation

Ve(x) = 2N g xe (x) 2 (x). (5.10)

Lemma 5.1. We have 17(x) = 0 for |x| > €. For |x| < £y, we have the bounds

Ca

Ca
7 < —, v < — 5.11
NG| < 40 [Vi(x)| < (x[+0)2 (5.11)
Furthermore
/ Ve(x)ge, (x)dx — 8ma| = 'ZNM / Xg(x)fgz(x)ggo(x)dx —8ma| < CN~!
—ip-x 2 —ip-x C
‘ [ Vi iray) = 'zw [ o2 e ax| < o
(5.12)
and, analogously,
‘ZNMO / Xeo (x)fl (x)geo(x)dx — 87111‘ <CN
_ C (5.13)
24y [ a0 SRt 0 x| < s
Recall the definition uy = 1 — fgz. For p € A%, let
— D P (PN (5.14)

reA*

and denote by 1, the Fourier coefficients of 1. Then (5.7) takes the form

P+ Dy + Nae(xe f7 % 8eo) (P) = Ngy (xeo f7 820 (P)- (5.15)
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or, equivalently, with the definition (5.10),

1~ 1 —
pPnp+Dp+ = Vz(P) + ﬁ(Ve #1)(p) = Nagy(xeo f7 % 8eo)(P).  (5.16)
We have
2 ¢
o = —=mal?+ O(u) +0(af?) (5.17)
5 N
and, for p € A%,
npl <C { ! ! }
n min ;
! P2 Cplt
| { (5.18)
D, <C
1Pyl = Cmin { Ne’ 62|p|2}
In particular, this implies
> lglngl? = cetr (5.19)
geA}
foralll <r <5.
Using the coefficients 7,, for p € A}, we define now
1
B = 5 Z np(b5b*, = bpb_p) (5.20)
PeEAX
and we introduce the renormalized excitation Hamiltonian
Gy = e PMUNHYTUR P (5.21)

As explained in [6], conjugation with the generalized Bogoliubov transformation ¢Z(
models correlations up to scales of order one (determined by the radius £ of the ball used
to define gy, ). It extracts important contributions to the energy from terms in ,C?Vﬁ that are
quartic in creation and annihilation operators. This will allow us to approximate gg,ff by
the sum of a constant and of a quadratic expression in creation and annihilation operators,
whose ground state energy will be computed by simple diagonalization (through a second
Bogoliubov transformation). Unfortunately, conjugation with e 2™ also produces several
error terms, which need to be bounded. For 1 < r < 5, we consider the positive operator

pr) — Z |p|ra;’;al, (5.22)
peA]

acting on FEN. The growth of P (and of products of P with moments of the number
fo particles operator) under the action of B(n) is controlled by the next lemma.

Lemma 5.2. Let B(n) be defined as in (5.20). Then, for every n € N andr € (1;5)
there is C > 0 such that, for all t € [0; 1],

e BN+ 1) B < C(NL + 1)

(5.23)
e BMPON, + 1) BM < (PO + )W + D
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Proof. The proof of the first bound in (5.23) is standard and can be found for example
in [10, Lemma 6.1]. As for the second inequality, let us consider the case n = 0. For

any § € }'fN and r € [0; 1] we write

(&, e—tB(V})'P(r)etB(n)E> = (£, p(r)§> N /’ ds (&, ¢ =SB [P(r)’ B(n)]esB(n)a
0

(5.24)
where
(PO, Bl =) laI"ngbjb*, +he.
qeA;
By Cauchy-Schwarz’s inequality and (5.19) we get
(€. [P, BDIE)| < C > lgl Inglllagé lllaé|
qenl
<C Y lgl'ngllagé[lla €l + IEN] < Ci&, PUg) + £~ |I€I>.
geA]

Inserting this into (5.24) and using Gronwall’s Lemma, we obtain the desired bound.
The proof for n > 1 is similar, we omit further details. O

With Lemma 5.2 we are ready to establish the form of Qle\}cfe, up to errors which are

negligible on our trial state. We use the notation (recall the definition (5.10) of V)

K= Z pza;’;ap, and V= % Z f/\g(r)a;wa;‘apaqw.
peA’t D.q €AY, re A*:
r#-—p.—q
(5.25)

Proposition 5.3. Let g,% be defined as in (5.21), with B(n) as in (5.20), with £ > N~1*V

for some v > 0 and £y > O small enough (but fixed, independent of N). Let P") be
defined as in (5.22). Then, for any 0 < k < v/2 we have

. C
G = 4maN — CNo+ 1) =~ PRI, + 1), (5.26)

On the other hand, using the notation y, = cosh(np) and o, = sinh(n,), let

N-1)~ A
Cre = T+ Y [Pod+ Vp©@] +opyp)
pEA]

1 —~

+ﬁZVg(p—q)npnq+Dpr}p] (5.27)
q7#0
with D, defined in (5.14). Denote also
Qve= Y | Fpata e (b*b* +byb_ ) (5.28)
s pPYp™p 2 p p7—=p pY—=r

peAl
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with
Fp=p (0 +V,,)+(Vz*gz0)(p)(yp+op) (529)
Gp =2p"ypop + (Vi % 81)(P)(yp + ) + 2D,,.
Then
G, = Cnu+ Qe+ Enve (5.30)
where
€N < \/—_ (K+Ve+POPD)YWNy + 1)

and K and Vy are defined in (5.25).
Proof. According to (5.6) we can decompose
g?vffg =GN+ TN
with
- 1
Gn.oe=e BPUy Z p2a;a1’ * N Z VK(")apw Gq+rdp Uye?™

peA* p.q.reA*
(5.31)

and
ING= —e Byy Z p-(p+ r)ﬁ/g(r)a;+,a;7rapaq U;\‘,eB(”). (5.32)
p.q.reA*

We can compute geff with tools developed in [6]. From Propositions 7.4—7.7 of [6], we
obtain, on the one hand the lower bound

(N-1
2

~ ~ 1 ~
Ve(0) + ZA [P0, + Ve(p) + o Vexm )]y
PENY

Gne >

1~ 1 ~
+ 2 [PPnp + 5 Vi) + 5 (Ve ()] (bpb—p + byb% ) — CNe+ 1)

PEA]
(5.33)
and, on the other hand, the approximation
(N—1)~
One = G 0)
~ ~ 1 ~
+ 2 [PPop+ Vewog + Vepwpop + 5 3 Velp = @)ipng]
PEAL qeNi

+ Y [20%05 + Ve(p)(yp + 0,p) Dby + K+ Vi
pEAL
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1~ 1 A
+ 2 [PPoprn+ Ve wp+0p) + 0 3 Velp = 9)ng]
PEAX geA;

x(bpb_p +b5b* ) +Eg (5.34)

where

C
<
+& < NI K+Ve+ DWW+ 1).
Some care is required here when we apply results from [6]. First of all, the interaction
potential considered in [6] has the form N 3BW(NPx),forsome0 < B < 1.Thepotential
Ve(x) = 2NXgxe(x) f[2 (x) appearing in (5.31) has this form only if we approximate
fe~1land Ay =~ 3a/(N 63). A closer inspection to [6] shows, however, that (5.34) does
not rely on the precise form of the interaction potential but instead only on the bounds

Ve(r Vo(r
sup [Ve( )I2 <co ., Z | z(z)l < co?
qeAt . la+rl b . la+r7lql
reAl reA*, geA¥
r#—q r#—q

which are the analog of [6, Eq. (7.5) and (7.75)] and follow from ||Vg||Oo < C and
[| Vg 2 <Ce™ 3/2 Moreover, the estimate (5.34) was proven in [6] under the assumption
that W = AV, for a sufficiently small A > 0. This assumption was used in [6] to make
sure that the Zz—norm of 7 is sufficiently small. As later shown in [8], smallness of ||n]|
can also be achieved by choosing the parameter £( small enough, with no restriction on
the size of the interaction potential.! Finally, in [6], the choice of 1 was slightly different
from the definition given after (5.7) (the presence of the second term on the r.h.s. of
(5.6) affects the choice of n, as we will see shortly). However, the derivation of (5.34)
does not depend on the exact form of 1, but rather on bounds, proven in Lemma 5.1, that
holds for both choices of 5. This explains why (5.34) holds true, for sufficiently small
values of £g.
Let us now consider (5.32). With (5.3) we find

UN[ - Y, p(p+ r)ﬁz(r)a}‘,+,a;_rapaq]U,*v =71+ Zy+ 73
p.q.reA*

with
Zi= —(N=N)i(0) Y plara,

pEA
Z,= —+/N Z p- (p+r)ug(r)( pard 7rap+h.c.)
p.r €Al
p+r#0
Z3= — > P (p+r)We(r)al, al_apay. (5.35)
reA* p,geAi:
r#-p.dq

1 In [6), smallness of the potential was more importantly used to establish Bose—Einstein condensation for
low-energy states; here, we do not need to show Bose—Einstein condensation, because we are only interested
in an upper bound on the energy.
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Using Lemma 2.1 to bound [|it¢ [leo < llu¢ll1 < Cllwell; < C2N~! and Lemma 5.2 (in

particular, the second inequality in (5.23), with r = 2), we find
I(&, e BMW Z1eBWe)| < CNJlug (K + 1)12eBDg 2 < Cef (K + 1)/ 2g|?

because N, < CK. As for the term Z», we have, from |[u¢|l>» < Cllw¢ll» < C€/2/N
and by Lemma 5.2,

(PP, ZoePMg)]
2 B2\ /? ~ 212 B2\ /?
=VN( Y Ip+rPlagare®e?) (Y mmPipl lapet g )?)

p.ren;: p.reA;:
p+r#0 p+r#0

< CVN ugla K" 2N PP e |12 B0 |

< CUN) "2+ D2 W, + D22,
Hence, we obtain

Ine=25+ fo Bz BapI i + &,
with
+£E < CINO (K + DN +1).
Using (5.5) we find
3
[Z3, BoDI =) Wi
i=1
with
Wi= 3 Dy(bybl, +byb-y)

peAl
Wy = — Z p-(p+ r)ﬁﬁ(r)nq—r (b;b;k—qa;ap*" + h.C.)
reA*, p,geA;:
p4r,g—r#0
Wi = — Z p-(p+r) T[Z(r)r]p_,_, (bip_rbz;a;;aq_r + h.C.).
reA*, p,geAy:
p+r,q—r#0

Forany ¢ € [0; 1], we have (using again ||u¢|» < C£/2/N and ||n|>» < C, from (5.18))
(e BE, Wae' P0)|
B 1/2
[0 IpPlagbgbpyNi+ DT B0

reA*, p,geA¥:
p+r, q—r#0

~ 12
<[ X ORI P+ rPlap Ve + D2 E0g

reA*, p.geA;:
p+r, q—r#0

< lluel2nl2IC NG + )2 BDg 2 < ce'2(Ne) K2 (VG + 1)1 2g |,
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The contribution of W3 can be bounded similarly. Hence,
1 '
Ine=2Z3+W +/O dt/o ds e_SB(n)[Wl, B(r))]eSB(n) +&
with
+& < L K+ DWL+1).
VN¢

With (5.4), we compute

[Wi. B(n)] = ZX +h.c.

where
Xy = Z Dpnp
peAl
N+ N++1
X, = D 1-==)(1- -1
2= 3 oo | (1) (175 ) ]
peAl
gl 5
PeEAX
1
X4:_ﬁ Z Dpnqapa aqa_q.
P.qeN]
With (5.18), we find, for any ¢ € [0; 1],
C 1 1
1B g x, ot B <_[ L ] )12t B g 12
(B, Xae!PPe)| < = Z* T > a1+ D) £l
peN; pEA]
Ipl<e™! Ip|=¢~!

< CINOTINV: + D28
Again from (5.18), we have |[Dpn,| < C(N&) ' forall p e AZ. Thus
(e B, X3 BDe)| < CNO TN ING 2 BV g 2 < CNo) TN IV + 1) 212,
As for the expectation of X4, using (5.18) we obtain

("B, X 46 BMg)|

C 1D, 12
=3 T rleand™er)

P.qeN]

1/2
X( Z |nq|2|p|2”apd_petB(ﬂ)$”2>

P.qEAY

< e I 1/2N1/2 tB(n)EHHN etB(n)EH < ||(/C+ 1)1/2(./\/++ 1)5”



A Second Order Upper Bound for the Ground State Energy 23

‘We conclude that
INe=Z3+ W1+ X1+&

with

:|Z(€3 < «/—_ (’C + l)(N+ +1).

Let us now go back to control the term Z3, as defined in (5.35). We can estimate, for
any k > 0,

€. :6)1 = ¢( > p |2+K|' ol )|' lapa qsuz)
reA*, p,geAl: P

p+r,gq—r#0

PAG]

X( Z |p |2+K|p < lla ap q/‘i:” )
re A% p,q € At:
p—r,qg+r#0

<€ PEIN,E)

N

where we used the change of variables p’ = p +r, ¢’ = g — r and the bound

| (7))
sup

_ plx
pEAL reA*:r#—p |P rl

<CN¥ (5.36)

valid for any « > 0. To prove (5.36), we use the bound (2.10) for |@¢ (r)|. More precisely,
we consider separately the sets where i) [p — r|] < N and |r| < N (here we use
|@¢(r)] < C/(N|r|?) and we estimate |r|~2|p — 7|7 < |r| 727 + |p — r|7279), ii)
|p—r| > Nand|r| > N (here we apply |@¢(r)| < C/|r|? and we use |r| 3 |p—r|™* <
|r| 3% +|p—r|737%),iii) |[p—r| < N and |r| > N (here we estimate |y (r)| < CN3),
iv) [p—r| > N and |r] < N (here we use |0¢(r)] < C/(N|r|?) and we estimate
lp—r|™* <CN7 ).
Thus, for any ¥ > 0, we arrive at

Inve= Y Dpnp+ Y Dp(bhb* ,+byb_p) +E7

PEA] PEA]
where
+E7 < \/—_(IC+ DN +1) + K7><2+K>(N++1). (5.37)
Combining the last estimate with (5.33), we obtain
w . (V=D ) oo
g, > Ve + 3 [p?np + Dy + Ve(p) + S (Ve m(p) ]y

peAl

1~ 1~
+ Z [pznp+pp+§w(p)+ﬁ(vg*n)(p)](bpb_,,+b;bip)
pEA]

—CWN+1) — %7)(2*")(/\& +1)
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now with the restriction 0 < ¥ < v/2 (from £ > N —14v it then follows that N¢ >
NY >N 2"; thus, the first term on the r.h.s. of (5.37) can be controlled by the second).
With the scattering equation (5.16) and using the bound on the second line of (5.13), we
obtain

gy = = / Vi(x)gey (x)dx — C(Ny + 1) — P(Mw +1)

for any 0 < k¥ < v/2. With (5.12), we find (5.26).
On the other hand, combining (5.37) with (5.34), we arrive at

N-=1

G, = Ve (0)
1 _
2
+ > [po, S+ Vi(p)og + Vi(p)ypop + N > Velp = @)npig + Dpnp]
pEAL geNL
1~ 1 ~
+ 2 [PPopyp+ Ve p +0p)* + 50 D7 Velp = )ig + Dy ]
peEAL gEAY
x (bpb_p +b5b* )
+ Z 2p20 + Vg(p)(yp +0p) ]b;bp + K+, +§N,(
PEAL
where

~ C C
+ENI < —— K+ Vi + DN + 1)+ — PN, + 1
Nt =< FNZ( e+ DN+ 1) N Ny +1)

for any 0 < « < 1. Observing that
i Z ‘7( _ 2 b*b < £ N 1 1/2 2

N e(p —@Ing(op +yp) (§.b,bpE)| < NE”( ++ D7

PEAL, geA*

1 = C
v X T —amg((op+ ) = )€ bpbo )| = 1IN+ D2

PEAY, geA*
C 12
| 30 P by — ajaps)| < I N g
PEAX
and that
1 —~
€@ vee)=o0 3. V)E apyajageapt)
p.geEN], reN*
r#=p.—q
1 |VZ( ) C 1/2
SaN X TgerplPrrPlapagl® = SIKEN e
p.geEN;, reAN*
r#F=p,—q

we arrive at (5.30), choosing x = 1/2. O
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6. Diagonalization of the Effective Hamiltonian

According to Prop. 5.3, we need to find a good ansatz for the ground state of the quadratic
Hamiltonian Qy ¢, defined in (5.28). To this end, we are going to conjugate g;“fofZ with a
second generalized Bogoliubov transformation, diagonalizing Q ¢. In order to define
the appropriate Bogoliubov transformation, we first need to establish some properties
of the coefficients F, G, defined in (5.29).

Lemma 6.1. Suppose £ > N~V for some v > 0. Then there exists a constant C > 0
such that

PH2<F,<C+ph), |Gy)l<—, |Gyl <F,

“le a

forall N € N large enough.

Proof. Recall the notations y, = cosh(n,,) and o, = sinh(z,). With (o7 +y,;) < C
(from the boundedness of 7,,) and (5.13) in Lemma 5.1, we immediately obtain F), <
C(1 + p?). To prove the lower bound for F,, let us first consider |p| > 7172 With
(05 +v5) = cosh(2n,) = 1, we find F), > p> — C > p?/2,if N is large enough (so

172

that ¢ is small enough). For |p| < €7/, we use (xy ff * 8¢,)(0) > 0 to estimate

(Xefgz * §zo) (p) > (Xéfzz * §e0) (p) — (le/gz * §eo> 0).
With
—_— A —_— A z
|(xe 12 #0) () = (xe£2 %800 ) )] = Clpl / X1 () fE () gty (¥)dx < CE2
we conclude that
2 1/2 P2
F,>p*—cCt'? > ER
Next, we show |G| < C/ p?. With the scattering equation (5.16), we obtain

Gp = 2Niy(Xeo f2 o) (D) + 20*(vpop = 0p) + (Ve % o) (D) [(vp + 0)* — 1]

Since

1 .
[Vpop —np| = ‘Esmh(Zn,,) - ’717‘ =C |’7p|3 = P

c
((vp + o) — 1] = ’sinh(an) +cosh(27,) — 1‘ <Clnyl < =

6D

and using (5.13) we obtain |G| < C/p?, as claimed.
It remains to show |G ,| < F),. To this end, we write

2
Fp_Gp:PZ(Vp_UP) —2D,
Fp+G,=[p*+2(Ve % 8)(P)|(yp + 5p)* +2D,,.
ByLemma5.1 we have ‘Dp] < C/(N{).Hence, we find, for N large enough, F,— G, >
p?>—C/(N¢) > 0and, similarly as in the proof of F » > p?/2 (distinguishing small and

large |p]), Fp + Gp = Cp* — C/(N£) > 0. This shows that F, > |G| and concludes
the proof of the lemma. O
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With Lemma 6.1, using in particular the bound |G ,| < F),, we can define, for every
p € A}, 1, € R through the identity

tanh(27,) S
anh(27,) = ——-.
P Fp
Equivalently,
1 1-G,/F
7, = - log 1=Gy/ky (6.2)
4 1+G,/Fp
From Lemma 6.1 we obtain
G C
oyl < 2! <— (6.3)
Fp [P
for all p € AZ. With the coefficients 7,, we define the antisymmetric operator
1
B(r) = 3 Z T, (b5b* , —bpb_p) (6.4)

peA]
and we consider the generalized Bogoliubov transformation (™.

