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Abstract
We investigate the long-time properties of the two-
dimensional inviscid Boussinesq equations near a stably
stratified Couette flow, for an initial Gevrey perturba-
tion of size 𝜀. Under the classical Miles-Howard stability
condition on the Richardson number, we prove that the
system experiences a shear-buoyancy instability: the den-
sity variation and velocity undergo an 𝑂(𝑡−1∕2) inviscid
damping while the vorticity and density gradient grow as
𝑂(𝑡1∕2). The result holds at least until the natural, nonlin-
ear timescale 𝑡 ≈ 𝜀−2. Notice that the density behaves very
differently from a passive scalar, as can be seen from the
inviscid damping and slower gradient growth. The proof
relies on several ingredients: (A) a suitable symmetrization
that makes the linear terms amenable to energy meth-
ods and takes into account the classical Miles-Howard
spectral stability condition; (B) a variation of the Fourier
time-dependent energymethod introduced for the inviscid,
homogeneous Couette flow problem developed on a toy
model adapted to the Boussinesq equations, that is, track-
ing the potential nonlinear echo chains in the symmetrized
variables despite the vorticity growth.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2023 The Authors. Communications on Pure and Applied Mathematics published by Courant Institute of Mathematics and Wiley
Periodicals LLC.

Comm. Pure Appl. Math. 2023;76:3685–3768. wileyonlinelibrary.com/journal/cpa 3685

mailto:michele.dolce@epfl.ch
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/cpa
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpa.22123&domain=pdf&date_stamp=2023-07-03


3686 BEDROSSIAN et al.

Mathematics Subject Classification (MSC) 2020
35Q35, 76F10

CONTENTS
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3686
2. OUTLINE OF THE PROOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3691
3. PROOF OF THE MAIN THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . 3705
4. THE MAINWEIGHTS AND THEIR PROPERTIES . . . . . . . . . . . . . . . . . . . 3708
5. ELLIPTIC ESTIMATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3716
6. BOUND ON THE ENERGY FUNCTIONAL 𝐸𝐿 . . . . . . . . . . . . . . . . . . . . . 3721
7. BOUNDS ON THE ENERGY FUNCTIONAL 𝐸𝑛 . . . . . . . . . . . . . . . . . . . . 3749
8. BOUND ON THE ENERGY FUNCTION 𝐸𝑣 . . . . . . . . . . . . . . . . . . . . . . . 3760
ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3765
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3765

1 INTRODUCTION

This article is concerned with the long-time dynamics of a 2D incompressible and non-
homogeneous fluid under the Boussinesq approximation near a stably stratified Couette flow in
the infinite periodic strip 𝕋 × ℝ. The background density profile is taken to be affine, thus we
study the simple equilibrium

𝒖𝐸 = (𝑦, 0), 𝜌𝐸 = 𝜌̄ − 𝑏𝑦,

where 𝜌̄ > 0 is the averaged constant density and 𝑏 > 0 is a fixed constant. Given a density pertur-
bation 𝜌, we define the modified density perturbation 𝜃 = 𝜌∕𝑏. The 2D Euler-Boussinesq system
for perturbations around the steady state 𝒖𝐸, 𝜌𝐸 reads⎧⎪⎨⎪⎩

𝜕𝑡𝒖 + 𝑦𝜕𝑥𝒖 + (𝑢
𝑦, 0) + ∇𝑝 = −𝜃(0, 𝛽2) − (𝒖 ⋅ ∇)𝒖,

𝜕𝑡𝜃 + 𝑦𝜕𝑥𝜃 = 𝑢
𝑦 − 𝒖 ⋅ ∇𝜃,

(𝑥, 𝑦) ∈ 𝕋 × ℝ, 𝑡 ≥ 0, (1.1)

where 𝒖 = (𝑢𝑥, 𝑢𝑦) is the perturbation velocity field, 𝑝 is the pressure and 𝛽 =
√
−𝜌′𝐸𝔤∕𝜌̄, with

𝔤 being the gravitational constant. The parameter 𝛽 is the Brunt-Väisälä frequency, which is the
characteristic frequency of the oscillations of vertically displaced fluid parcels, and hence provides
a measure of the strength of the buoyancy force [44, 54]. We write the system (1.1) in vorticity-
stream formulation as

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝜔 + 𝑦𝜕𝑥𝜔 = −𝛽

2𝜕𝑥𝜃 − 𝒖 ⋅ ∇𝜔,

𝜕𝑡𝜃 + 𝑦𝜕𝑥𝜃 = 𝜕𝑥𝜓 − 𝒖 ⋅ ∇𝜃,

𝒖 = ∇⟂𝜓, Δ𝜓 = 𝜔,

(𝑥, 𝑦) ∈ 𝕋 × ℝ, 𝑡 ≥ 0, (1.2)

with 𝜔 = ∇⟂ ⋅ 𝒖, where we denote ∇⟂ = (−𝜕𝑦, 𝜕𝑥).
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3687

Density stratification is a common feature of geophysical flows; under appropriate averaging,
most of the Earth’s ocean is well-approximated as an incompressible, stably stratified fluid so that
its dynamics are well described by fluctuations around a mean background density profile which
increases with depth (namely 𝜌′𝐸 < 0, usually referred to as stable stratification profile [18, 21, 44]).
The system (1.2) under investigationmodels a stably stratified fluid with the additional Boussinesq
assumption, according to which density is assumed constant except when it directly causes buoy-
ancy forces [24, 43]. The Boussinesq system gained the interest of the mathematical community
thanks to its wide range of applications, especially in oceanography [21, 44], and many mathe-
matical works have been dedicated to it [1, 15–17, 19, 20, 27, 29, 47, 57]. It also holds mathematical
interest through a connection with the 3D axisymmetric Euler equations for homogeneous fluids
[45], where the term multiplied by 𝛽2 in (1.2) plays the role of the vortex stretching.
Perturbations of the equilibrium state in a stably stratified fluid induce two relatedmechanisms

as consequences of gravity’s restoring effect (Archimedes’ principle) and the shearing transport
of the equilibrium. The first one is a buoyancy force generated by the pressure gradient of the
stable stratification as a response to gravity, which pushes the higher density fluid downwards.
The second one is vorticity production due to the horizontal density gradient, which acts as a
source term in the vorticity equation of (1.2). These two mechanisms are coupled even at the
linear level, in such a way that their interplay may lead to an overall instability of the system
[44]. Note that gravity’s restoring effect also manifests itself as radiation of internal gravity waves,
whose propagation is supported by stably stratified fluids as a remarkable feature: understanding
the dynamics of internal waves is in fact of crucial importance to many geophysical applications
[21, 44, 56]. The non-trivial underlying dynamics have been observed in laboratory experiments
[13, 40] and investigated in the physics literature [14, 31, 34].
In the case of the Couette flow, linear stability is ensured by the so-called Miles-Howard crite-

rion [35, 49], which requires the Richardson number Ri = 𝛽2 to be greater than 1∕4. Under this
condition, precise quantitative estimates can be extrapolated from the linear dynamics. In 1975,
Hartman [34] observed an enstrophy Lyapunov instability with a growth of 𝑂(𝑡1∕2), despite the
fact that the velocity field undergoes an 𝑂(𝑡−1∕2) time decay. This phenomenon persists for more
general, stably stratified fluids without the Boussinesq approximation, as showed by Case [14]. A
decay of 𝑂(𝑡−1∕2) for both the velocity and the density has been proved rigorously for the Couette
flow in [61] and extended to shears near Couette in [11]. In addition, a vorticity and density gradi-
ent growth with rate 𝑂(𝑡1∕2), which confirms the observation of [34], has been rigorously proved
in [11]. Due to the nature and the origin of such growth, we will refer to it as a shear-buoyancy
instability. It is worth pointing out that the enstrophy growth is in striking contrast with the 2D
homogeneous and inviscid Couette flow, which is Lyapunov stable in the enstrophy norm for
both the linear and nonlinear problem (in fact, the enstrophy of the perturbation is conserved in
both).
The decay of the velocity field of the perturbation, called inviscid damping, is due to the

mixing of vorticity and is a key dynamical property of shear flows and vortices. This was first
noticed by Orr [52] and later studied by Case and Dikiı̆ [14, 26] for a 2D homogeneous fluid,
where the velocity field decays as 𝑂(𝑡−1). In particular, inviscid damping occurs when the shear
transfers enstrophy to high frequencies. This is a fundamental mechanism of inviscid fluids,
intimately connected with the stability of coherent structures [55, 62] and the theory of 2D
turbulence [12]. Its first mathematically rigorous study in the full 2D homogeneous Euler equa-
tions was carried out in [8] for the Couette flow. It bears remarking that due to transient unmixing
effects, the Couette flow is in fact Lyapunov unstable in the kinetic energy norm (a consequence
of [8]).
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3688 BEDROSSIAN et al.

1.1 The main result

The purpose of this article is to provide the first rigorous study on the long-time dynamics of
the Couette flow for the 2D inviscid Boussinesq system (1.1). We prove that the nonlinear system
undergoes a shear-buoyancy instability and nonetheless the velocity field experiences nonlinear
inviscid damping, confirming that the linear dynamic extends to the nonlinear setting at least on
a natural timescale 𝑂(𝜀−2). Fix 𝑠 > 1∕2 and define the Gevrey norm of class 1∕𝑠 as

‖𝑓‖2𝜆 = ∑
𝑘∈ℤ

∫
ℝ

e2𝜆(|𝑘|+|𝜂|)𝑠 |𝑓𝑘(𝜂)|2d𝜂. (1.3)

Moreover, set

𝑓0(𝑦) =
1

2𝜋 ∫
𝕋

𝑓(𝑥, 𝑦)d𝑥, 𝑓≠ = 𝑓 − 𝑓0. (1.4)

The main result of this article is stated in the next theorem.

Theorem 1. Let 𝛽 > 1∕2. For all 1∕2 < 𝑠 ≤ 1, 𝜆0 > 𝜆′ > 0 there exist 𝛿 = 𝛿(𝛽, 𝜆0, 𝑠) ∈ (0, 1) and
𝜀0 = 𝜀0(𝛽, 𝜆0, 𝑠) ∈ (0, 𝛿) such that the following holds true: let 𝜀 ≤ 𝜀0 and𝜔𝑖𝑛, 𝜃𝑖𝑛 bemean-free initial
data satisfying

‖‖𝑢𝑖𝑛‖‖𝐿2 + ‖‖𝜔𝑖𝑛‖‖𝜆0 + ‖‖𝜃𝑖𝑛‖‖𝜆0 ≤ 𝜀. (1.5)

Then, if we define the shift Φ(𝑡, 𝑦) = ∫ 𝑡
0
𝑢𝑥0 (𝜏, 𝑦)d𝜏, for all 0 ≤ 𝑡 ≤ 𝛿2𝜀−2 we have

‖‖‖𝑢𝑥0 (𝑡)‖‖‖𝜆′ + ‖𝜃0(𝑡)‖𝜆′ ≲ 𝜀,
‖𝜔(𝑡, 𝑥 + 𝑡𝑦 + Φ(𝑡, 𝑦), 𝑦)‖𝜆′ + ⟨𝑡⟩‖‖𝜃≠(𝑡, 𝑥 + 𝑡𝑦 + Φ(𝑡, 𝑦), 𝑦)‖‖𝜆′ ≲ 𝜀⟨𝑡⟩1∕2. (1.6)

As a consequence, the velocity field and the modified density satisfy

‖‖‖𝑢𝑥≠(𝑡)‖‖‖𝐿2 + ‖‖𝜃≠(𝑡)‖‖𝐿2 ≲ 𝜀

⟨𝑡⟩ 12 , (1.7)

‖𝑢𝑦≠(𝑡)‖𝐿2 ≲ 𝜀

⟨𝑡⟩ 32 . (1.8)

Moreover, there exists 𝐾 = 𝐾(𝛽, 𝜆0, 𝜆′, 𝑠) > 0 such that if‖‖‖𝜔𝑖𝑛≠ ‖‖‖𝐻−1 + ‖‖‖𝜃𝑖𝑛≠ ‖‖‖𝐿2 ≥ 𝐾𝜀𝛿,
then

‖‖𝜔≠(𝑡)‖‖𝐿2 + ‖‖∇𝜃≠(𝑡)‖‖𝐿2 ≈ 𝜀⟨𝑡⟩ 12 . (1.9)

for all 0 < 𝑡 < 𝛿2𝜀−2.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3689

The above result describes the long-time dynamics of the Boussinesq system (1.2) in the pertur-
bative regime near the linearly stratified Couette flow, and it is the first of its kind describing such
behavior in a fully inviscid coupled system which has both wave propagation and phase mixing.
The works [28, 47, 64] study nonlinear systems with both phase mixing and wave propagation,
but these problems all contain dissipative effects, whereas the works [11, 61] are all linear. The
inviscid damping due to vorticity mixing is encoded in (1.7)–(1.8).
One of the main novelties here is the quantification of the shear-buoyancy instability given by

(1.9). The linearized dynamics of (1.2) predict exactly the decay rates (1.7)–(1.8) and the instability
(1.9) for all times [11, 34, 61], see also Theorem 2 below. Therefore, in a nonlinear perturbative
regime as the one studied here, the time-scale 𝑂(𝜀−2) appears naturally. As another manifesta-
tion of the instability, the rates in (1.6)–(1.8) are ⟨𝑡⟩1∕2 slower compared to the constant density
case studied in [8]. This is due to creation of vorticity in the perturbation by interaction with the
density stratification.
The proof of Theorem 1, described in detail in the next Section 2, truly uses the specific linear

coupling of𝜔 and 𝜃 via a suitable symmetrization of the unknowns. Specifically, the scaled density
𝜃 is not simply transported by the Couette flow, as this would imply a growth rate of order ⟨𝑡⟩ for
∇𝜃≠, rather than the ⟨𝑡⟩1∕2 appearing in (1.9).
The need of an infinite regularity (Gevrey) space is by-now classical in phase mixing prob-

lems, both for Landau damping in plasma physics [9, 25, 30, 33, 50] and for inviscid damping
in fluid mechanics [8, 36–38, 48]. This is strictly connected with loss of derivatives as a price
to pay for the control of transient growths or echoes: further discussions on this aspect can be
found in the course of the paper. The regularity requirement on the initial data (1.5) is the
same as in the constant density case [8, 37, 48], and it is likely to be sharp [22]. This can be
heuristically understood by a toy model that estimates the worst possible growths due to the
nonlinear interactions. Despite predicting the same total loss of regularity as in the constant
density case, the model is tailored specifically to the Boussinesq system and displays crucial dif-
ferences in terms of the regularity imbalance between resonant and non-resonant modes (see
Section 2.3). The picture may change with the addition of thermal diffusivity and/or viscosity.
When viscosity is added in the vorticity equation, the Gevrey index can be relaxed to 𝑠 = 1∕3 as
in [47], while when also diffusivity is present in the density equation one can work in Sobolev
regularity [28, 64].
The restriction of the parameter 𝛽 in Theorem 1 is sharply consistent with the classical Miles-

Howard criterion for linear spectral stability [35, 49] mentioned above. The role of this restriction
is very explicit in the coercivity of the main energy functional used to prove Theorem 1, but also
implicitly appears in many of the constants hidden by the symbol ≲, which blow up as 𝛽 → 1∕2.
The linear dynamics when 𝛽 ≤ 1∕2was studied in [61]. In this case the vorticity grows with faster
rates (and the density decays with slower rates). Reproducing the results of [61] by means of
an energy method like the one used in [11] could lead to further insight at the nonlinear level
as well.
Finally, we do not expect that the linear dynamics persist to leading order after times 𝑂(𝜀−2),

but rather that a secondary instability engages to carry the solution a fully nonlinear regime.
Specifically, after this time, we expect that mixing creates large adverse vertical density gradi-
ents, resulting in an overturning instability. There are some analogies between Theorem 1 and
the work on subcritical transition in 3D Couette [5]: both study a spectrally stable problem with
an algebraic instability and show that the only way to trigger a secondary instability is through the
underlying destabilizing mechanism (at least in Gevrey class). The possible secondary instability,
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3690 BEDROSSIAN et al.

the 3D case, and the case of stably stratified fluids without the Boussinesq approximation will be
studied in future work.

1.2 Organization of the article

Section 2 describes the main ideas needed for the proof of Theorem 1, including the symmetrized
variables, the weighted energy functionals and the fundamental bootstrap Proposition 2.8. In Sec-
tion 3we prove Theorem 1 assuming Proposition 2.8. The rest of the article is dedicated to the proof
Proposition 2.8. The construction of the time-dependentGevreyweights is carried out in Section 4,
while Section 5 is dedicated to the proof of the elliptic estimates crucial to control the nonlinear
terms. The heart of the article is contained in Section 6, wherewe prove the energy estimate on the
symmetric variables. These require direct bounds on the vorticity and the gradient of the density,
which are carried out in Section 7. Finally, Section 8 contains the control of the nonlinear change
of coordinates.

1.3 Notations and conventions

We use the notation 𝑓 ≲ 𝑔 when there exists a constant 𝐶 > 0, independent of the parameters of
interest, such that𝑓 ≤ 𝐶𝑔. Similarly,𝑓 ≈ 𝑔means that here exists𝐶 > 0 such that𝐶−1𝑔 ≤ 𝑓 ≤ 𝐶𝑔.
We will denote by 𝑐 a generic positive constant smaller than 1.
Given a vector (𝑘, 𝜂), we indicate by |𝑘, 𝜂| = |𝑘| + |𝜂| its norm. We will use the symbol ⟨𝑎⟩ =√
1 + |𝑎|2 for either scalars or vectors. Given a normed space 𝑋, its norm is denoted by ‖ ⋅ ‖𝑋 ,

omitting the subscript when 𝑋 = 𝐿2. We recall also that (1.3) and (1.4) are used throughout
the article.
For a Schwartz function 𝑓 = 𝑓(𝑧, 𝑣) ∶ 𝕋 × ℝ → ℝ, we define the Fourier transform as

𝑓𝑘(𝜂) =
1

2𝜋 ∫
𝕋×ℝ

e−𝑖𝑘𝑧−𝑖𝜂𝑓(𝑧, 𝑣)d𝑧d𝑣, (𝑘, 𝜂) ∈ ℤ × ℝ.

The Littlewood-Paley dyadic decomposition is defined as follows: we take 𝜙 ∈ 𝐶∞0 (ℝ) be such that
𝜙(𝜂) = 1 for |𝜂| ≤ 1

2
, 𝜙 = 0 for |𝜂| ≥ 3

4
and set 𝜙̃(𝜂) = 𝜙(𝜂) − 𝜙(𝜂∕2). Then

1 = 𝜙(𝜂) +
∑
𝑀∈2ℕ

𝜙̃(𝑀−1𝜂).

In this way, 𝜙̃𝑀(𝜂) ∶= 𝜙̃(𝑀−1𝜂) is supported in 𝑀

2
≤ |𝜂| ≤ 3𝑀

2
. For a function 𝑔 = 𝑔(𝑣) ∈ 𝐿2(ℝ),

we define

𝑔 = 𝑔1
2

+
∑
𝑀∈2ℕ

𝑔𝑀 ∶= 𝜙(|𝜕𝑣|)𝑔 + ∑
𝑀∈2ℕ

𝜙̃𝑀(|𝜕𝑣|)𝑔.
We also use the notation

𝑔<𝑀 = 𝑔1
2

+
∑

𝐾∈2ℕ∶𝐾<𝑀

𝑔𝐾, 𝑔∼𝑀 =
∑

𝑀∈2ℕ;
𝑀

𝐶
<𝐾<𝐶𝑀

𝑔𝐾,
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3691

for some constant 𝐶 independent of𝑀. The paraproduct decomposition will then be denoted as
follows

𝑓𝑔 = (𝑓𝑔)𝐿𝐻 + (𝑓𝑔)𝐻𝐿 + (𝑓𝑔)𝐻𝐻

=
∑

𝑀∈2ℕ∶𝑀≥8
𝑓<𝑀∕8𝑔𝑀 +

∑
𝑀∈2ℕ∶𝑀≥8

𝑓𝑀𝑔<𝑀∕8 +
∑

𝑀,𝑀′∈2ℕ∶𝑀∕8≤𝑀′≤8𝑀
𝑓𝑀𝑔𝑀′ . (1.10)

2 OUTLINE OF THE PROOF

In this section, we outline the proof of Theorem 1. There are a number of different ideas that go
into it, some arising from the inviscid damping result for the homogeneous problem [8], others
arising from the study of the linearized problem [11], and others which are new and specific to
this nonlinear problem.

2.1 Change of coordinates

Given the incompressibility of the flow, we know 𝒖0 = (𝑢𝑥0 , 0), which implies

𝒖 ⋅ ∇ = 𝑢𝑥0 𝜕𝑥 + 𝒖≠ ⋅ ∇.
Due to the inviscid damping, we expect the non-zero 𝑥-frequencies to decay and hence it is natural
to treat the last term as a perturbation. However, there is no decay mechanism for 𝑢𝑥0 and so this
term could be treated perturbatively on an 𝑂(𝜀−1) time-scale at most. To deal with this difficulty,
[8] introduced a change of coordinates that depends on 𝑢𝑥0 (𝑡), and for the same reason, we use the
same coordinate change. We briefly recall it here; see [8] for more details. Define

𝑣 = 𝑦 +
1

𝑡 ∫
𝑡

0

𝑢𝑥0 (𝑠, 𝑦)d𝑠, 𝑧 = 𝑥 − 𝑣𝑡. (2.1)

Provided that 𝑢𝑥0 is sufficiently small, this coordinate change can be inverted; we assume this is the
case for now. The corresponding unknowns written in the new variables (writing 𝑥 = 𝑥(𝑡, 𝑧, 𝑣),
𝑦 = 𝑦(𝑡, 𝑣)) are given by

Ω(𝑡, 𝑧, 𝑣) = 𝜔(𝑡, 𝑥, 𝑦), Θ(𝑡, 𝑧, 𝑣) = 𝜃(𝑡, 𝑥, 𝑦), Ψ(𝑡, 𝑧, 𝑣) = 𝜓(𝑡, 𝑥, 𝑦). (2.2)

In this way we obtain (we write the change of variables only for Ω but similar relations hold for
the other functions)

𝜕𝑡𝜔 = 𝜕𝑡Ω + 𝑧̇𝜕𝑧Ω + 𝑣̇𝜕𝑣Ω, 𝜕𝑥𝜔 = 𝜕𝑧Ω, 𝜕𝑦𝜔 = 𝑣
′(𝜕𝑣 − 𝑡𝜕𝑧)Ω (2.3)

where

𝑧̇ ∶= 𝜕𝑡𝑧 = −𝑦 − 𝑢
𝑥
0 , 𝑣̇ ∶= 𝜕𝑡𝑣 =

1

𝑡

[
𝑢𝑥0 −

1

𝑡 ∫
𝑡

0

𝑢𝑥0 (𝑠, 𝑦)d𝑠

]
,

𝑣′ ∶= 𝜕𝑦𝑣 = 1 +
1

𝑡 ∫
𝑡

0

𝜔0(𝑠, 𝑦)d𝑠, 𝑣′′ ∶= 𝜕𝑦𝑦𝑣 =
1

𝑡 ∫
𝑡

0

𝜕𝑦𝜔0(𝑠, 𝑦)d𝑠. (2.4)
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3692 BEDROSSIAN et al.

The Biot-Savart law also gets transformed as

Δ𝑡Ψ = Ω, Δ𝑡 ∶= 𝜕𝑧𝑧 + (𝑣
′)2(𝜕𝑣 − 𝑡𝜕𝑧)

2 + 𝑣′′(𝜕𝑣 − 𝑡𝜕𝑧). (2.5)

In the new coordinates, the original system (1.2) is now expressed as

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡Ω = −𝛽

2𝜕𝑧Θ − 𝑼 ⋅ ∇Ω,

𝜕𝑡Θ = 𝜕𝑧Ψ − 𝑼 ⋅ ∇Θ,

𝑼 = (0, 𝑣̇) + 𝑣′∇⟂Ψ≠, Δ𝑡Ψ = Ω,

(2.6)

where ∇ = ∇𝑧,𝑣. Notice that the zero mode in 𝑧 and in 𝑥 are the same, and therefore we use the
same symbol as in (1.4) to denote the projection of Ψ off the zero mode in 𝑧.
To control the coordinate system itself, as in [8], we introduce the auxiliary variables

ℎ(𝑡, 𝑣) = 𝑣′(𝑡, 𝑦) − 1, (𝑡, 𝑣) = 𝜕𝑦𝑣̇(𝑡, 𝑦) = 1

𝑡

(
𝜔0(𝑡, 𝑦) −

1

𝑡 ∫
𝑡

0

𝜔0(𝑠, 𝑦)d𝑠

)
.

Propagating smallness for ℎ is enough to invert the change of coordinates and it will be crucial
to handle new nonlinear problems appearing in (2.6). For instance, the piece of the velocity field
with 𝑣′∇⟂Ψ≠ can be splitted into a velocity field in the standard form∇⟂Ψ≠ plus ℎ∇⟂Ψ≠. We treat
this last piece as a “perturbation” of∇⟂Ψ≠ by proving ℎ is small in an appropriate sense. The term instead arises when deriving the equation satisfied by ℎ. Indeed, notice that from (2.4) we have

𝑣′(𝑡, 𝑦) − 1 =
1

𝑡 ∫
𝑡

0

𝜔0(𝑠, 𝑦)d𝑠 ⇒ (𝑡, 𝑣) = 1

𝑡
(Ω0(𝑡, 𝑣) − ℎ(𝑡, 𝑣)).

Since from (2.4) one has that 𝜕𝑡(𝑡(𝑣′ − 1)) = 𝜔0, we have from (2.3) that

(𝜕𝑡 + 𝑣̇𝜕𝑣)(𝑡ℎ) = Ω0 ⇒ 𝜕𝑡ℎ + 𝑣̇𝜕𝑣ℎ = . (2.7)

Taking the 𝑧 average of the first equation in (2.6), we similarly derive

𝜕𝑡 = −
2

𝑡
 − 𝑣̇𝜕𝑣 −

𝑣′

𝑡

(
∇⟂Ψ≠ ⋅ ∇Ω≠

)
0
. (2.8)

Finally, we also record the equation satisfied by 𝑣̇ in the (𝑡, 𝑣) coordinates, namely

𝜕𝑡𝑣̇ = −
2

𝑡
𝑣̇ − 𝑣̇𝜕𝑣𝑣̇ −

𝑣′

𝑡

(
∇⟂Ψ≠ ⋅ ∇𝑈𝑥≠

)
0
, 𝑈𝑥(𝑡, 𝑧, 𝑣) ∶= 𝑢𝑥(𝑡, 𝑥, 𝑦). (2.9)

2.2 The linearized dynamics: Symmetric variables

Unlike [8], the linear dynamics are non-trivial. The linearized dynamics associated with (2.6) are
best understood by passing to Fourier variables (𝑧, 𝑣) ↦ (𝑘, 𝜂). Since at the linear level we have
𝑣 = 𝑦, the differential operators in these coordinates read

∇𝐿 ∶= (𝜕𝑧, 𝜕𝑣 − 𝑡𝜕𝑧), Δ𝐿 ∶= 𝜕𝑧𝑧 + (𝜕𝑣 − 𝑡𝜕𝑧)
2. (2.10)
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3693

We denote the symbols associated to −Δ𝐿 as

𝑝𝑘(𝑡, 𝜂) = 𝑘
2 + (𝜂 − 𝑘𝑡)2, 𝜕𝑡𝑝𝑘(𝑡, 𝜂) = −2𝑘(𝜂 − 𝑘𝑡). (2.11)

The explicit dependence on 𝑡 of the above quantities will often be omitted. The linearized equa-
tions are obtained from (2.6) by neglecting all nonlinear terms including the one arising from the
nonlinear change of coordinate (hence Δ𝑡 is formally replaced by Δ𝐿). On the Fourier side, they
take the form

𝜕𝑡Ω̂ = −𝑖𝛽
2𝑘Θ̂, 𝜕𝑡Θ̂ = −

𝑖𝑘

𝑝
Ω̂. (2.12)

While the decoupling in 𝑘 is a general feature of stratified flows near shears and general back-
ground density profiles 𝜌𝐸(𝑦), the linear nature of the Couette flow and 𝜌𝐸 ensures the decoupling
in 𝜂 as well. While the zero-mode is clearly conserved, the nonzero modes exhibit an interesting
behavior which has been studied in the appliedmathematics literature since the 1950s; we refer to
[34] for a detailed literature review. In [34], the system (2.12) is investigated by amethod involving
hypergeometric functions, made mathematically rigorous and precise in [61]. For our purposes,
it is more convenient to recall the energy method used in [11], originally introduced to deal with
the linear stability of the Couette flow in a compressible fluid [3]. The idea is to symmetrize the
system (2.12) via time-dependent Fourier multipliers and use an energy functional for the new
auxiliary variables. Compared to [11], we slightly change the symmetrized variables by modifying
powers of 𝑘, defining them here as

𝑍𝑘(𝑡, 𝜂) ∶=

((
𝑝∕𝑘2

)−1
4 Ω̂

)
𝑘

(𝑡, 𝜂), 𝑄𝑘(𝑡, 𝜂) ∶=

((
𝑝∕𝑘2

) 1
4 𝑖𝑘𝛽Θ̂

)
𝑘

(𝑡, 𝜂). (2.13)

for which (2.12) takes the particularly amenable form

𝜕𝑡𝑍 = −
1

4

𝜕𝑡𝑝

𝑝
𝑍 − |𝑘|𝛽𝑝−12 𝑄, 𝜕𝑡𝑄 =

1

4

𝜕𝑡𝑝

𝑝
𝑄 + |𝑘|𝛽𝑝−12 𝑍. (2.14)

Throughout the article, we will often omit the subscript 𝑘 and the dependence on 𝜂 when no
confusion arises. The presence of the 𝑘2 factors in (2.13) only modifies the linearized equations by
changing 𝑘 to |𝑘|, however, the adjustment to the definition of 𝑍,𝑄 will be important to treat the
nonlinear problem later. Define the following energy functional point-wise in frequency

𝐸(𝑡) =
1

2

⎡⎢⎢⎣|𝑍(𝑡)|2 + |𝑄(𝑡)|2 + 1

2𝛽
Re

⎛⎜⎜⎝
𝜕𝑡𝑝|𝑘|𝑝 1

2

𝑍(𝑡)𝑄(𝑡)
⎞⎟⎟⎠
⎤⎥⎥⎦. (2.15)

Since, |𝜕𝑡𝑝∕(𝑘𝑝1∕2)| ≤ 2, the energy functional is coercive for 𝛽 > 1∕2 with
1

2

(
1 −

1

2𝛽

)[|𝑍|2 + |𝑄|2](𝑡) ≤ 𝐸(𝑡) ≤ 1

2

(
1 +

1

2𝛽

)[|𝑍|2 + |𝑄|2](𝑡), (2.16)

and can be shown to satisfy

d

d𝑡
𝐸 =

1

4𝛽
𝜕𝑡

⎛⎜⎜⎝
𝜕𝑡𝑝|𝑘|𝑝 1

2

⎞⎟⎟⎠Re
(
𝑍𝑄

)
. (2.17)
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3694 BEDROSSIAN et al.

Since

𝜕𝑡

⎛⎜⎜⎝
𝜕𝑡𝑝|𝑘|𝑝 1

2

⎞⎟⎟⎠ = −2𝜕𝑡
⎛⎜⎜⎜⎝

𝜂

𝑘
− 𝑡

(1 + (
𝜂

𝑘
− 𝑡)2)

1

2

⎞⎟⎟⎟⎠ =
2

(1 + (
𝜂

𝑘
− 𝑡)2)

3

2

is positive, from the coercivity of 𝐸 we arrive at

−
1

2(1 − 2𝛽)
𝜕𝑡

⎛⎜⎜⎝
𝜕𝑡𝑝|𝑘|𝑝 1

2

⎞⎟⎟⎠𝐸 ≤ d

d𝑡
𝐸 ≤ 1

2(1 − 2𝛽)
𝜕𝑡

⎛⎜⎜⎝
𝜕𝑡𝑝|𝑘|𝑝 1

2

⎞⎟⎟⎠𝐸,
and hence

𝐸(𝑡) ≈ 𝐸(0), ∀𝑡 ≥ 0.
The precise linear dynamics can therefore be described by the following theorem.

Theorem 2 ([11, Theorem 1.1]). For any 𝑘 ≠ 0 and 𝜂 ∈ ℝ, the solution to the linearized Equation
(2.12) satisfies the uniform bounds

|𝑝−14 Ω̂(𝑡)|2 + |𝑝 1

4 Θ̂(𝑡)|2 ≈ |(𝑘2 + 𝜂2)− 14 Ω̂(0)|2 + |(𝑘2 + 𝜂2) 14 Θ̂(0)|2, (2.18)

for every 𝑡 ≥ 0, where the constant hidden in (2.18) blows up as 𝛽 → 1∕2.

