We consider Bose gases consisting of $N$ particles trapped in a box with volume one and interacting through a repulsive potential with scattering length of the order $N^{−1}$ (Gross-Pitaevskii regime). We determine the ground state energy and the low-energy excitation spectrum, up to errors vanishing as $N to infty$. Our results confirm Bogoliubov's predictions.
Bogoliubov Theory in the Gross-Pitaevskii Limit
Cenatiempo SMembro del Collaboration Group
;
2019-01-01
Abstract
We consider Bose gases consisting of $N$ particles trapped in a box with volume one and interacting through a repulsive potential with scattering length of the order $N^{−1}$ (Gross-Pitaevskii regime). We determine the ground state energy and the low-energy excitation spectrum, up to errors vanishing as $N to infty$. Our results confirm Bogoliubov's predictions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PostPrint_2019_ActaMath_222_Boccato.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
875.94 kB
Formato
Adobe PDF
|
875.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PrePrint_2019_ActaMath_222_Boccato.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Accesso gratuito
Dimensione
824.04 kB
Formato
Adobe PDF
|
824.04 kB | Adobe PDF | Visualizza/Apri |
2019_ActaMath_222_Boccato.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.