Lemma 6.2. Let T, be defined as in (6.2). Then, for everyn € N and any r € (0;5)
there exists a constant C > 0 such that

K +V+ PO+ DN+ DB < K+ Ve + PO+ (NG + D", (6.5)

Proof. Proceeding as in [6, Lemma 5.4] and using that, by (6.3), || |1, ||t]|2 and || || 52
are all bounded uniformly in £ and N, we find

EBOEK+ Vi + DN + DD < C(K+ Ve + DN + 1).

The growth of P") (N, + 1) can be controlled as in Lemma 5.2, with the only difference
that now ZqEAi |q|’|rq|2 < C,forall0 <r < 5.Forn > 1, we can proceed similarly.
O

The reason why we are interested in the Bogoliubov transformation ¢5() is that it
diagonalizes the quadratic operator Qy ¢ defined as in Prop. 5.3.

Lemma 6.3. Let Qy ¢ be defined as in (5.28), and T, as in (6.2). Then, we have

1
SRR B ANC RIS WL re

peEA} PEAY

where
C
v < N(IC+ DWNV+1).

Proof. The proof of Lemma 6.3 follows exactly as in [8, Lemma 5.3], using Lemma 6.1
(which implies ||| < C), Lemma 5.2 and Lemma 6.2. |
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With the generalized Bogoliubov transformation ¢?V, we define a new excitation
Hamiltonian /\/leff }"fN — ffN, setting?

A4%2:2673h»g%2636) (6.6)

Since the generalized Bogoliubov transformation e?) diagonalizes the quadratic part
of G&!f v.¢» the vacuum vector €2 € ffN is a good trial state for MEI\? ¢- This correspond to
the trial state & = U;,eB(”)eB(T)Q € Lf(AN) for the Hamiltonian Hﬁ,ff.

Proposition 6.4. Let M%fe be as defined in (6.6), with B(t) as in (6.4) and g,% asin
(5.21), with £ > N_H"for some v > 0 and £y > 0 small enough. Then, we have

(@ MY Q) =4ma(N — 1) + ena’

1 8ma)?
-5 Z |:p2+8nu—,/|p|4+16nap2— (;c;) :|+(’)(N_”/2)
p

pEAX

with e defined as in (1.5).
Proof. With (5.30) and Lemma 6.2, we have

M, = Cn o +e PPy PP 4 ),
with

C
+Ey < oK Vet PO+ DN+ 1)

With Lemma 6.3 and the assumption £ > N —1+v we obtain

(@, M, @) — CN’H% 3 [—Fp+m]+0(1"‘”/2) 6.7)

PeA]
with Cy ¢, I, and G, defined as in (5.27) and (5.29). We rewrite
(N—-1)~ 20 = 1 ~
Cne= ——F—VO)+ > [p My + Ve(pInp + o (Vexm(p)np + Dpnp]
pEAY
~ 1
+ Y [pz(aﬁ =)+ Vep)(op +vp0p = 1p) = 7 z(p)npno]
peA]
(6.8)
With the scattering equation (5.16) we find
(N-1 1= .~
Cye=—F—VeO+ > [EVe(p)np + Ngy ((xeo £2) * geo)(p)np]
PEAX
P 1 ~
+ > [P2(0,3 =)+ Ve(p) (o, +vpop —np) — ﬁvﬁ(p)npUO}
peAl

2 Instead of considering first (in Sect. 5) the action of B(n) and then (here in Sect. 6) the action of B(t),
we could have combined both unitary maps into a single Bogoliubov transformation exp(B(p)), with p inter-
polating between 1, for large momenta, and 7, for small momenta. We chose to keep the two transformations
apart, because this allowed us to apply several results from [6].
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Recalling that Vy = 2N Ay x¢ fz2 we obtain, switching to position space,
Ce =NV = Ve [ e R + N [ 0 £
# Ny [ 1200 FE 0810 (DR = N e PO

— Ny (xeo £7 * 8to) 00

~ 1 ~
+ 2 [P20) =03 + Vep) o) + 70, = np) = 5 VelpImpmo .
peAY

With 17 = N(g¢, — 1), we arrive at
Cne=N(N = Dig f Xe () f7 (X)dx + N2 / Xe () f7(X)gey (x)dx
— N?x f Xe () f7 (X)dx + N1y, / Xt () 7 (x) g7, (x)dx
— N / X0 () (0860 (¥)dx — Niwe (e f2) (O

- N)‘-K() (X@o fgz * ?@o) (0)no

—~ 1 ~
+ 3 [P20) =0} + Vep) @) + 70, = np) = 53 VelpImpmo .
PEAX

With (5.7) and since g, satisfies Neumann boundary conditions, we notice that
P Jn Xe () fE (g ()dx = g JB,, Xto (X) f2(x) gty (X)dx
= fBzo V(f2(x)Vge(x))dx = 0.

Thus, using fy, = f¢ge,» we conclude that 3
Cye = NN — Dikgy / X0 () £ (¥)ddx
+NMO/Xe0(X)fg20(x)dx —N)LK/XK(X)fZZ(x)dx

—Nae(xe f2)0)n0 — Nheo (xeo 7 * 8e0) 00
1

+ Y [P =) + Ven)op + ooy = mp) = o VePInpm |- (69)
PEAX

To bound the terms on the second line of (6.9), we use Lemma 2.1 to show that

(o
‘N)»eof)(lo(x)fgzo(x)dx — 471a‘ < N_Eo

C
2 —_— —
‘N)Lg/)(g(x)fe (x)dx 4na‘ < NE°

3 Instead of applying the scattering equation on the first line of (6.8), we could have switched to position
space and argued as in (5.8) to reconstruct the term on the r.h.s. of (5.9); this would have given an alternative
derivation of (6.9).
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Similarly, we find

—NAexe SO0 — Nivgy (xeo f2 % Zeo) )0 = —Sang + O(NO ™) .

As for the terms on the fourth line, the last contribution can be bounded, using that
[nol < C, by

1 c
‘ZN > Vz(p)npno‘ T
PEAL

To handle the other terms on the fourth line of (6.9), we combine them with the first term
in the sum on the r.h.s. of (6.7). Recalling (5.29), we find (using again ¢ > N1+

2,2 2 %2 2 1
2 | PP =)+ Vep) g+ vpop —np) = 5 Fp
pEAX

LI RPN ~ _
==Y [%+§(Ve*geo)(P)+P27712,+(Ve*gzo)(P)Tlp:| +O(N™")
pEA]
(6.10)

where we bounded, using |03 + ¥,0, — n,| < Cln,|* < C/|p|* (see (6.1)),
~ ~ 5 C
| Y (%ep) = Do 3 P)@F + 70, =) = 15
PEAX
As for the remaining term on the r.h.s. of (6.7), we can write
F2— G2 = |p|* +2p> (Ve * 8u,)(p) + Ay
with the notation
Ap = =4D, (Ve %2 (P)vp + 0> + Dy + 2077, ).

From (5.18), wehave | D,| < C/(N¢). Thus, with (y,+0,)> < Cand|y,0,| < C|p| -2,
we obtain |[A,| < C/ (NE) Using this bound and the observation that | pl*+2p? (Vg *

%) (p) and |p|4 + 2p (Vg % 80,) (P) + A, are positive and bounded away from zero we
write

\/ﬁ = \/|p|4 +2p2 (Ve % 8ey) (P)
Ap

JIPI 202V x Bg)(p) + Ap +\/1p1* + 292 (Ve % 32, ()

Expanding the square roots in the denominator around p?, we easily find (using again
|Apl = C/(NE)),

Ap

peni A1+ 202 (Ve x Ba) () + Ap + Pl + 292 (Ve % 8y) ()
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A
=D 55 +OWNT.
pEA]
Combining the last two equations with (6.7), (6.9), (6.10), we find
(Q,M?\}T(Q) = N(N — Dy, / Xgo(x)f,f()(x)dx — 8rang
1

£33 [ 0P = B+ 101+ 202V o) () +
pEAY

((V, *3360)(17))2]
2p2
Ap (T «200)(P)°

2.2 U .o
- Z [p np + (Ve xgep)(p)np — 12 12

} +ON"Y2y.
PEAX
(6.11)

Estimating |(y, +0,,)> — 1| < Cln,| < C/|p|* and |y,0, — 1| < Ci;, < C/|p|° (see
(6.1)), we obtain

A D ~ _
D=2 [2p2np + (Ve *gg0><p)+Dp] +ON™").
pEAY P pEAY P
Solving the scattering equation (5.16) for D, we obtain
A D 1 ~ — _
Y= p—g [pznp + 5 (Ve %80 (p) + N (xeo f7 *8@0)(17)} +ON™").

pea; P pent

Inserting this bound in the last line of (6.11), we get

S5 o~ 2
~ A (Ve % 8e0)(p)
| Pt Ve )y — 5+ (4—2)
pent P p

1 =
= Z [pznp+§(Ve*geo)(p)+Dp]np
peA]

1~ (Vex8e)(p) D
+ 2 S Wex )P np+ =530+ 2]
eA*2 21? p
pPeny

Nog )(T\fz*’g\z (p) y
+Z ol 0;2 0) D,+O(N™").