The above Theorem 2 implies a (linear) inviscid damping for the velocity and the density
fluctuation of (1.2)

‖‖𝜃≠(𝑡)‖‖𝐿2 + ‖‖‖𝑢𝑥≠(𝑡)‖‖‖𝐿2 ≲ 1

⟨𝑡⟩ 12
[‖‖‖𝜔𝑖𝑛≠ ‖‖‖𝐻−1𝑥 𝐿2𝑦

+
‖‖‖𝜃𝑖𝑛≠ ‖‖‖𝐿2𝑥𝐻1𝑦

]
, ∀𝑡 ≥ 0, (2.19)

‖𝑢𝑦(𝑡)‖𝐿2 ≲ 1

⟨𝑡⟩ 32
[‖‖‖𝜔𝑖𝑛≠ ‖‖‖𝐻−1𝑥 𝐻1𝑦

+
‖‖‖𝜃𝑖𝑛≠ ‖‖‖𝐿2𝑥𝐻2𝑦

]
, ∀𝑡 ≥ 0. (2.20)

In stark contrast to the homogeneous Couette flow [8], in light of the lower bound in (2.18), the
system undergoes a Lyapunov instability

‖‖𝜔≠(𝑡)‖‖𝐿2 + ‖‖∇𝜃≠(𝑡)‖‖𝐿2 ≳ ⟨𝑡⟩ 12 [‖‖‖𝜔𝑖𝑛≠ ‖‖‖𝐿2𝑥𝐻−1𝑦 +
‖‖‖𝜃𝑖𝑛≠ ‖‖‖𝐻1𝑥𝐿2𝑦

]
, ∀𝑡 ≥ 0. (2.21)

This can be considered the reason why the decay rates in (2.19)–(2.20) are slower, by a factor of
𝑡1∕2, compared to those that can be obtained in the constant density case [53, 59, 60, 63].

Remark 2.1. Note that the requirement for coercivity, 𝛽 > 1∕2, is the same as the Miles-Howard
condition for the spectral stability of stratified shear flows put forward in [35, 49]. This is not
coincidental, as the original spectral stability proof is also an energy-based argument, albeit of a
different type. We further point out that the threshold value 1∕4 in the Miles-Howard condition
is known to be sharp, in the sense that there exist stratified shear flows with Richardson number
below 1∕4 such that the linearized system around them has an unstable eigenvalue. Nevertheless,
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3695

the Miles-Howard condition is only sufficient as in the constant density case 𝜃 = 1 (the homoge-
neous 2D Euler equations) every shear flow without any inflection point is spectrally stable by
Rayleigh’s criterion for homogeneous fluids (which is a necessary and sufficient condition), see
[44] for further details.

2.3 The nonlinear growth mechanism

The full nonlinear system corresponding to (2.6) in the (𝑍, 𝑄) variables (2.13) reads

𝜕𝑡𝑍 = −
1

4

𝜕𝑡𝑝

𝑝
𝑍 − |𝑘|𝛽𝑝−12 𝑄 − ( 𝑝

𝑘2

)−1
4(𝑼 ⋅ ∇Ω), (2.22)

𝜕𝑡𝑄 =
1

4

𝜕𝑡𝑝

𝑝
𝑄 + |𝑘|𝛽𝑝−12 𝑍 − 𝛽|𝑘| 32 𝑝− 34((Δ𝑡 − Δ𝐿)Ψ) − ( 𝑝

𝑘2

) 1

4
𝑘(𝑼 ⋅ ∇(𝑖𝛽Θ)), (2.23)

where in (2.23) we have isolated the linear part identical to that in (2.14) and we have used the
identity Δ𝐿Ψ = Ω− (Δ𝑡 − Δ𝐿)Ψ.
In inviscid damping around Couette flow, the unmixing of enstrophy causes transient growth

of the velocity, called the Orr mechanism, with analogous transient growth effects in other phase
mixing problems [4, 8, 50, 53]. As discussed in [4, 8, 22, 50, 58], when studying nonlinear phase
mixing problems, a key effect to look for are “echoes”, wherein well-mixed enstrophy, through
nonlinear interactions, transfers back to frequencies which will be un-mixed at a future time and
hence cause growth in the velocity field by theOrrmechanism, possibly repeating the process into
a chain of nonlinear oscillations. Echo chains were captured in experiments for plasmas modeled
by the Vlasov equations [46] and in plasmas modeled by the 2D Euler equations near a vortex
in [62]. This can be considered a kind of “resonance” associated with the linear transient growth
mechanism that appears at the second iterate of linearization (i.e., if one linearizes around the
linear dynamics) [4, 8, 22, 23, 50, 58]. It is the primary reason that proving nonlinear inviscid
damping (or Landau damping) type results is challenging and why such results have generally
required very high regularity; see for example [5, 8, 36–38, 47, 48, 50]. In order to account for
the echo resonances, [8] introduced a time-dependent Fourier multiplier method which builds a
norm carefully designed to match exactly the worst-case estimates of these resonances. In fluid
mechanics, there does not yet exist an alternative to this method for studying nonlinear inviscid
damping problems. In order to adapt these ideas to the system (2.22)–(2.23), we need to derive a
“toy model” that captures the worst possible growth caused by nonlinear interactions. As we will
see, though we proceed in the spirit of [8] and [5], the toy model has significant differences with
previous works.
As Ω is the unstable quantity, the worst possible nonlinear term appears in the equation for

𝑍. As in [8], we derive a formal toy model by a paraproduct decomposition of the nonlinearity,
which can be thought of as a secondary linearization of the evolution of the high frequencies
about the low frequency linear dynamics. To obtain the toymodel, we first observe that𝑍 interacts
with𝑄which could then excite 𝑍 through the linear and nonlinear interactions. However, for the
variables 𝑍,𝑄 the linear semigroup is bounded and we therefore ignore linear terms and the fact
that 𝑍 and𝑄 are coupled (but the linear growthmechanismwill still be seen in the some pieces of
the nonlinearity). Assuming that Δ−1𝑡 can be well-approximated by Δ−1𝐿 , we want to write a good
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3696 BEDROSSIAN et al.

model for the nonlinear interactions of the scalar equation

𝜕𝑡𝑍 ≈ (𝑝∕𝑘
2)
−
1

4(
∇⟂Δ−1𝐿 Ω ⋅ ∇Ω

)
.

At this point we want to extract the contribution which is most “dangerous”. Through a standard
paraproduct decomposition of the nonlinearity (see (1.10)), namely

∇⟂Δ−1𝐿 Ω ⋅ ∇Ω = (∇
⟂Δ−1𝐿 Ω)𝐻𝑖 ⋅ (∇Ω)𝑙𝑜 + (∇

⟂Δ−1𝐿 Ω)𝑙𝑜 ⋅ (∇Ω)𝐻𝑖 + (∇
⟂Δ−1𝐿 Ω)𝐻𝑖 ⋅ (∇Ω)𝐻𝑖,

we (formally) neglect the Hi-Hi term (with enough regularity, it is easily controlled - the third
term in (1.10)), the lo-Hi term (by trading regularity for time-decay of the velocity - the first term
in (1.10)), and theHi-lo term involving 𝜕𝑧Δ−1𝐿 Ω (which is uniformly bounded in 𝑘 and 𝜂 - coming
from the second term in (1.10)). Writing down explicitly the only remaining, and most difficult-
looking, term involving (𝜕𝑣Δ−1𝐿 Ω)𝐻𝑖(𝜕𝑧Ω)𝑙𝑜 and using the definition of 𝑍 in (2.13), we end up
with

𝜕𝑡𝑍𝑘(𝜂) ≈
|𝑘| 12
𝑝𝑘(𝜂)

1

4

∑
𝓁≠0∫ℝ

𝜉

𝑝𝓁(𝜉)
Ω̂𝓁(𝜉)𝐻𝑖(𝑘 − 𝓁)Ω̂𝑘−𝓁(𝜂 − 𝜉)𝑙𝑜d𝜉

≈
|𝑘| 12
𝑝𝑘(𝜂)

1

4

∑
𝓁≠0∫ℝ

𝜉(𝑘 − 𝓁)

|𝓁| 12 𝑝𝓁(𝜉) 34 𝑍𝓁(𝜉)𝐻𝑖
𝑝𝑘−𝓁(𝜂 − 𝜉)

1

4

|𝑘 − 𝓁| 12 𝑍𝑘−𝓁(𝜂 − 𝜉)𝑙𝑜d𝜉.

Since the variable 𝜂 − 𝜉 is at low frequency, we further approximate the equation above by
considering 𝜂 = 𝜉, which give us the infinite system of ODEs

𝜕𝑡𝑍𝑘(𝜂) ≈
|𝑘| 12
𝑝𝑘(𝜂)

1

4

∑
𝓁≠0

𝜂(𝑘 − 𝓁)

|𝓁| 12 |𝑘 − 𝓁| 12 𝑝𝓁(𝜂) 34 𝑍𝓁(𝜂)𝐻𝑖𝑝𝑘−𝓁(0)
1

4 𝑍𝑘−𝓁(0)𝑙𝑜,

where 𝜂 is to be considered as a fixed parameter. Similarly to [8], the dangerous scenario is when
𝜂𝑘−2 > 1 and there is a high-to-low cascade in which the 𝑘 mode has a strong effect at time 𝜂∕𝑘
that excites the 𝑘 − 1mode, which itself has a strong effect at time 𝜂∕(𝑘 − 1) that excites the 𝑘 − 2
mode and so on. This physically corresponds to an echo chain [4, 8, 22, 23, 62]. Therefore, we focus
near one critical time 𝜂∕𝑘 on a time interval of length roughly 𝜂∕𝑘2, so that 𝜂∕(𝑘 − 1) is not crit-
ical, and consider the interaction between the mode 𝑘 and a nearby mode 𝓁 with 𝓁 ≠ 𝑘. Calling
𝑓𝑅 = 𝑍𝑘(𝑡, 𝜂) and 𝑓𝑁𝑅 = 𝑍𝑘−1(𝑡, 𝜂) the resonant and non-resonant dominant modes, respectively,
keeping only the leading order terms and taking absolute values, we obtain the coupled toy
system

𝜕𝑡𝑓𝑅 ≈ 𝜀
𝜂

𝑝𝑘(𝜂)
1

4 𝑝𝑘−1(𝜂)
3

4

𝑝1(0)
1

4 𝑓𝑁𝑅,

𝜕𝑡𝑓𝑁𝑅 ≈ 𝜀
𝜂

𝑝𝑘−1(𝜂)
1

4 𝑝𝑘(𝜂)
3

4

𝑝−1(0)
1

4 𝑓𝑅,
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3697

where we also included that 𝑍1(0) ≈ 𝜀, as we are assuming linear dynamics to leading order.
Since 𝜂∕(𝑘 − 1) is not critical and 𝑘2 ≤ 𝜂, we have that 𝑝𝑘−1(𝜂) ≈ (𝜂∕𝑘)2. Therefore, using

(2.11) and that 𝜀𝑝1(0)
1

4 ≈ 𝜀𝑡
1

2 ≲ 1 for our purposes, the toy model that we finally consider
is

𝜕𝑡𝑓𝑅 =

(
𝑘2

𝜂

) 1

2 1

(1 + |𝑡 − 𝜂∕𝑘|2) 14 𝑓𝑁𝑅, (2.24)

𝜕𝑡𝑓𝑁𝑅 =
( 𝜂
𝑘2

) 1

2 1

(1 + |𝑡 − 𝜂∕𝑘|2) 34 𝑓𝑅. (2.25)

In Section 3 we construct a weight based on this model, that takes into account a regularity
imbalance between the resonant and non-resonant modes. Some remarks are in order.

