We construct infinitely many incompressible Sobolev vector fields $u \in C_t W^{1,\tilde p}_x$ on the periodic domain $\mathbb{T}^d$ for which uniqueness of solutions to the transport equation fails in the class of densities $\rho \in C_t L^p_x$, provided $1/p + 1/\tilde p > 1 + 1/d$. The same result applies to the transport-diffusion equation, if, in addition, $p’

Convex integration solutions to the transport equation with full dimensional concentration

Modena, Stefano
;
2020-01-01

Abstract

We construct infinitely many incompressible Sobolev vector fields $u \in C_t W^{1,\tilde p}_x$ on the periodic domain $\mathbb{T}^d$ for which uniqueness of solutions to the transport equation fails in the class of densities $\rho \in C_t L^p_x$, provided $1/p + 1/\tilde p > 1 + 1/d$. The same result applies to the transport-diffusion equation, if, in addition, $p’
2020
transport equation, convex integration, nonuniqueness, DiPerna Lions
File in questo prodotto:
File Dimensione Formato  
2020_AnnIHPoincare_37_Modena.pdf

non disponibili

Descrizione: Editorial version of the paper
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 523.16 kB
Formato Adobe PDF
523.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2020_AnnIHPoincare_37_Modena_postprint.pdf

accesso aperto

Descrizione: Postprint version of the paper
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 556.52 kB
Formato Adobe PDF
556.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/34166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 34
social impact