We consider Bose gases consisting of $N$ particles trapped in a box with volume one and interacting through a repulsive potential with scattering length of the order $N^{−1}$ (Gross-Pitaevskii regime). We determine the ground state energy and the low-energy excitation spectrum, up to errors vanishing as $N to infty$. Our results confirm Bogoliubov's predictions.

Bogoliubov Theory in the Gross-Pitaevskii Limit

Cenatiempo S
Membro del Collaboration Group
;
2019-01-01

Abstract

We consider Bose gases consisting of $N$ particles trapped in a box with volume one and interacting through a repulsive potential with scattering length of the order $N^{−1}$ (Gross-Pitaevskii regime). We determine the ground state energy and the low-energy excitation spectrum, up to errors vanishing as $N to infty$. Our results confirm Bogoliubov's predictions.
2019
interacting bosons
Bogoliubov theory
Bose-Einstein condensation
File in questo prodotto:
File Dimensione Formato  
PostPrint_2019_ActaMath_222_Boccato.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 875.94 kB
Formato Adobe PDF
875.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PrePrint_2019_ActaMath_222_Boccato.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso gratuito
Dimensione 824.04 kB
Formato Adobe PDF
824.04 kB Adobe PDF Visualizza/Apri
2019_ActaMath_222_Boccato.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/7156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 62
social impact