Remark 2.2 (On the Gevrey-2− regularity). As in previous works [8], one can deduce that the
maximal possible growth for 𝑓𝑅 and 𝑓𝑁𝑅 is of order (𝜂∕𝑘2)𝐶 for some constant 1 < 𝐶 < 16.
If this growth accumulates for all the frequencies 𝑘 = 1,… , ⌊√𝜂⌋, Stirling’s formula implies a
growth of order exp(

√
𝜂). This is consistent with the loss of Gevrey-2+ regularity in the inviscid,

homogeneous case [8, 22].

Remark 2.3 (Comparison with previous works). The toy model introduced in [8] for the vorticity
of the homogeneous Euler equations reads

𝜕𝑡𝑓𝑅 =
𝑘2

𝜂
𝑓𝑁𝑅, 𝜕𝑡𝑓𝑁𝑅 =

𝜂

𝑘2
1

1 + |𝑡 − 𝜂∕𝑘|2 𝑓𝑅. (2.26)

The key practical difference among the two toy models is that for (𝑓𝑅, 𝑓𝑁𝑅) the power 1∕2 in
(2.24)–(2.25) is replaced by the power 1. This implies that while both models predict the same reg-
ularity loss (Gevrey-2+) we are going to impose a smaller regularity imbalance between resonant
and non-resonant modes, and hence are going to lose less derivatives when measuring the effect
of non-resonant modes on resonant modes and gain less when measuring the effect of resonant
modes on non-resonant modes.
The toy model used to build the norm in [47] for the Boussinesq equations with viscosity (but

not thermal diffusivity) near Couette flow is more significantly different. However, the derivation
and use of the model depend crucially on the presence of viscosity.

Remark 2.4 (On the time-scale 𝑂(𝜀−2)). In the construction of the toy model (2.24)–(2.25) we have

used in a crucial way that 𝜀𝑡
1

2 ≲ 1 (analogous to the way the lift-up effect time-scale of 𝑂(𝜀−1)
dictated the toy model in [5]). For times 𝑡 ≥ 𝜀−2, the 𝜀𝑡1∕2 in (2.24)–(2.25), due to the structure of
the system, would lead to an exponential growth for 𝑓𝑅 and 𝑓𝑁𝑅 which could not be controlled
in any regularity class. Instead, for the toy model (2.24)–(2.25) we show that the growth is at most
polynomial, see Proposition 4.1 and accumulates only to Gevrey-2+ losses.
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3698 BEDROSSIAN et al.

2.4 Weights and energy functionals

Ultimately, themain step in the proof of Theorem 1 is to obtain the following uniform-in-𝑡 estimate
for 𝑡 < 𝛿2𝜀−2

sup
0<𝑡<𝛿2𝜀−2

‖𝑍(𝑡)‖𝜆 + ‖𝑄(𝑡)‖𝜆 ≲ 𝜀,
for some 𝜆 > 0 and 𝑠 > 1∕2. Using this estimate (and suitable estimates on the change of coordi-
nates), it is not too difficult to complete the proof of Theorem 1; see Section 3. However, we cannot
obtain such an estimate directly, instead, there are several additional ingredients that are required
involving three energy functionals:

∙ To obtain uniform bounds in the presence of the linear term, we need to estimate 𝑍,𝑄 with an
energy based on the linear analysis of [11]; we will call this energy functional 𝐸𝐿.

∙ The 𝑍,𝑄 variables break the natural energy structure of the quadratic transport nonlinearities,
hence requiring an energy which estimates Ω and ∇𝐿Θ directly; this estimate is at the high-
est level of regularity, so it controls the highest frequencies, but due to the linear instability, it
necessarily grows in time. We denote this energy functional 𝐸𝑛.

∙ Both of these estimates are in turn coupled to an energy that controls the coordinate system
which can be considered to be an estimate on the evolving shear 𝑢𝑥0 ; this energy is denoted 𝐸𝑣.

The control of these three energies (and associated time-integrated quantities) forms the main
bootstrap argument, detailed below in Section 2.5. This general scheme is common in pertur-
bative quasilinear problems such as scattering in dispersive PDEs (see e.g., [32, 39] and related
references) and in Landau damping in kinetic theory (e.g., [9, 30]). Here there is the additional
complication of requiring estimates on a coordinate system that is coupled to the other unknowns;
this same additional complication arises in certain dispersive PDEs (see e.g., [39, 41, 51]).
The key idea to the Fourier multiplier method of [8] is to introduce time dependent Fourier

multipliers that allow us to capture the possible growth mechanisms by suitably weakening the
norms in a time and frequency dependent way. All three energies, 𝐸𝐿, 𝐸𝑛, 𝐸𝑣 are based on such
Fourier multiplier norms. As in other methods based on time-dependent norms, weakening the
norm generates artificial damping terms in the equations that can be used to absorb terms in the
energymethod.We remark that this method is reminiscent also of Alinhac’s ghost weightmethod
[2], however (aside from being on the Fourier side), this method necessitates the norm losing
a significant amount of regularity in an anisotropic way, as time proceeds, which significantly
increases the complexity. The main weight is defined as a time-dependent Fourier multiplier𝐴 =
𝐴𝑘(𝑡, 𝜂) of the form

𝐴𝑘(𝑡, 𝜂) = ⟨𝑘, 𝜂⟩𝜎e𝜆(𝑡)|𝑘,𝜂|𝑠(𝑚−1𝐽
)
𝑘
(𝑡, 𝜂), (2.27)

where 𝜎 > 16 is a fixed constant, 𝜆(𝑡) is the bulk Gevrey regularity index and 𝑚, 𝐽 are suitable
Fourier multipliers to be defined in the sequel. The function 𝜆(𝑡) is assumed to satisfy

𝜆̇(𝑡) = −
𝛿𝜆⟨𝑡⟩2𝑞 (1 + 𝜆(𝑡)), 𝑡 > 1, (2.28)

𝜆(𝑡) =
3

4
𝜆0 +

1

4
𝜆′, 𝑡 ≤ 1,

 10970312, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22123 by C

ochraneItalia, W
iley O

nline L
ibrary on [21/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3699

where 𝜆0, 𝜆′ are those of Theorem 1, 𝛿𝜆 ≈ 𝜆0 − 𝜆′ is a small parameter to ensure that 2𝜆(𝑡) > 𝜆0 +
𝜆′, and 1∕2 < 𝑞 ≤ 1∕4 + 𝑠∕2 is a parameter chosen by the proof. The function 𝜆(𝑡) allows a loss of
the radius of regularity, by a finite amount, in a continuous way. As discussed in [8], it suffices to
consider the case 𝑠 close to 1∕2 as higher regularities can be treated by adding an additional factor
exp(𝛾(𝑡)|𝑘, 𝜂|𝑝) for any 𝑠 < 𝑝 ≤ 1which would play little role in the energy estimates that follow.

2.4.1 The linear weight𝑚

As we have seen in Section 2.2, the error term appearing in (2.17) can be integrated in time at any
fixed frequency (𝑘, 𝜂). However, the nonlinear case cannot simply be treated point-wise in (𝑘, 𝜂),
and we are forced to introduce the bounded Fourier multiplier

𝑚𝑘(𝑡, 𝜂) =

{
exp

(
𝐶𝛽 arctan(𝑡 − 𝜂∕𝑘)

)
, for 𝑘 ≠ 0,

1 for 𝑘 = 0,
𝐶𝛽 =

1

2𝛽 − 1
. (2.29)

Notice that

𝜕𝑡𝑚𝑘 =
𝐶𝛽

1 + (𝑡 − 𝜂∕𝑘)
2
𝑚𝑘. (2.30)

Such multiplier creates the artificial damping term (see (2.35) below) that controls the analogous
of the linear error term in (2.17). This multiplier (or similar ones) have been used previously in for
example, [10, 42, 63].

2.4.2 The nonlinear weight 𝐽

The remaining multiplier to complete the definition of 𝐴 in (2.27) is given by

𝐽𝑘(𝑡, 𝜂) =
e𝜇|𝜂| 12
𝑤𝑘(𝑡, 𝜂)

+ e𝜇|𝑘| 12 , (2.31)

where 1 < 𝜇 < 23. The weight 𝑤𝑘 is extremely important and is constructed using the toy model
(2.24)–(2.25) in Section 4. In particular, it is used to distinguish between the resonant and non-
resonant behavior of the system (see Section 4.2 for all the properties of 𝑤𝑘). For the moment we
can think of it as a correction to the main exponential factors of 𝐽 and𝐴 that mimics the behavior
of the toy model (2.24)–(2.25) near the critical times 𝑡 = 𝜂∕𝓁. Most importantly, it assigns more
regularity to the “resonant” frequencies (𝓁, 𝜂) than to the “non-resonant” frequencies (𝓁′, 𝜂). It is
analogous to the corresponding weight in [8], however, the 𝑤𝑘 weight here is different from the
one in [8] due to the different toy model. Finally, for technical reasons it is convenient to define

𝐽𝑘(𝑡, 𝜂) = e
𝜇|𝜂| 12 𝑤−1

𝑘
(𝑡, 𝜂),

and the corresponding weight

𝐴𝑘(𝑡, 𝜂) = ⟨𝑘, 𝜂⟩𝜎e𝜆(𝑡)|𝑘,𝜂|𝑠 (𝑚−1𝐽)𝑘(𝑡, 𝜂).
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3700 BEDROSSIAN et al.

Notice that

𝜕𝑡𝐴 = 𝜆̇(𝑡)|𝑘, 𝜂|𝑠𝐴 − 𝜕𝑡𝑤𝑤 𝐴 −
𝜕𝑡𝑚

𝑚
𝐴. (2.32)

2.4.3 The coordinate system weight 𝐴𝑣.

It turns out that the energy functional that controls coordinate system needs to use a stronger
(compare to 𝐴 above) weight of a similar form

𝐴𝑣(𝑡, 𝜂) = ⟨𝜂⟩𝜎e𝜆(𝑡)|𝜂|𝑠 𝐽𝑣(𝑡, 𝜂), 𝐽𝑣(𝑡, 𝜂) =
e𝜇|𝜂| 12
𝑤𝑣(𝑡, 𝜂)

. (2.33)

Here, 𝐽𝑣 plays a similar role as 𝐽 in (2.31), and is defined in terms of a weight 𝑤𝑣 below in (4.6).
However, 𝐽𝑣 is constructed from the toy model for the homogeneous 2D Euler equations (2.26)
used in [8], making it essentially the same as the weight used in [8]. Due to the different toymodel
being used here, this implies we will be propagating a relatively large amount of additional regu-
larity on the coordinate system (relative to the 𝑧-dependent unknowns). This additional regularity
is crucial to closing the estimates below.

2.4.4 The linear-type energy functional 𝐸𝐿

The energy functional that will permit uniform bounds is designed by taking inspiration from the
linearized energy (2.15). It is defined as

𝐸𝐿(𝑡) =
1

2

⎡⎢⎢⎣‖𝐴𝑍‖2 + ‖𝐴𝑄‖2 + 1

2𝛽

⟨
𝜕𝑡𝑝|𝑘|𝑝 1

2

𝐴𝑍,𝐴𝑄

⟩⎤⎥⎥⎦. (2.34)

Notice that, for 𝛽 > 1∕2, we have the same coercivity bounds as in (2.16). Through a careful com-
putation of its time derivative (carried out in Section 6.1) and using the definition of𝐴 (see (2.27),
(2.30) and (2.31)) we arrive at an inequality of the type

d

d𝑡
𝐸𝐿 +

(
1 −

1

2𝛽

) ∑
𝑗∈{𝜆,𝑤,𝑚}

(𝐺𝑗[𝑍] + 𝐺𝑗[𝑄]) ≤ 𝐿𝑍,𝑄 + 𝑁𝐿𝑍,𝑄 + div + Δ𝑡 . (2.35)

Here we denote

𝐺𝑤[𝑓] =

‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤

√
𝐴𝐴𝑓

‖‖‖‖‖‖
2

, 𝐺𝑚[𝑓] =

‖‖‖‖‖‖
√
𝜕𝑡𝑚

𝑚
𝐴𝑓

‖‖‖‖‖‖
2

, 𝐺𝜆[𝑓] = −𝜆̇(𝑡)
‖‖‖‖|∇| 𝑠2 𝐴𝑓‖‖‖‖

2

. (2.36)

The terms above are also called Cauchy-Kovalevskaya terms since they come from the weakening
of the norms caused by theFouriermultipliers. Those are good terms since theyhave a definite sign
and can be used to control the other error terms in the identity (2.35), which we divide as follows:
𝐿𝑍,𝑄 is a linear error term, analogous to that in (2.17) and defined precisely in (6.6),𝑁𝐿𝑍,𝑄 contains
themain nonlinear errors that come from the transport structure of the equations (see (6.7)), while
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3701

div and Δ𝑡 are simpler error terms to treat that arise as a consequence of the nonlinear change
of coordinates (2.1), and are defined in (6.8) and (6.9), respectively.

2.4.5 The coordinate change energy functional 𝐸𝑣

The control on the change of coordinates, described by Equations (2.7)–(2.8) is achieved via the
energy functionals

𝐸𝑣(𝑡) =
1

2

(⟨𝑡⟩2+2𝑠‖‖‖‖‖ 𝐴⟨𝜕𝑣⟩𝑠(𝑡)
‖‖‖‖‖
2

+
1

𝐶1

(‖𝐴𝑣ℎ(𝑡)‖2 + ⟨𝑡⟩−2𝑠‖𝐴𝑣|𝜕𝑣|𝑠ℎ(𝑡)‖2))

and

⟨𝑡⟩4‖𝑣̇(𝑡)‖2𝜆(𝑡),𝜎−6 , (2.37)

where the weight 𝐴𝑣 is defined in (2.33) and 𝐶1 = 𝐶1(𝛽, 𝜆0, 𝑠) > 1 is a constant chosen in the
proof. In Section 8 we derive the energy inequalities for the two functionals above, where it will
be more convenient to treat each term in 𝐸𝑣 separately. Due to the presence of multiplier 𝐴𝑣 in
the definition of 𝐸𝑣, when computing the time derivative of 𝐴𝑣 we get as good terms

𝐺𝑣𝑤[𝑓] =

‖‖‖‖‖‖
√
𝜕𝑡𝑤𝑣

𝑤𝑣
𝐴𝑣𝑓

‖‖‖‖‖‖
2

, 𝐺𝑣
𝜆
[𝑓] = −𝜆̇(𝑡)

‖‖‖‖|𝜕𝑣| 𝑠2 𝐴𝑣𝑓‖‖‖‖
2

. (2.38)

Remark 2.5. The structure of the energy functionals for the change of coordinates is heavily
inspired by [8], indeed, the coordinate change and the associated Equations (2.7)–(2.9) are exactly
the same. However, the control we have on the quantities under study is significantly different.
First, we need an additional, even higher regularity control onℎ, namely the last term in𝐸𝑣. More-
over, while𝐴𝑣 is essentially the weight𝐴𝑅 used in [8], the norm𝐴 is not the same, and so we have
a significantly different regularity gap between the estimate on and those on ℎ. For this reason,
we cannot rely completely on the proofs given in [8].

2.4.6 The nonlinear-type energy functional 𝐸𝑛

To control high frequencies we also need a direct control on the vorticity Ω and the gradient of
the density ∇𝐿Θ that is consistent with the linear prediction. From (2.21), a natural quantity to
control is

𝐸𝑛(𝑡) =
1

2

[‖𝐴Ω‖2 + 𝛽2‖𝐴∇𝐿Θ‖2], (2.39)

which satisfies the following inequality (see Section 7.1)

d

d𝑡
𝐸𝑛 +

∑
𝑗∈{𝜆,𝑤,𝑚}

(
𝐺𝑗[Ω] + 𝛽

2𝐺𝑗[∇𝐿Θ]
) ≤ 1

2

⟨
𝜕𝑡𝑝|𝑘|𝑝 1

2

𝐴𝑄,𝐴𝑄

⟩
+𝑁𝐿Ω,Θ + ̃div + ̃Δ𝑡 .
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3702 BEDROSSIAN et al.

Note that the structure is very similar to (2.35), with the goodCauchy-Kovalevskaya terms, a linear
error, a nonlinear error and the errors due to the change of coordinates. Crucially, the linear term
involves precisely𝑄 and a boundedmultiplier, thanks to the definition (2.13), and it will be treated
thanks to the energy 𝐸𝐿 above for 𝑍 and 𝑄. All the error terms involved in this energy balance are
analyzed in Section 7.

Remark 2.6 (On the necessity of the symmetric variables). The results stated in Theorem 1 can
also be obtained by 𝐸𝑛(𝑡) ≲ 𝜀2𝑡 and coordinate system estimates. The reason why it is necessary
to control the symmetric variables 𝑍,𝑄 is the term

1

2

⟨
𝜕𝑡𝑝|𝑘|𝑝 1

2

𝐴𝑄,𝐴𝑄

⟩
=
1

2

⟨
𝜕𝑡𝑝

𝑝
𝐴𝑝

1

2 Θ̂, 𝐴𝑝
1

2 Θ̂

⟩
, (2.40)

since 𝜕𝑡𝑝 does not have a definite sign and is positive for 𝑡 > 𝜂∕𝑘. The weight 𝑤 cannot be used
to control this term for all the frequencies, and any other weight onΩ and ∇𝐿Θ would have to be
of order 𝑝−1∕4 (at best), hence leading back to the symmetric variables. Instead, 𝑍,𝑄 have a nice
structure at the linear level and, oncewehave a control on them, the bound on (2.40) is immediate.
Error terms containing 𝜕𝑡𝑝∕𝑝 have been previously handled in the literature for linear inviscid
[11] or viscous problems (e.g., [5–7, 42]).

2.5 The bootstrap proposition

To control the energy functionals 𝐸𝐿, 𝐸𝑣, 𝐸𝑛 and (2.37), we rely on a continuity argument. Hence,
we first state the local well-posedness result. We omit the proof since it follows by standard
reasoning for 2D Euler in Gevrey spaces (see [8] for discussion).

Proposition 2.7. For all 𝑠 > 1∕2, 𝜆0 > 0, there exists a constant 𝑐′0 > 0 with the following property:
for every 𝜀 > 0 and every 𝜀′ < 𝑐′0𝜀, ‖‖𝜔𝑖𝑛‖‖𝜆0 + ‖‖𝜃𝑖𝑛‖‖𝜆0 ≤ 𝜀′
implies that

sup
0≤𝑡≤2 𝐸𝐿(𝑡) +

1

2

(
1 −

1

2𝛽

) ∑
𝑗∈{𝜆,𝑤}

∫
2

0

𝐺𝑗[𝑍] + 𝐺𝑗[𝑄]d𝜏 ≤ 2𝜀2,

sup
0≤𝑡≤2 𝐸𝑛(𝑡) +

∑
𝑗∈{𝜆,𝑤}

∫
2

0

𝐺𝑗[Ω] + 𝛽
2𝐺𝑗[∇𝐿Θ]d𝜏 ≤ 16𝛽

2𝛽 − 1
𝜀2,

sup
0≤𝑡≤2 𝐸𝑣(𝑡) +

∑
𝑗∈{𝜆,𝑤}

∫
2

0

⟨𝜏⟩2+2𝑠𝐺𝑗[⟨𝜕𝑣⟩−𝑠] + 1

𝐶1

(
𝐺𝑣
𝑗
[ℎ] + ⟨𝜏⟩−2𝑠𝐺𝑣

𝑗
[|𝜕𝑣|𝑠ℎ])d𝜏 ≤ 32𝜀2,

sup
0≤𝑡≤2 ‖𝑣̇‖𝜆(𝑡),𝜎−6 ≤ 2𝜀.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3703

Thanks to Proposition 2.7, the rest of the proof will only deal with times 𝑡 ≥ 1. By a standard
approximation argument, we may work with regularized solutions, for which the quantities on
the left-hand side take values continuously in time (see [8]). We now introduce the time 𝑇⋆ as the
supremum of the set of times 𝐼𝐸 within which the following bootstrap hypotheses are assumed to
be satisfied.

Bootstrap hypotheses. For 1 ≤ 𝑡 ≤ 𝑇⋆ the following holds

𝐸𝐿(𝑡) +
1

2

(
1 −

1

2𝛽

) ∑
𝑗∈{𝜆,𝑤}

∫
𝑡

1

𝐺𝑗[𝑍] + 𝐺𝑗[𝑄]d𝜏 ≤ 8𝜀2, (H1)

𝐸𝑛(𝑡) +
∑

𝑗∈{𝜆,𝑤}
∫

𝑡

1

𝐺𝑗[Ω] + 𝛽
2𝐺𝑗[∇𝐿Θ]d𝜏 ≤ 128𝛽

2𝛽 − 1
𝜀2⟨𝑡⟩ (H2)

𝐸𝑣(𝑡) +
∑

𝑗∈{𝜆,𝑤}
∫

𝑡

1

⟨𝜏⟩2+2𝑠𝐺𝑗[⟨𝜕𝑣⟩−𝑠] + 1

𝐶1

(
𝐺𝑣
𝑗
[ℎ] + ⟨𝜏⟩−2𝑠𝐺𝑣

𝑗
[|𝜕𝑣|𝑠ℎ])d𝜏 ≤ 128𝜀2⟨𝑡⟩, (H3)

⟨𝑡⟩2‖𝑣̇‖𝜆(𝑡),𝜎−6 ≤ 16𝜀, (H4)

where 𝐺𝑗[⋅] are defined in (2.36) and 𝐺𝑣𝑗 [⋅] in (2.38).

By the local well-posedness Proposition 2.7 and choosing 𝜀 sufficiently small, we know that
for 𝑡 = 1 the bounds (H1)–(H4) hold with all the constants on the right-hand side divided by 4.
Moreover, notice that the set of times 𝐼𝐸 = [1, 𝑇⋆] with 𝑇⋆ > 1 is closed by continuity. If we can
prove that the bootstrap hypotheses are actually satisfied for 1 ≤ 𝑡 ≤ 𝑇′⋆ with 𝑇′⋆ > 𝑇⋆, then the
argument can be re-initialized at 𝑇⋆ and the bootstrap is complete. Then, by continuity, our goal
is to prove the following proposition.

