We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ε. Under the classical Miles-Howard stability condition on the Richardson number, we prove that the system experiences a shear-buoyancy instability: the density variation and velocity undergo an inviscid damping while the vorticity and density gradient grow as . The result holds at least until the natural, nonlinear timescale . Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles-Howard spectral stability condition; (B) a variation of the Fourier time-dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, that is, tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth.

Nonlinear inviscid damping and shear‐buoyancy instability in the two‐dimensional Boussinesq equations

Dolce, Michele
2023-01-01

Abstract

We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ε. Under the classical Miles-Howard stability condition on the Richardson number, we prove that the system experiences a shear-buoyancy instability: the density variation and velocity undergo an inviscid damping while the vorticity and density gradient grow as . The result holds at least until the natural, nonlinear timescale . Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles-Howard spectral stability condition; (B) a variation of the Fourier time-dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, that is, tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth.
2023
GLOBAL WELL-POSEDNESS, COUETTE-FLOW, STABILITY, REGULARITY, TURBULENCE, ECHOES, FLUID, TIME
File in questo prodotto:
File Dimensione Formato  
2023_CommPureApplMath_76_Bedrossian.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 807.43 kB
Formato Adobe PDF
807.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/32206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact