We construct infinitely many incompressible Sobolev vector fields $u \in C_t W^{1,\tilde p}_x$ on the periodic domain $\mathbb{T}^d$ for which uniqueness of solutions to the transport equation fails in the class of densities $\rho \in C_t L^p_x$, provided $1/p + 1/\tilde p > 1 + 1/d$. The same result applies to the transport-diffusion equation, if, in addition, $p’
Convex integration solutions to the transport equation with full dimensional concentration
Modena, Stefano
;
2020-01-01
Abstract
We construct infinitely many incompressible Sobolev vector fields $u \in C_t W^{1,\tilde p}_x$ on the periodic domain $\mathbb{T}^d$ for which uniqueness of solutions to the transport equation fails in the class of densities $\rho \in C_t L^p_x$, provided $1/p + 1/\tilde p > 1 + 1/d$. The same result applies to the transport-diffusion equation, if, in addition, $p’File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2020_AnnIHPoincare_37_Modena.pdf
non disponibili
Descrizione: Editorial version of the paper
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
523.16 kB
Formato
Adobe PDF
|
523.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2020_AnnIHPoincare_37_Modena_postprint.pdf
accesso aperto
Descrizione: Postprint version of the paper
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
556.52 kB
Formato
Adobe PDF
|
556.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.