PEA]
With the scattering equation (5.16), we find

. 5
Ve*3 Ap  ((Vex2uy)(p)
> [p27712; + (Ve x 8eo)(P)np — 4_1’2 + (4—;)]
pGAi p p
NA Xeo 2 * 8 1 ~
= Z Lo (Xéofzz * geo)(P) |:p27lp +-(Ve *@zo)(p) + Dpi| +ONTY)
p 2

PEAY

_ 3 W2 < 2) 0 96 5 T

= 2 6 2
p KO pEAL

+O(N™")
peAX
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where in the last step we used Lemma 2.1 and Lemma 5.1. From (6.11), we conclude
that

(Q /\/letf Q) =N — l)kéo/Xzo(x)fgo(x)dx _877‘1770_ il Z Xz (P)
PEAL
1
—5 2 en(P)+OWNT) (6.12)
peEAL

where we introduced the notation

(Ve % 2e) ()

en(p) = 17+ Tox 8 (p) = 1ol + 202V ) ) =~

Expanding the square root, we find that ey (p)| < C|p|~*, uniformly in N and £. This
allows us to cut the sum to [p| < €~ I with a negligible error. For |p| < ¢~ ! we can
then compare (V[ *8¢,) (p) with (Vg * ggo)(O) and then with Vg (0). Proceeding 31m11arly
to [8, Eq. (5.26)-(5.27)], we conclude that

2
Y evip=Y [p2+8na—,/|p|4+16mp2— (827;) ]+(’)(€10g€). (6.13)

PEAY PEAY

Finally, let us compute the last term on the first line on the r.h.s. of (6.12). Using the
expressions (see [8, Eq. (5.5), (5.29) and (5.33)]):

~ 4m by (sin(€o|pl)
Xeo(p) = ( —cos(€op)
! Ipl2 \ tlpl
4 e} 6sin(Lolp)  6cos(Lop)  3sin(éolpl)
(Xeol - P)(p) = —20 (= + + — cos(£op)
0 | 2 epl? e1pl? Lolpl
Gl 1) = 5 (1 = costtop)
we can rewrite
902 Xt (P)? Xeo(p)  3a?
e L =l 5> f"'f =5 2 T Gl PP
0 peAx P &% peAT p 0 peAx 6.14)
”4 Z oo (P)? +7 3 o) - Gttgl - 7D ()
0 peni 0 pea:
From [8, Eq. (5.31)] we have
Xeo(P) 2 4 5
=6ma“(lp — — — —n¢ (6.15)
3 ZA IpP? (=5~ 5™

where
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Computing the different terms on the r.h.s. of (6.14) and using (6.15) we obtain

9a? Xty (p)* 24 a2 16 , 5,
o =6bmalp — —nm— — —m a{;.
6 Z 2 0 0

£y pen: p 5 £ 5
Inserting (6.13), (2.6), (5.17) and the last equation in (6.12), we conclude that

(@ M§,Q) = 4ma(N — 1) +epd

1 8ma)?
=3 2 [P+ 8ma—/Ipl*+ 167ap? - (2’;? ]+(’)(N_"/2)

pEA]

with e defined as in (1.5). |

7. Bounds on the Trial State

We introduce some operators to control the regularity of our trial state. First of all, we
recall the definition of the operator P defined in (5.23) for 1 < r < 5. Furthermore,
we need some observables acting of several particles. For n € N, we define

_ 2 2 % *
T, = Z Pl -Pply ..y dp, ...dp,. (7.1)
Pls Pn€AY

Since n has limited decay in momentum space (see (5.18)), we will only be able to
control the expectation of 7,, for n = 2, 3, 4. To control some error terms, it is also
important to use less derivatives on each particle. We define, for § > 0 small enough
(we will later impose the condition § € (0; 1/6)),

AD = N pPP A paPa L a) ay, . ap,. (7.2)

We will be able to control the expectation of A,(f), for all n € N. Additionally, we will
also need the observable

S0 = Z 1P PP paPP A L ad ap, . ap. (13)

All these operators act on the excitation Fock space .7-"+SN. In order to bound their
expectation on our trial state, we need to control their growth under the action of B(7),
similarly as we did in Lemma 5.2 for P,

Lemma 7.1. For n € N\{0} and 0 < § < 1/6, we consider .Af[s) as in (7.2). We define
recursively the sequence o, (depending on the parameter §) by setting a1 = 1/2 + 6,
oy =2+ 28 and

an = [an—1 +an—2]/2+7/4+38/2. (7.4)

Then, for every k € N, there exists a constant C > 0 (depending also on n and §) such
that
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(Mg, AD W+ DFBDg) < comon [ + D217 + Y (6, AP NG + 1)) |
j=1
(7.5)

forall& € F=N.
Forn € N\{0}, let

Ty = {(e,8) € (—=1;3) x (0;1/6) : £ +28 < 372"~ Dy,

For (e, 8) € 1, we consider 8,58’8) as in (7.3). Moreover, we define the sequence B}, =
ay + 1/2 + ¢ — 8, with a,, as in (7.4) (the sequence B, depends also on §; since this
dependence does not play an important role in the proof, we do not make it explicit in
the notation). Then, for every k € N, there exists a constant C > 0 (depending also on
n, €, 8) such that

n
(PVESDPNe) < cePllER + 3 s (6. 5778)| (7.6)
j=1 g,0¢e j

forall& € F=N.
Forn € {2, 3, 4}, we can also control the growth of the operator T, defined in (7.2).
We find

(P Mg, TP W) < L, (14 PY + T)g)
(P, TP MWe) < COHE, (14 PY + Zan + T)E) (7.7)
(" Me, TuePMe) < CLOE (1+PY + Zya+ Zano + Ta)8)

forevery & € ]—'fN. Here we introduced the notation (form = 2,4)

4 2 4 4
Zia= Y pl*pidahapmap.  Zas= Y Ipil'ipaltal al,apay,

P1.p2€A]: P1.p2EA]:
P1#Ep> P1#Ep2
_ 4.2 2 x *k %
Zann = E Ip1I*paps ay, a,,a,.apsap,ap, .
P1.p2.P3EAT:
P1#Ep2,£p3

(7.8)

Finally, we will also need an improvement of (7.6), forn = 3. Fore > —1,0 <46 < 1/6
withe +6 < 1, we find

(B 0g, SENeEWg) < e B e [14PD + Zi0]6)+ sup (6 55V8))
(8,8)€Z3

(7.9)

forall & € ffN (observe that, in (7.6), B3 =T7/2 + & +24).
Remark. The sequence o, defined in (7.4) is given explicitly by

= ! 1) 4 1 ay 7.10
a=(5+)-5(-(-3))- (710
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Proof. We begin with (7.5). We consider k = 0; the case k > 0 can be handled similarly.
Forn > 1and 0 < § < 1/6, we set

EQ(1) = (P Wg, AP P0g) .
For n > 2, we compute

dr
dt

(1) = ('BWe, [AD, Bp)]e' B M)

3/2+6 3/2+8
ST mPPY il
Ploes PRENT

x (eBMg, [a;;1 ey Ap, - Apy, B(n)]etB(")E).

With the identity
n
* * | * % * * *
[apl .Gy Ap, ... dp, bq] = Z‘Sq-P/bpjapl ey (A Ay Apy A Gy Ay
j=1
we find

* * k%
[ap1 c..ap dp, .. .apl,bqb_q]

_ * % * * *
= E 8pj,_qbqbp Ay ovelpy (Aol Ay oo Gp g Apy Ay

* * *
+ E 8p,,qbp [ |ap,~+1 el dp, .. Apdp; .. dp DT,
Thus
* * * %k
[am ..ap dp, .. .apl,bqb_q]

—_ X 0% % * k %
= E (81,_1,,_,] + Spj,q)bqb_q pro Gy Gy e G Apy e ApyAp oA,y

Jj=1

n

* * * * * * *

+Z Zspjvqui»*qbqb*q Gpp - pj Qi ApiiOpisy - 4p,

j=li#j

Xdp, ...Ap;,dp; | - Apdp; | -..dp,. (7.11)

Therefore, we can bound

dF®
\ <f>\<C > Inglg P21 p 3248 p P37
Ploeeos Pn—1,9 €AY

tB tB
x llagap, ...ap,_ e *ME|a* jap, ...ap, e PVE|

3428 3/2+6 3/2+6
+C > IngllgPEIpi Y pua
Ploees P2, €A

x llagap, ...ap,_,e'PME|a* jap, ...ap, e PPE| (7.12)
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for a constant C depending on n. Estimating ||aiq§ I < lla—g¢ll + lI¢ |l and applying
Cauchy-Schwarz’s inequality, we obtain, for any n > 3,

dF®

1

1 1 35

20| <ClnlooF 0+ CEP 01 FY 03[ 3 1920
genl

§ ) L 1 3
+Clsup g2 O 0+ CEY 02 FY, 02 Y 1g12 02
IS

qenl

With Lemma 5.1, we arrive at

dF®
’ (t)’ < CED () +Ce712FD (1) + o432 FD (1)3 FO (1),

(7.13)

This bound is also valid for n = 2, setting F(" () = [|£]|2. If n = 1, we can use (5.23)
to estimate

FP) < ce7 P21 + (6. ADg)]
for all t € [0; 1]. Inserting this bound on the r.h.s. of (7.13) (with n = 2), we obtain
B0 = CRY©O) +Co 2 & 117 + AP]e) = Ce 26 1+ AP + AV e)

Defining the coefficients «,, iteratively, as in (7.4), by simple induction we conclude
from (7.13) that, for all n € N, there exists a constant C > 0 such that

FO () < cemonfe, [1+) " AV e). (7.14)

Let us consider (7.6), again for k = 0. Forn > 1, (¢;8) € Z,, t € [0; 1], we define
G(E’a)(t) — (etB(ﬂ)g); S(S’S)etB(n)S)
n ’ n N

Proceeding similarly to (7.13) we find, for n > 2 (with the convention that G("3 ‘”(z) =0
and F"(t) = ||&]|2 for all 7 € [0; 1),
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dGEP ) P 1/2—8 ~(£,8) 7/4-36/2 (€8 1y D) (1)
‘—dt )SCG,(f’ )+ C PG (1) + CTTATIR G (02 G (1)

+CO' T ED (1) + Co2 2 GEED (33 FO (1)
(7.15)
fora @ > ¢+248. The second line arises from the contributions to the commutator (7.11)

where g coincides with the variable raised to the power 2 + ¢. In fact, the contribution
from the first term in (7.11) can be estimated by

S IngllgPIp PP pa P2
x lagap, ...ap,_eP*PE|a* ap, ... ap, e PPE|
1
1 (5 1 2
< ClnlGY D0 + G0 F 02 Y n2lgl*]
q

< CGE )+t E ().