Proposition 2.8. There exists 𝜀0 ∈ (0, 1∕2), 𝐶0 > 2 and 𝛿 ∈ (𝐶−10 , 1∕2) depending only on
𝛽, 𝑠, 𝜆, 𝜆′, 𝜎 such that 𝜀0 is much smaller than 𝛿 with the following property. If 𝜀 < 𝜀0 and the boot-
strap hypotheses (H1)–(H4) hold on [1, 𝛿2𝜀−2], then for any 𝑇⋆ ∈ (1, 𝛿2𝜀−2] and any 𝑡 ∈ [1, 𝑇⋆] we
have

𝐸𝐿(𝑡) +
1

2

(
1 −

1

2𝛽

) ∑
𝑗∈{𝜆,𝑤}

∫
𝑡

1

𝐺𝑗[𝑍] + 𝐺𝑗[𝑄]d𝜏 ≤ 4𝜀2, (B1)

𝐸𝑛(𝑡) +
∑

𝑗∈{𝜆,𝑤}
∫

𝑡

1

𝐺𝑗[Ω] + 𝛽
2𝐺𝑗[∇𝐿Θ]d𝜏 ≤ 64𝛽

2𝛽 − 1
𝜀2⟨𝑡⟩, (B2)

𝐸𝑣(𝑡) +
∑

𝑗∈{𝜆,𝑤}
∫

𝑡

1

⟨𝜏⟩2+2𝑠𝐺𝑗[⟨𝜕𝑣⟩−𝑠] + 1

𝐶1

(
𝐺𝑣
𝑗
[ℎ] + ⟨𝜏⟩−2𝑠𝐺𝑣

𝑗
[|𝜕𝑣|𝑠ℎ])d𝜏 ≤ 64𝜀2⟨𝑡⟩, (B3)

⟨𝑡⟩2‖𝑣̇‖𝜆(𝑡),𝜎−6 ≤ 8𝜀. (B4)

In particular, this implies 𝑇⋆ = 𝛿2𝜀−2.
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3704 BEDROSSIAN et al.

Remark 2.9 (On the smallness of the parameters). The factor 1 − 1∕(2𝛽) appearing in (H1) is
related to the control of linear error terms. This immediately gives the following restriction

𝛿 = 𝑂(𝛽 − 1∕2).

2.5.1 Immediate consequences of the bootstrap hypotheses

The bounds in the bootstrap hypotheses imply a control on several other quantities that we need
to prove Proposition 2.8 and Theorem 1. We first show the bounds we have for the unweighted
variables in lower regularity spaces. In fact, we only need the following bounds to prove the main
Theorem 1.

Lemma 2.10. Under the bootstrap hypothesis, the following inequalities holds

‖Ω‖𝜆,𝜎 + ‖∇𝐿Θ‖𝜆,𝜎 + ‖ℎ‖𝜆,𝜎 + ‖‖1 − (𝑣′)2‖‖𝜆,𝜎−4 + ‖‖𝑣′′‖‖𝜆,𝜎−4 ≲ 𝜀⟨𝑡⟩ 12 , (2.41)

‖‖Θ≠‖‖𝜆,𝜎−1 ≲ 𝜀

⟨𝑡⟩ 12 , (2.42)

‖‖Ψ≠‖‖𝜆,𝜎−3 ≲ 𝜀

⟨𝑡⟩ 32 . (2.43)

The proof of the Lemma above is straightforward from the definition of 𝐴 and Proposition 5.1,
which shows that by paying Sobolev regularity, decay on Ψ follows as in the case Δ𝑡 = Δ𝐿; see [8]
for more detail.
From the definition of Δ𝑡 and 𝑼, we need to have a control also on 1 − (𝑣′)2, 𝑣′′ and 𝑣̇ in the

proper regularity classes. These coefficients are controlled by ℎ and bounds on 𝑣̇ are recovered
from. We collect the estimates in the following.

Lemma 2.11. Under the bootstrap hypothesis, the following inequalities hold

‖‖𝐴𝑣(1 − (𝑣′)2)‖‖2 + ‖‖‖𝐴𝑣⟨𝜕𝑣⟩−1𝑣′′‖‖‖2
+

∑
𝑗∈{𝜆,𝑤}

∫
𝑡

1

𝐺𝑣
𝑗
[(1 − (𝑣′)2)] + 𝐺𝑣

𝑗
[⟨𝜕𝑣⟩−1𝑣′′]d𝜏 ≲ 𝜀2𝑡, (2.44)

⟨𝑡⟩−2𝑠(‖‖𝐴𝑣|𝜕𝑣|𝑠(1 − (𝑣′)2)‖‖2 + ‖‖‖𝐴𝑣|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′‖‖‖2
)

+
∑

𝑗∈{𝜆,𝑤}
∫

𝑡

1

⟨𝜏⟩−2𝑠(𝐺𝑣
𝑗
[|𝜕𝑣|𝑠(1 − (𝑣′)2)] + 𝐺𝑣𝑗 [|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′])d𝜏 ≲ 𝜀2𝑡, (2.45)

⟨𝑡⟩2+2𝑠‖‖‖‖‖ 𝐴⟨𝜕𝑣⟩𝑠 𝜕𝑣𝑣̇
‖‖‖‖‖
2

+
∑

𝑗∈{𝜆,𝑤}
∫

𝑡

1

⟨𝜏⟩2+2𝑠𝐺𝑗[⟨𝜕𝑣⟩−𝑠𝜕𝑣𝑣̇]d𝜏 ≲ 𝜀2𝑡, (2.46)
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3705

‖‖‖‖‖ 𝐴⟨𝜕𝑣⟩𝑠 |𝜕𝑣|
𝑠

2 𝑣̇
‖‖‖‖‖ ≲ 𝜀

𝑡2
+

‖‖‖‖‖ 𝐴⟨𝜕𝑣⟩𝑠 |𝜕𝑣|
𝑠

2‖‖‖‖‖, (2.47)

𝐺𝑤[⟨𝜕𝑣⟩−𝑠𝑣̇] ≲ 𝐺𝑤[⟨𝜕𝑣⟩−𝑠]. (2.48)

The proofs of the bounds (2.44)–(2.45) resemble the ones providing the analogous estimates of
[8]; they are sketched briefly in Section 8.

3 PROOF OF THEMAIN THEOREM

In this section we prove Theorem 1, under the assumption that Proposition 2.8 holds. We need
the bounds of Lemma 2.10 (which follow directly from the bootstrap hypothesis (H1)–(H4)). We
remark again that the main part of this paper is the proof of Proposition 2.8.
The first step of the proof of Theorem 1 is undoing the nonlinear coordinate transform. Instead

of the change of coordinates (2.1)–(2.2), we want to use 𝑦 as the second spatial coordinate and
define

Ω⋆(𝑡, 𝑧, 𝑦) = 𝜔(𝑡, 𝑥, 𝑦), Θ⋆(𝑡, 𝑧, 𝑦) = 𝜃(𝑡, 𝑥, 𝑦), Ψ⋆(𝑡, 𝑧, 𝑦) = 𝜓(𝑡, 𝑥, 𝑦),

where 𝑧 is still given by (2.1). Define 𝜆∞ = 𝜆(𝛿2𝜀−2). By following the arguments in [8, Section 2.3]
using Lemma 2.10, we see that we may solve for 𝑦 in terms of 𝑣 and vice-versa and by a Gevrey
composition lemma (see e.g., [8, Lemma A.4]), we have from Lemma 2.10 for all 1 < 𝑡 < 𝛿2𝜀−2

𝑡−1∕2
(‖‖Ω⋆(𝑡)‖‖𝜆′∞ + ‖‖‖𝜕𝑦Θ⋆0 (𝑡)‖‖‖𝜆′∞

)
+ 𝑡1∕2

‖‖‖Θ⋆≠(𝑡)‖‖‖𝜆′∞ + 𝑡3∕2‖‖‖Ψ⋆≠(𝑡)‖‖‖𝜆′∞ ≲ 𝜀, (3.1)

for some 0 < 𝜆′∞ < 𝜆∞. The estimates on𝜔, 𝜃, and𝑢≠ stated inTheorem 1now follow immediately.
Taking the 𝑥-average of themomentumEquations (1.1) in the 𝑦 coordinates we have (using that

𝑢
𝑦
0 = 0 by incompressibility)

𝜕𝑡𝑢
𝑥
0 (𝑡, 𝑦) = −𝜕𝑦 ∫

𝕋

𝑢
𝑦
≠(𝑡, 𝑥, 𝑦)𝑢𝑥≠(𝑡, 𝑥, 𝑦)d𝑥 = −𝜕𝑦 ∫

𝕋

𝑈
⋆,𝑦
≠ (𝑡, 𝑧, 𝑦)𝑈⋆,𝑥≠ (𝑡, 𝑧, 𝑦)d𝑧,

where we denote 𝑈∗(𝑡, 𝑧, 𝑦) = 𝑢(𝑡, 𝑥, 𝑦). Using (3.1), it then follows that‖‖‖‖⟨𝜕𝑦⟩−1𝑢𝑥0 (𝑡)‖‖‖‖𝜆′∞ ≲ 𝜀.

This takes care of the uniform estimates on 𝑢𝑥0 stated in Theorem 1. The bound on 𝜃0
follows similarly.
Next, we are interested in proving the instability result, which requires amore detailed analysis

of the dynamics. First, we observe that (2.6) in the new Fourier variables becomes

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡Ω̂

⋆ = −𝑖𝛽2𝑘Θ̂⋆ − (∇⟂Ψ⋆≠ ⋅ ∇Ω⋆),
𝜕𝑡Θ̂

⋆ = 𝑖𝑘Ψ̂⋆ − (∇⟂Ψ⋆≠ ⋅ ∇Θ⋆),
Λ̂𝑡Ψ⋆ = Ω̂

⋆,
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3706 BEDROSSIAN et al.

where
Λ𝑡 = 𝜕𝑧𝑧 + (𝜕𝑦 − 𝑣

′𝑡𝜕𝑧)
2.

As before, it is convenient also to define

Λ𝐿 = 𝜕𝑧𝑧 + (𝜕𝑦 − 𝑡𝜕𝑧)
2, 𝑝𝑘(𝑡, 𝜁) = 𝑘

2 + (𝜁 − 𝑘𝑡)2,

namely, the analogues of (2.10)–(2.11) in the (𝑧, 𝑦) coordinates (with 𝜁 the 𝑦-Fourier variable), and
the new auxiliary variables (as in (2.13))

𝑍⋆
𝑘
(𝑡, 𝜂) ∶=

((
𝑝∕𝑘2

)−1
4 Ω̂

)
𝑘

(𝑡, 𝜂), 𝑄⋆
𝑘
(𝑡, 𝜂) ∶=

((
𝑝∕𝑘2

) 1
4 𝑖𝑘𝛽Θ̂

)
𝑘

(𝑡, 𝜂).