The contribution from the second term on the r.h.s. of (7.11), on the other hand, can be
bounded by

/2448, (3/248 3/243
S Ingllgl R PR P
q,P15-- Pn—2€A]

X llagap, ...Cll,,hzf,”B('7)§||||aiqapl ap, e B
1
,0 0,8 L6 1 _ 2
< c[sgp|nq||q|3/2+3]c;ff_3<r>+CG,<f_*1 (OL NG DI TR
= CG) )+ T PRGN )3 Y, (1)

fora @ > &+ 24 (this condition is needed to apply (5.19), in Lemma 5.1).
If n = 1, we use again (5.23) to estimate

61w = e g+ 6. 506 | < cefigP + sup 65178
(e,8)ey

foralle < 3 (Gﬁg"s) does not depend on §). Inserting this bound in (7.15), we arrive at

dG$O
0] < e+ e e+ w6508
dt (e.8)€T;

ifwecanfind@ > Osuchthatf > e+25ande+6 < 3,i.e.if e+ < 3/2 (this condition
is certainly true, if e +25 < 3/2). By Gronwall’s lemma (noticing that 85 = 5/2+¢+6),
we conclude that

GE 0w = cefillglP+ sup (6,56)+ sup (6,58 7%)]
(8,8)eZ, (¢,8)€Z,



A Second Order Upper Bound for the Ground State Energy 37

forall 6 € (0; 1/6), ¢ € (—1; 3) such that e + 25 < 3/2. Now, we proceed by induction.
We fix n € N and we assume that for all j < n — 1 there exists a constant C > 0 such
that

. J
G\ 0w = ce g+ swp (6,578
i=1 (e,8)€Z;

forall § € (0; 1/6) and all ¢ € (—1; 3) with e +8 < 3/2U~D and all ¢ € [0; 1]. Then,
using also (7.14), (7.15) implies that

dGy () (€.8) —B: [ g2 - (€.8)
= s carPm e il Y. s 6,55V} @16
dt i) (e.0)eL;

if we can show that
Br =B +6—1/2
Bh =T/4+38/2+(B;_,+B;_,)/2
Bo=1l+e+a,_
B > 2+8+£/2—9/2+ﬁ2t91/2+cxn_2/2

(7.17)

and if we can find @ € R such that & > ¢ +28 and ¢ + 6 + 28 < 3/2"2 i e. if
e +28 < 3/20=D To verify (7.17), we use that 8¢ = &, + 1/2 +& — 8. The first and
the third conditions in (7.17) are equivalent to

oy > ap—1+1/2+68

which follows easily from the explicit formula (7.10). The second and the fourth con-
ditions are immediate consequences of the recursive definition (7.4) of the coefficients
oy. From (7.16), by Gronwall’s lemma we conclude that

n
GOw = cefillg?+ Y] sup .55V} (7.18)
i—1 (&.8)€eL;

for all § € (0; 1/6), & € (—1; 3) with & +28 < 3/201=D,
Next, we show (7.7). For ¢t € [0; 1] and for n = 2, 3, 4, we set
Hy(t) = (e'BWe, T,e'BWg) .

Proceeding as in the proof of (7.12), we find

dH,(t)
‘ dt ‘SC > Inglg?p? lagape* Pkl la* ja e Pk ||

PgEns (7.19)
+C Y Ingllgl*lage’* Vgl e BT
qeA;

Using ||aiq ¢l < lla—4¢ 11 +1¢ || and Cauchy-Schwarz’s inequality we obtain, with (5.23)
and (5.19),

‘de(t) ‘
dt

<CHyt)+CL2(E, (1+PD)e) + CL3(E, (1 + PW)g) .
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By Gronwall’s lemma, we conclude that
Hy(t) < Ce3E, (1+ TP +PD)g) (7.20)
forall t € [0; 1].
Analogously to (7.19), we find

dH3(t)
=2 =c X mil@?pind lagapape®glla” apape P08

q.p1.p2EAY
+C Y Ingllgl*pPllagape Mg |lla* jape BT
q.peA}
Thus
d H3(1) _
| == =cmm+ce @+ Y Ingllaltpllagape Vg llape B0k .
q.pEN]
(7.21)
To control the last term, we distinguish the contribution
2 Ingllgl®llage* g [lage! " Vg < C(e'PPe, PO, + De'H7g)
geAl
< CLE POWN+ D) (7.22)
arising from terms with p = ¢, a similar contribution from terms with p = —g and the

contribution arising from terms with p # —g, g, which can be bounded, with Cauchy-
Schwarz’s inequality, by

Do Ingllgl*pPllaga,e P |llaye P g |
q.pEA: pF—q.q
< Cg*3/zw41’/22(t)<et3(77)$’ 7)(2)elB(ﬂ)é§>1/2
< Wao () + CLHE, (1+PD)é) (7.23)
where we applied (5.23) and we defined
Waa(t) = 3 P11 D3 llap,ap,e® |2, (7.24)
P1P2ENL p1#—p2.p2

To compute the derivative of Wy 2, we proceed once again as in (7.12), noticing however
that, because of the restriction to p; # — p2, p2, the contribution from the second term
on the r.h.s. of (7.11) vanishes. We find, with (5.23),

dWa (1)
‘T‘ =C Z |7761||‘1|4p2||aqap€t3(n)%'|| ||aiqapet3(n)$”
q.pENT: pF—q
+C Y Ingld’lpltlagape PPN llat yape! V|
q,pENT: pFE—q
< CWao(t)+ Ce 3 (! Bg Dt BDgy 4 cp=1(ptBg P 1B gy
< CWao(t) +CUHE, (1+PP)g) .
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By Gronwall’s lemma, we conclude (recalling (7.8)) that
Waar(t) < CLHE, (14 PW + 242)8) (7.25)

for all + € [0; 1]. Inserting this estimate in (7.23), and then, together with (7.22), in
(7.21), we obtain (using also that PPN, < 24 ,)

)dH3(l)

< CHy(t)+ CU " Ha(t) + CL74E, (1+PW + 240)8) .

With (7.20) and Gronwall’s lemma, we conclude that
Hy(1) < CeHE, (14T + 240+ PW)e) (7.26)
To control Hy4, we proceed again as we did to show (7.21) and we bound
d Hy(t
‘d—“t()‘ < CHy(t) + Ct~ H (1)
+C Y Ingllgl*pipillagap,ap—ae V& llapap,e P VE] .

q.p1,p2€AY

In the last term, if ¢ = +p; or ¢ = % p,, we find terms that can be bounded using (5.18)
and (7.26) (and the trivial estimate 72, < 73) by

6 2 B B
> Ingligl®p*lagasgape * Vg | lazga e P Pg||

q,pEN}
=C? Y P plagapNy e PO llazga e POE|
q,peA}
< Ce 2B TN+ e BMe) < Co70%E, 1+ T+ 240+ PY)g).

(7.27)

Contributions from terms with ¢ # =+ p;, &= p», on the other hand, can be estimated (with
(7.20)) by

4 2 2 tB tB
> Ingllg|*pip3llagap, ap,e® V& ap ap,e P g |
q.p1,p2:qFEp1,E£p2

< COPWR (0 B0, T o B0 12
< CWana () +CUOE, (1+ T+ PW)E) (7.28)
where we defined
Wapa(t) = > P11 p3 3 llap ap,ape P e 7.
P1,p2, p3€EAL: pr#£Ep2,£p3

We compute
’ dWy (1) ‘

4.2 2 ‘B B
=C ) Ingllgl* p3 p3llagap,ap,e®PE|la* jap ap e P Pg|
q.p2,p3€NL gF#Epr,£p3
2 4.2 B B
+C > a*Ingllp11* p3llagap ap,e P V&|la* jap,ap, e PVE||
q.p1,p2€NT: pr#EEq.£p2

4, 4 B B
+C 30 Apflalingllagape PV lla” ape M|
q,pENY q#Ep
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which leads to

)dWézzt’Z(t)) < CW4,2’2(1‘) + CE*G(E, a +’P(4) + 24’2)5) + CW4’4(Z‘) (7.29)

where

Wia) = > lal*Ipl*laga,e®Pe|?
q,pENY:q#+p

satisfies the estimate
AWy 4(t)
‘T) <C Y Iplal*ngllagape® Vgl ape P Vg |

q,PENLq#p
< CWaa(t) +CL0E, (1+PD)E) .

Thus, recalling the definition (7.8), we find
Waa(t) < COOE (1+PW + 244)8) .
Inserting this bound in (7.29), we obtain
Wan2() < CLOE (1 +PW + 240+ 2422)8) .

Plugging the last equation in (7.28) and using (7.27), we arrive at

Hy(t) < COOE, (1+PD + 244+ 2400 + Ta)E) .

Finally, we prove (7.9). Fore > —1,6 € (0; 1/6) with ¢ +§ < 1, we define
JED (1) = (e BOg, Séfﬁ)etl?(n)é:).

Proceeding as in the proof of (7.15), we find

<CIE )+ e Y (1) + e VPG (1)

+ Z |’7‘1||‘I|7/2+8+6|p|3/2+5”apaqe’B(")g||||a,,e’3(’7)§||
P.geEN]

3426 2 B B
+ Y IngllgP*pP*ellapage Vg e PPE
P.geA]

‘deﬁaw
dt

Recalling the definition (7.24), we can estimate (distinguishing p = ¢ from p # ¢q)

7/2+e+8 | (3/2+8 B B
Yo Ingllgl" 1P layaqe PPg [lape PP |
P.qeN]

< C<efB(l’))€_-, P(3+8+25)(N+ + l)elB(T])§>

1
1 2 1
+ CWy ()2 ( E 77; |q|3+2a+28) <etB(r])€’ 73(1+28)et8(")§) 3
geA;

1 1
S C<etB(n)E, 7)(3+8+28)€IB(77)§> + C£—1—5—8W4’2(t)7 (etB(n)g’ 73(1+23)61‘B(7])§>7
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and, similarly,

Y IngligF 2 1pP* lapage P g llape B0 |
P.geA]

< C(etB(n)a 73(3+e+25>(N+ + l)erB(n)g) + CE‘%‘28W4 2(1)%<etB(r])E’ P(2+28)erB(n)%.)%.
With Lemma 5.2, with (7.14), (7.18) and (7.25), we conclude that

dJEd
[0 < credm s e (14PO + Za)0 + s 685508
(e,6)eIr

for all t € [0; 1]. By Gronwall’s lemma, we obtain (7.9). O

8. Proof of Theorem 1.1

With the unitary operator Uy as in (5.2), with  as introduced after (5.7) and t as in
(6.2), we define dy € L?(AN) setting

Oy = UfePMeBOQ. (8.1)

We recall that we assumed N~1*V < ¢ < N—3/4-v (see Prop. 4.1) and £ > 0 small
enough (independent of N). From Prop. 6.4, we find that

<q)N’ Heff > (Q Meff >
=dna(N — 1) +epa’
(8.2)

1 2
-5 [p2+8na—,/|p|4+16nap2— (27;“) ] +ON)

pEAY

for a sufficiently small ¢ > 0.
Additionally, with Lemma 7.1 we obtain important regularity estimates for ® 5. From
(7.7) (and from (5.23) in Lemma 5.2), we find C > 0 such that

(PN, (—A)PN) < %
(@, (—Ay) (A Py) < 55
(@, (—Ar) (A (—A)PN) < 57
(DN, (—Ar)(—An)(—Ay) (A Py) < 55 - (8.3)

From (7.5) we find, forn € Nand 0 < § < 1/6, a constant C > 0 such that

(CDN, (_Ax1)3/4+8/2 ( A )3/4+(5/2<D > (84)

= Nngon :

From (7.6) in Lemma 7.1, we find, for n € N and for every ¢ € (—1; 3),§ € (0; 1/6)
such that & + 28 < 3/2"~!, a constant C > 0 such that

<q)N’ (_Ax1)1+8/2(_Ax2)3/4+6/2 . (_Axn)3/4+8/2q)N> <

Y (8.5)
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Letus prove (8.5), the other bounds can be shown similarly. First of all, we symmetrize
the expectation on the Lh.s. of (8.5), writing

<q)Na(_AX1)1+8/2(_Ax2)3/4+6/2 . (_Axn)3/4+8/2q)N>

— L Z <(DN7 ( A )l+8/2( A )3/4+8/2 ( A )3/4+8/2© >

(]12,) 1<ij<--<i, <N

Next, we express the observable in second quantized form and we apply the rules (5.3).
We find

<<DN7 (_Ax1)1+8/2(_Ax2)3/4+5/2 . (_Axn)3/4+5/2q>N>

C
<— > pPIplP L paP

N *
Pls--s PnEAL

X (eB(”)eB(’)Q,a;] apleB(")eB(t)Q).

Ay dp, -
With (7.6), we conclude that

= =1+ sup (PR, s Bmm}
N Z%s SeT;

To control the growth of S;g’a), we can proceed exactly as in the proof of Lemma 7.1; the

difference is that, by (6.3), |7,| < C/| %, uniformly in N, £ (this should be compared
with the bound (5.18), for the coefficients 7,). As a consequence, for 0 < r < 5, we

find
Y pllelP<cC
peA]

and thus the analog of the bounds in Lemma 7.1, with B(n) replaced by B(t), holds
uniformly in £. This observation leads to (8.5).
With &y as in (8.1), we define the trial function ¥y € L%(AN) by

N
Wy (x) = oy - [ ] frlri —x)).

i<j

The presence of the Jastrow factor guarantees that W satisfies the hard-sphere condition
(1.8). Combining (2.12), Prop. 3.1 and Prop. 4.1, we obtain

(Wn, 3501 =D, W) NN - 1)
5 < (Py, HY'®N) — ———
w2 N 2
(CDN, {[H;,tf,z —4maN]| @ ue(xy—1 — xN)}<1>N>+CN’8.

(8.6)

Here we used (8.3), (8.4) and (8.5) to verify the assumption (3.1) of Prop. 3.1 and
the assumption (4.4) for Prop. 4.1. Moreover, we used (8.2) to verify the condition
(®y, H®y) < 47aN + C in Prop. 4.1.
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Inserting (8.2) on the r.h.s. of (8.6), we arrive at

(WN, Z?lzl _ij “IJN>

[Wnl?
1 8 a)?
<4ma(N —D+epa® - [p2+87ra— Jipl +16map? — BFY ](8.7)
2 2p?
PEAX
N(N —1
— %(CDN, {[Hgfiz —47TCLN] Q ue(xy—_1 —xN)}CDN>+CN_8.

To conclude the proof of Theorem 1.1, we still have to show that the contribution on the
last line is negligible, in the limit N — oo.
From (5.26) in Prop. 5.3, we find
HET ) — d7aN > U;;,zeBW)[ —CN, +1) — CN*PEHI(N, + 1)}e—3<") Uy_a
(8.8)

for 0 < k¥ < v/2. Notice here that both sides of the equation are operators on the Hilbert
space L?(AN ~2) describing states with (N — 2) particles.
For i > 0 to be chosen small enough, we can estimate

WNi+1) < CNE+CNa+ Dx(Ny > NHY < CN*+ CN (N, + D™ (8.9)

for any m € N. Thus, the contribution arising from the first term in the parenthesis on
the r.h.s. of (8.8) can be bounded by

%‘D(qm, [[U}f,_zeB(n)(/\/; + 1)e—B<n>UN_2] ® 1y (i1 — xN)}q>N>

< CN*"™ (D, up(xy—1 — xn)Dy)
+ CN2_””°<CI>N, {[U;;Qe’?(") (N + 1)+l =B UN_z] ® up(xn_1 — XN)}<DN> :

Using |Juell1 < C¢%/N and (3.3) in the first and |Ju¢|loo < C in the second term (by

Lemma 2.1), we obtain

N(N —1

(T)(CDN’ [[Uz?k/—zeB(")(/\/3r + 1)6_3(")UN—2] Que(xy-1— XN)}CDN>
< CN™ (D, (1= A1 = Ay)Py)

+ CNZ—mu<eB(n)eB(r)Q’ N, + 1)m+leB(n)€B(r)Q>.

Here we used Lemma 5.2 to control the growth of (N, + 1)"*! under the action of B(1).
Moreover, with q = 1—|@p) (¢o| denoting the projection onto the orthogonal complement
to the condensate wave function ¢g in L?(A) and with g i =18 --®q®---®1acting
as g on the j-th particle, we estimated, on the N-particle space L?(AN ),

N-2 N
Uy aNoUy 2 ®1=) q; <Y q;=UyN.:Uy (8.10)
j=1 j=1
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. . . . -2
(with a slight abuse of notation, NV denotes the number of particles operators on ]—"f (V=2)

on the L.h.s. and the number of particles operator on ffN on the rh.s.). Using again
Lemma 5.2 (and Lemma 6.2, for the action of B(t)), together with the bounds in (8.3),
we conclude that

N(N = 1)

3 <<I>N, {[Uﬁ,zemn)(/\ﬁ + e B UN—Z] Que(xn—1 — XN)}¢N>

< N‘+“£2(1 + ) +CN> ™ < CN~¢

1
N2¢3
(8.11)
choosing first & > 0 small enough and then m € N large enough.
Let us now focus on the contribution of the second term in the parenthesis on the
r.h.s. of (8.8). Also here, we use (8.9) to estimate

NI=(N = 1)
2
®ue(xN—1 — XN)]¢N>
< CN?>7HH oy, |[Ux 1B PP BMUy 5] @ up(xn—1 — xn)} D)
+CN?* @y | [Ux PP PPN+ " By ]

@ ue(xy—1 —xN)}Pn)
= R1 +R2 .

<ch, {[U;_2e3<'7)7><2+“(/\/+ + 1)e*3<">UN_2]

To bound Rj, we can estimate |u¢|lcc < C, we can apply Lemma 5.2 to control the
growth of P+ (N, +1)"*! under conjugation with ¢ and we can proceed similarly
as in (8.10) to replace Uy —_o with Uy . We find

R, < CNz—K—mu(eB(ﬂ)eB(r)Q (P(2+x) +£—1—K)(N+ + 1)m+leB(17)eB(r)Q>.

Applying again Lemma 5.2 (and then Lemma 6.2 for the action of B(r)), we conclude
that

R, < CN2>—<—mug=l-r (8.12)
As for the term Ry, we first use (3.3) in Lemma 3.2 to estimate, for § > 0 small enough,
Ry < CN?™*Hluglly (@, {[Uf_,eBPPFIe By L] @ 1) dy)
+ CN> M lug

x (On, {[Ui_pe? PP BNUN 5] @ (Ary_, Axy)/*2 ) D)
=Rit+Rpz. (8.13)

To control Ry, we apply Lemma 5.2 to bound

Up PP By 5 < CUY_L[PP™ + 077 U,

N-2
= a2t

j=1
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Thus
Rpp < CN_I_K+M€2<eB(n)eB(T)Q, [ngc,&) +E_1_KAES)]€B('7)€B(T)Q> .
With (7.5) and with (7.9) from Lemma 7.1, we conclude that
Ri < CN*N~F (8.14)

for some € > 0, if § is chosen small enough, and 0 < x < v/2.

It turns out that the term R is more subtle; here we cannot afford the error arising
from conjugation of P*) with e =B Instead, we have to use the fact that we conjugate
back with ¢ when we take expectation in the state ®y = efMeBO Q. The two
generalized Bogoliubov transformations do not cancel identically (because one acts on
(N —2) particles, the other on N), but of course their combined action produces a much
smaller error. We will make use of the following lemma.

Lemma 8.1. For r € (1; 4] we have

eTBMPOBN POy N7 |piry, (b, +hee )+ D 1pI 0} + i (8.15)

peEN] peA]
with
X < CWNa+ D+ CNTH (PO + e ) (We + 1),
Moreover,
e B Z |p|’77p(b”;,b*_p+h.c.)e3(")
PEAX
= > plmp[bib* , +bpbp]+2 > Ipl'ny +Xs (8.16)
peA’ peAt
with

X < CWNG+ D+ CNHPD + "YW, + 1),

We defer the proof of Lemma 8.1 to the end of the section, showing first how it can
be used to estimate the error Ry and to conclude the proof of Theorem 1.1. Notice first
that 2+« < 4 since ¥ < v/2 and v is small enough. We can therefore apply Lemma 8.1
to find

(N [UR 1B P By ] @ 1} op)
S(d)N{ ’])(2+K)UN 2®1 q)N Z |p|2+K 2
pEAL
+ ) 1P (@ {UN [yt , +he ]Un-2 ® 1] @)
pEN}
+C{ON UK H[1+ NTHPEO + 77 |(Ws + DUN-2 @ 1} Dp).
We observe that

N-2
’])(2+K)UN ) ® 1= Z( A )2+K < Z( ij)2+K — UX/PQ-H()UN
J=1 j=1
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and that, similarly,

Un_o[1+ N_I(P(2+K) + E_I_K)](N+ + DHUn-2
S UR[1+NTH PP 4+ 07179 |(We + DUN.

Moreover, we find

Z |p|2+K77pU]>\k/72[b*b* +h.c.]Un- 2= w5 Z pI**n, Z ipa0a0+h.c.]
P peA*
| N2
=53 2. [0Gi —x)®i @p)) +he]
i<j
N
= =3 2 [0Gi —x)®i @) +he]
1<j
1
TN-2 Y. [0Gi —xpmi®p)) +hel
i<j:j=N—-1,N

with 6 defined by the Fourier coefficients ép = |p|*** 1np, and with p; denoting the
orthogonal projection p = |¢@o)(po| on the condensate wave function acting on the j-
particle. Rewriting the first term in second quantized form (but now, on the N-particle
space), we find

37 PP up Ui [bhb*, +he]Un—
pEA

N 2 Z |p|2+K77pUN[b;b*_p+h.C.]UN
PEA;

1
T N-2 Z [0(xi —xj)(pi @ pj) +hec].

i<jij=N—-1,N
Therefore, we find

(‘DN’ {[UITI eB(n)p(2+K)e—B('7)UN_2] ® 1}ch>
< ( B(n) B(T)Q 7)(2+/() B(n) B(T)Q Z |p|2+/< 2
pEA]
0 Z |p|2+'(np<eB(")eB(’)Q, (b;bfp +bpb,p)e3(’7)eB(T)Q>
PEA]
1

tvs L (e [00 —xpmi @p)) +heley)
i<j:j=N—1,N

+C(€B(7])€B(T)Q, [1 + N—l(fp(2+l{) + Z_l_")](]\ﬁ, + 1)€B(n)€B(T)Q>.
(8.17)
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Applying again Lemma 8.1 to the first and third terms on the rh.s. of (8.17), and
Lemma 5.2 to the last, we obtain

<CI)N1 {[U;_zeB(ﬂ)p(ZHC)e*B(n)UN_Z] ® 1}CDN>

2N
B(7) (2+k) ,B(7) - 24k, 2
< (PP, PEe Q)+[2 —N—Z} > Ipl*n;,

peA]
3 2 PPyt [bybt  + byby|eP V)
PEA
1
t—s 2 (ew[6ei—xpmi@pp the]on)
i<j:j=N—1,N
+CPOQ [14+ NP +717) W, + DePP Q).

(8.18)

With the properties of T (see Lemma 6.2) it is easy to check that all expectations in the
state eB(DQ are bounded, uniformly in N, £. Moreover, by (5.19), we find

C
24K 2
|:2_ —] Z |17| Knp — Nel+e’

PEAL

Finally, we can estimate the term on the fourth line in (8.18) by

1
‘N 2 Z (q)N,[Q(x,- —Xj)(Pi®pj)+h.c.]d>N)‘
T Ci<jij=N-1,N

< C|(Pn. 0(x1 —x2)(P1 @ p2)Pw)|.

Since p16(x1 — x2)p1 = pléo = 0 and, similarly, p20(x; — x2)p2 = 0, we have

(@, 0(x1 —x2)(p1 @ P2)PN)| = (P, (41 ® 42)0(x1 — x2)(P1 ® p2) D)
< 101201 ® a) PN (PN

With |62 = 0]l < C£3/27% for 0 < k < 1/2, and with

N
I @ eyl = N on, [ ai o)

=CN 7 2ePMeBOQ (N, +1)2eBMeBOQ) < cNT?
we conclude that

—1 C
’ Z (P, [0Cxi —x))(Pi ®p)) +h.c.]<1>N)’ <
N_2i<j~j:N—1N N ¢3/2+c

Therefore, we obtain

}(CDN, {[U;\‘,_ng(")'P(ZH)e_B(”)UN72] Q 1}@1\/)‘ < N
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for £ < N=2/3, Since lugllp < CE2/N by Lemma 2.1, the error term Ry introduced in
(8.13) is bounded by

Ry| < CN_¥*Hgl/2=k < cNIg1/2,
With (8.14), we find
R, < CNMN¢

for € > 0 small enough. Combining this bound with (8.12) we conclude, choosing first
> 0 small enough and then m € N sufficiently large, that

W‘(QN’ U3 _22PPEOW, + De DUy 5] @ ug(xn—1 — xN)}d>N>‘

<CN~*
for a sufficiently small ¢ > 0. Together with (8.8) and (8.11), this estimate implies that

NN =)

> <®N,{[H§,ff_2—4naN]®ug(xN_1 —xN)}CDN)fCN_‘Q.

From (8.7), we obtain

(W, S0 — Ay W)

<4mxa(N — 1) + epa?

W2
1 5 \/“‘Z“““““g (8 a)? _
- g*[p +8ma = \fIplt+ l6map? - = ]+CN e
PENL

We conclude the proof of Theorem 1.1 by giving the proof of Lemma 8.1.

Proof (of Lemma 8.1). With (5.5), we can compute [P, B (n)] to show that

e~ B PP B — pr) +/

1
5 ds e B Z |P|r’7p[b;bfp+bpb,p]e‘vB(”).

peAl
(8.19)

Furthermore, expanding the integrand on the r.h.s. of (8.19), we write

e sBD Z |P|r’7p[b;‘,bfp+bpb_p]eSB(")
pEA]

= 3 Ipl b, +bpboy ]
peA;

N
+/ dre P 3 |p|fn,,[b;;bip+bpb,p,B(n)]efBW.
0 peAY
(8.20)
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Let us compute the last commutator. With (5.4), we find

1
3 |p|’n,,[b;;bip+b,,b_,,,B(n)]=E S 1plnpng[bpb—p. bib* ] + hec.

peEA] J A
=2 IpI'n;+&
peA]
with
Ni+2 N +1 1
2 % + +
_4§*|P|’npp|:< N )(1— N )—2N2]ap
p
Ny +1 N,
SRl 505
e N N
1 N. 3
N Z |pI"npngagaZ, [2(1—ﬁ>—ﬁ:|apap+h.c..
P.geEN]

— *
To control the last term, we wrllf]e aqa_qa,,a_p = ay

bound, for an arbitrary & € ]-": ,

ra_p and we

*
apaZ a_p —8_q pay,

1
% X Il (& agapat a6

P.geA]
1
<~ 2 Ipliplingllagagélia® a-pt|
P.geN]
1
<~ 2 IPUinplingI[lapaqél + lagél][lla—ga—p&l + lla—pE1]-
P.geA]

With Cauchy-Schwarz’s inequality and with the bounds r < 4, |n,| < C| p|_2, we find
+E<CN.+1)+CN! (P<’> + zl—’) W, +1).

Inserting this back in (8.20) and using (5.23) we obtain

DS plrny (b3t 4 by, | P = 3 pln, 5567, 4 5yb ]
PEAL PEAL

+2s Z |p|’7712]+ o)

peAl
again with
+8 < CG + D+ ONT! (PO +zl—r) N, +1).

Setting s = 1, this proves (8.16). Plugging now (8.16) in (8.19) and integrating over s
we find (8.15). o
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Appendix A: Properties of One-Particle Scattering Equations

In this section we provide the proof of Lemma 2.1 and Lemma 5.1. We start with Lemma
2.1, where we describe properties of the solution of the eigenvalue equation (2.2).

Proof of Lemma 2.1. By standard arguments, the ground state solution of (2.1) is radial.
Thus, we consider the ansatz fy(x) = m¢(|x|)/|x|, which leads to the equation

m”(r) + Aem(r) =0

for r € [a/N; £], with the boundary conditions m(a/N) = 0, m’(¢) = 1 and m(¢) = £.
From m(a/N) = 0 and m(£) = £, we obtain
£ sin(WA(r — a/N))

sin(v/A¢(¢ — a/N))

for all » € [a/N; £]. This proves (2.5). Imposing m’(£) = 1, we arrive at

tan (vae (€ — a/N)) = he £ (A1)

which shows (2.3). This equation allows us to estimate the eigenvalue A,. As already
shown in [18, Lemma A.1], we find

m(r)

3a
A = W(l + O(a/NE)) (A2)

which implies that v/A,(£ — a/N) ~ /Ael ~ (NO)~'/? « 1. With tans = s +53/3 +
257/15+ O(s7), we obtain

Vit =i —a/N)+ %Aﬁ/z(e —a/N)’ + %xz/z(e —a/N)’ +O((NO)T7/?)
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which leads to (2.4).
With (A.2) for A¢, we can expand the expression (2.5). We find, for a/N < |x| < £,
a 3a a? alx|? a2
1= e~z w95
fe@® Nix| T 2Nt T 2N%tx| 2N N22
a alx| a2
0 =—— - —+ (—) A3
rfﬁ(x) N|X|2 NZ?’ N2£2|x| ( )

With these approximations, we obtain (2.6), (2.7), (2.8) and (2.9). Finally, we show
(2.10). An explicit computation (using also the eigenvalue equation (A.1)) gives

R - 27l ¢ .
®p = Xe(p) — = (\/E(E - a/N)) /‘;/N drrsin (\/)Tg(r — a/N))

T
x / df sin @ ¢~ 1plrcos?
0

A 4wt [sin(|p|€) 4 sin(|pla/N)

r—p2prLoiple |Pl(he — p?) cos(v/Ag(£ — an))
For |p| > ¢!, we have |»; — p?| > cp?. With (A.2), we easily find |@,| < C/(Np?),
if ¢! < |p| < N, and |0, < C/|pP3,if |p| > N.From (2.8), we also have lwp| <
lwll; < CL2/N forall p € A*; this implies (2.10). O
Next, we show Lemma 5.1, devoted to the properties of the solution of (5.7).

Proof of Lemma 5.1. We begin with (5.11). From the definition g¢,(x) = f¢,(x)/fe(x)
and the explicit expression (2.5) we have

Lo sin(v/a¢, (Ix] — a/N)) sin(+v/A¢(£ — a/N))
€ sin(v/Agy (Lo — a/N)) sin(vae(lx| — a/N))’
forall a/N < |x| < £. Expanding, we find g¢,(x) = 1 + O(a/N¥) and thus [7(x)| <

Ca/t < Ca/(Ix|+¢£) for all a/N < |x| < £. For |x| > €, g¢gy(x) = f¢,(x) and (2.7)
implies that |17(x)| < Ca/|x| < Ca/(|x| + £). Finally, for |x| < a/N, we defined
3a

1
= i =1—-—— +0(——
FINED) lyligl/Ngzo(y) TN <N2£2>

— cos |p|€] —

8ey(x) = (A4)

which gives [17(x)| < Ca/¢ < Ca/(]x| + £). This shows the first estimate in (5.11). To
bound V7, we proceed similarly. For a/N < |x| < £, we find

. A¢ 1
0 fu(6) = fr(x) (tan T ;) (AS5)
and thus
. VA Ao
r = - . A.
0r11(x) = Ngey (x) <tan (Vae(xl —a/N))  tan (/ag (x| — a/N))) (A.6)

With |gg,(x)] < C and expanding tans = s + O(s?), we find |Vij(x)| < Ca/t> <
Ca/(|x| +0)2, for all a/N < |x| < £ For |x| = £, we have g¢,(x) = f¢,(x) and the
estimate |V (x)| < Ca/(|x| + £) follows from (2.7).
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Next, we show (5.12). With (5.7) (noticing that the flux of ffV 8¢, through the spheres
|x| = a/N and |x| = £ vanishes), we have

2 [ e FE g1 (0dx =20k, [ 2007200800 00
=20y [ a0 + 2004 [ 00 fry = DGO
since gg, (x) = fu (x)/f¢ (x). With Lemma 2.1 we have
|23, / Xeo()dx — 87al < CN !
and
2004y [ 2007200 iy ) = ] = Cllorgly = €/
204, [ a0 0ut0) = D] = Clloel < CE.

This proves the first bound in (5.12) and also in (5.13). To show the second bound in
(5.12), we compute (with a slight abuse of notation we write here, forr > 0, f;(r), g¢, ()
to indicate the values of fy(x), g¢,(x), for |x| =r)

DN / 2 () F2 (0 g0, (e dx

4rNxre (¢ _
= rfi (r)gey(r) sin(|p|rydr
[P a/N

4w Nre [* ) 2
== / L2 2208008 100 4 17200800 | costiplrra

4N ¢
- Wgeo(f) cos(|plL).

From Lemma 2.1, we have f;(r), r|0, f¢(r)| < C. From (5.11), we find (recalling that
8ty = 1 +1/N) that [3,g¢,(r)| < C/(N£?%). With the bound (2.4) (or (A.2)) for A¢, we
conclude that

‘ZN)%/X@(X)f@z(x)géo(x)e_ip'xdx‘ = e2p2'

The second bound in (5.13) can be proven analogously (on the r.h.s. £ is then replaced

by £o, which is chosen of order one).
Equations (5.15), (5.16) follow directly from (5.7). As for (5.17), we rewrite

no = / n(x)dx = / n(x)dx — N wey(x) dx. (A7)
|x[<¢€ |x|>¢
Using (2.8),(A.3) and the fact that g, (x) = 1+ O(a/N¥) for x| < £, we obtain

no = —N/a)go(x) dx +/ n(x)dx + N/ ey (x) dx
[x]| <€

[x|<t
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= —%na£0+0( j\l )+O(a£2)

To prove (5.18), we consider the Fourier coefficients D, defined in (5.14) and the
corresponding function D(x) = —V - [(f2(x) = DVij(x)]. For any p € A*, we have

|D,| < / |D(x)|dx. (A.8)
a/N<|c|<t
Fora/N < |x| < ¢, we find

D(x) = 2 fo(x)@, f) ()@ (x) + (f7(x) — D Ad(x)

oy (A9)
— Ny () (e — 1) (F20) = 1) = 20, ) 2L ffi)()X)

where in the second line we used the definition 7 = N (g, — 1) = N(f¢,/fe — 1) and

the scattering equation (2.1) for f; and fy, to replace

V fe(x)
Je(x)

Using (A.4) to bound | g, (x)| < C, (2.7) to show |f£2(x) — 1] < Ca/(N|x|) and using
(A.5), (A.6) to control the second term on the r.h.s. of (A.9), we find

Afj(x) = =2N Ve (x) + N(hg — hgy) 8y (X).

v Ca?
D < — (A < — A.10
! <x)|_| |u Mo) S (A.10)
forall a/N < |x| < £. Inserting (A.10) in (A.8), we arrive at
|Dp| < C/(NO). (A.11)

From the scattering equation (5.15), we can estimate

C
mpl = D (1001 1T x B (] + NGt f7 5 Be) (D). (A12)

Combining (A.11) with the first bounds in (5.12), (5.13), we immediately conclude that
npl < C/ p?. To prove the remaining bounds in (5.18), we write
4r (£ 4 [* . .
p= o [ rD@E)siniplrdr = — [D(r) +r a,D(r)] cos(|p|r)dr.
[P a/N [P a/N
(A.13)

From (A.9) we get

3 D(r) = 80(r)(he — Aey) (FEr) — 1) + Ngoy (r) e — heg)2 fe(r)dy fo(r)

O fo)(r) (A.14)
— 20, (0, .
(@) =57)
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Using the bounds [3,7(r)] < Cr=2, |9, fe(r)| < (CNr?)~!, the boundness of f; and
8r, and (2.4) we easily see that the first line of (A.14) is bounded by O((N£3r2)_1). As
for the second line of (A.14), we find, using (A.5) and (A.6),

@, f0)(r)

0y

o (@) f())
A Ve

2
:Ng‘fo(”[(tan(m(r_a/m) " an (Vi Mo(r—a/N) ) (tan f(r—u/N)

)

1

-

(e ol )
sin? (\/ﬂ(r—a/N)) sin (\/)\Tgo(r—a/N) tan f(r—u/N)

- (tan (m\frﬁ— a/N))  tan (/g ?rlo— a/N)))(12 sin® (Ve (r—a/N) )]

Expanding 1/tan(s) = 1/s +s/3 + O(s?) and 1/sin*(s) = 1/s% + 1/3 + O(s?), we
obtain

@ fo) () c C
T )=t = g5

Thus, |rd,D(r)| < C/(N€3r) < C/€3 for all a/N < |x| < £. Combined with (A.10)
and (A.13), we conclude that

o (@ ()20

IDy| < W

Inserting this estimate in (A.12), together with the second bounds in (5.12), (5.13), we
obtain [n,| < C/(€%| p|*), which finishes the proof of (5.18). Equation (5.19) is a simple
consequence of (5.18). O
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