Similarly to (2.22)–(2.23), we have

𝜕𝑡𝑍
⋆ = −

1

4

𝜕𝑡𝑝

𝑝
𝑍⋆ − |𝑘|𝛽𝑝−12 𝑄⋆ − ( 𝑝

𝑘2

)−1
4(∇⟂Ψ⋆≠ ⋅ ∇Ω⋆), (3.2)

𝜕𝑡𝑄
⋆ =

1

4

𝜕𝑡𝑝

𝑝
𝑄⋆ + |𝑘|𝛽𝑝−12 𝑍⋆ − 𝛽|𝑘| 32 𝑝− 34(

(Λ𝑡 − Λ𝐿)Ψ
⋆
)

− 𝛽
( 𝑝
𝑘2

) 1

4
𝑖𝑘(𝜕𝑧Ψ⋆≠𝜕𝑦Θ⋆0 + ∇⟂Ψ⋆≠ ⋅ ∇Θ⋆≠). (3.3)

Let us view the system as the vector ODE pointwise-in-frequency

𝜕𝑡𝑿 = 𝐿(𝑡)𝑿 + 𝐹(𝑡, 𝑿), (3.4)

where 𝑿 = (𝑍⋆, 𝑄⋆) and the linear part 𝐿(𝑡) is given by the time-dependent matrix

𝐿(𝑡) =

⎛⎜⎜⎜⎝
−
1

4

𝜕𝑡𝑝

𝑝
−|𝑘|𝛽𝑝−12

|𝑘|𝛽𝑝−12 1

4

𝜕𝑡𝑝

𝑝

⎞⎟⎟⎟⎠ .
Calling Φ𝐿(𝑡, 𝜏) the associated solution operator, we may re-write (3.4) as

𝑿(𝑡) = Φ𝐿(𝑡, 0)𝑿(0) + ∫
𝑡

0

Φ𝐿(𝑡, 𝜏)𝐹(𝜏, 𝑿(𝜏))d𝜏. (3.5)

A direct consequence of the linear estimate (2.18) is that, point-wise in (𝑡, 𝑘, 𝜁), we have

|Φ𝐿(𝑡, 0)𝑿≠(0)| ≳ |𝑿≠(0)|, |Φ𝐿(𝑡, 𝜏)𝐹(𝜏, 𝑿(𝜏))≠| ≲ |𝐹(𝜏, 𝑿(𝜏))≠|, (3.6)

for every 𝑡 ≥ 𝜏 ≥ 0. Using the elementary inequality ⟨𝑎 − 𝑏⟩⟨𝑎⟩ ≳ ⟨𝑏⟩, since 𝑝
1∕2

𝑘
(𝑡, 𝜁) =|𝑘|⟨𝜁∕𝑘 − 𝑡⟩ we have 𝑝1∕2

𝑘
(𝑡, 𝜁) ≳ |𝑘|⟨𝑡⟩∕⟨𝜁∕𝑘⟩. Thus

‖‖𝜔≠(𝑡)‖‖2𝐿2𝑥,𝑦 + ‖‖∇𝜃≠(𝑡)‖‖2𝐿2𝑥,𝑦 ≈ ‖‖‖Ω⋆≠(𝑡)‖‖‖2𝐿2𝑧,𝑦 + ‖‖‖‖(−Λ𝐿) 12 Θ⋆≠(𝑡)‖‖‖‖
2

𝐿2𝑧,𝑦

≈
∑
𝑘≠0∫ℝ

𝑝

1

2

𝑘
(𝑡, 𝜁)|𝑘| |𝑿𝑘(𝑡, 𝜁)|2d𝜁

≳ ⟨𝑡⟩∑
𝑘≠0∫ℝ

1⟨𝜁⟩ |𝑿𝑘(𝑡, 𝜁)|2d𝜁.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3707

In light of (3.5)–(3.6), we therefore have that there exists 𝐾′ > 0 such that

‖‖𝜔≠(𝑡)‖‖2𝐿2𝑥,𝑦 + ‖‖∇𝜃≠(𝑡)‖‖2𝐿2𝑥,𝑦 ≳ ⟨𝑡⟩⎡⎢⎢⎣‖‖‖𝑿𝑖𝑛≠ ‖‖‖2𝐿2𝑧𝐻− 12𝑦 − 𝐾′

(
∫

𝑡

0

‖‖𝐹(𝜏, 𝑿(𝜏))≠‖‖𝐿2𝑧,𝑦d𝜏
)2⎤⎥⎥⎦. (3.7)

The rest of this section is devoted to providing a suitable upper bound for the nonlinear term
above. Precisely, we prove the following bound:

Lemma 3.1. Assuming Proposition 2.8, there holds

‖‖𝐹(𝑡, 𝑿(𝑡))≠‖‖𝐿2𝑧,𝑦 ≲ 𝜀2

⟨𝑡⟩ 12 , ∀𝑡 ≤ 𝛿2

𝜀2
, (3.8)

where 𝜀, 𝛿 are as in Theorem 1. In fact, there holds for all 𝜆′′∞ < 𝜆′∞,

‖‖𝐹(𝑡, 𝑿(𝑡))≠‖‖𝜆′′∞ ≲
𝜀2

⟨𝑡⟩ 12 , ∀𝑡 ≤ 𝛿2

𝜀2
. (3.9)

Assuming now Lemma 3.1, there exists some 𝐾 > 1 such that (3.7) becomes

‖‖𝜔≠(𝑡)‖‖2𝐿2𝑥,𝑦 + ‖‖∇𝜃≠(𝑡)‖‖2𝐿2𝑥,𝑦 ≳ ⟨𝑡⟩[‖‖‖𝑿𝑖𝑛≠ ‖‖‖2𝐿2𝑧𝐻− 12𝑦 − 𝐾𝜀4⟨𝑡⟩] ≳ ⟨𝑡⟩[‖‖‖𝑿𝑖𝑛≠ ‖‖‖2𝐿2𝑧𝐻− 12𝑦 − 𝐾𝛿2𝜀2
]
,

for every 𝑡 ≤ 𝛿2𝜀−2, which completes the proof of Theorem 1. It now suffices to prove Lemma 3.1

Proof of Lemma 3.1. We will simply prove (3.8) as (3.9) is a straightforward extension and is not
required for the statement of Theorem 1. From (3.2)–(3.3) and the fact that 𝐻3𝑧,𝑦 is an algebra, we
find that

‖‖𝐹(𝑡, 𝑿(𝑡))≠‖‖𝐿2𝑧,𝑦 ≲ ‖‖‖‖‖(𝑝∕𝑘2)−
1

4(∇⟂Ψ⋆≠ ⋅ ∇Ω⋆)
‖‖‖‖‖𝐿2𝑧,𝑦 +

‖‖‖‖‖(𝑝∕𝑘2)−
3

4((Λ𝑡 − Λ𝐿)Ψ⋆≠)
‖‖‖‖‖𝐿2𝑧,𝑦

+
‖‖‖‖‖(𝑝∕𝑘2)

1

4 𝑘(𝜕𝑧Ψ⋆≠𝜕𝑦Θ⋆0 + ∇⟂Ψ⋆≠ ⋅ ∇Θ⋆≠)
‖‖‖‖‖𝐿2𝑧,𝑦

≲
1

⟨𝑡⟩ 12 ‖‖‖∇⟂Ψ⋆≠ ⋅ ∇Ω⋆‖‖‖𝐻3𝑧,𝑦 +
1

⟨𝑡⟩ 32 ‖‖‖(Λ𝑡 − Λ𝐿)Ψ⋆≠‖‖‖𝐻3𝑧,𝑦
+ ⟨𝑡⟩ 12 ‖‖‖𝜕𝑧Ψ⋆≠𝜕𝑦Θ⋆0 ‖‖‖𝐻3𝑧,𝑦 + ⟨𝑡⟩ 12 ‖‖‖∇⟂Ψ⋆≠ ⋅ ∇Θ⋆≠‖‖‖𝐻3𝑧,𝑦

≲
1

⟨𝑡⟩ 12 ‖‖‖Ψ⋆≠‖‖‖𝐻3𝑧,𝑣
(‖‖Ω⋆‖‖𝐻3𝑧,𝑦 + ⟨𝑡⟩(‖‖‖𝜕𝑦Θ⋆0 ‖‖‖𝐻3𝑧,𝑦 + ‖‖‖Θ⋆≠‖‖‖𝐻3𝑧,𝑦 )

)

+
1

⟨𝑡⟩ 32 ‖‖‖(Λ𝑡 − Λ𝐿)Ψ⋆≠‖‖‖𝐻3𝑧,𝑦 .
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3708 BEDROSSIAN et al.

In view of (3.1), which includes the estimates on the change of coordinates, it follows that

‖‖‖(Λ𝑡 − Λ𝐿)Ψ∗≠‖‖‖𝐻3𝑧,𝑦 ≲ 𝜀⟨𝑡⟩1∕2,
and together with the rest of the estimates of (3.1), Lemma 3.1 follows. □

This concludes the proof of Theorem 1.

4 THEMAINWEIGHTS AND THEIR PROPERTIES

This section is dedicated to the construction of the Fourier multipliers which will play the role of
weights in our energy functional. As anticipated in Section 2.4, the Fourier modes with horizontal
frequency 𝑘 ≠ 0 need two different weights. We call the first one the linear weight, as it allows to
control linear terms, and has already been defined in (2.29). We also introduced the nonlinear
weight 𝐴𝑘(𝑡, 𝜂) in (2.27), which encodes the dynamics of the nonlinear toy model derived in the
previous sections. Here we provide a construction of the multiplier 𝑤𝑘(𝑡, 𝜂) in (2.31). Finally, the
treatment of the zero mode 𝑘 = 0 requires a slightly different nonlinear weight, introduced in
(2.33), which we define now.

4.1 Construction of the weight

As the nonlinear weight𝑤𝑘(𝑡, 𝜂) in (2.31) actually encodes the dynamics of the toymodel, we start
with a more detailed description of its growths.

Proposition 4.1. We denote 𝜏 = 𝑡 − 𝜂∕𝑘 and assume 𝜏 ∈ [−𝜂∕𝑘2, 𝜂∕𝑘2]: Let 𝑓𝑅(−𝜂∕𝑘2) =
𝑓𝑁𝑅(−𝜂∕𝑘

2) = 1 be the initial data associated with system (2.24)–(2.25). Assume also that 𝜂∕𝑘2 ≥ 1.
Then, there exists 𝛾 ∈ (1, 2) such that

𝑓𝑅(𝜏) ≲
( 𝜂
𝑘2

)𝛾⎧⎪⎨⎪⎩
(1 + |𝜏|)−𝛾, 𝜏 ∈ [−𝜂∕𝑘2, 0],

(1 + |𝜏|)𝛾+ 12 , 𝜏 ∈ [0, 𝜂∕𝑘2],

𝑓𝑁𝑅(𝜏) ≲
( 𝜂
𝑘2

)𝛾+ 1
2

⎧⎪⎨⎪⎩
(1 + |𝜏|)−𝛾− 12 , 𝜏 ∈ [−𝜂∕𝑘2, 0],

(1 + |𝜏|)𝛾, 𝜏 ∈ [0, 𝜂∕𝑘2].

The proof can be obtained through a simple ODE argument. Based on this, we are ready to
construct the weight 𝑤𝑘(𝑡, 𝜂) in (2.31). We first define the critical intervals. For 𝑎 ≥ 0, let ⌊𝑎⌋ ∈ ℕ
be the integer part.

Definition 4.2. For any 𝜂 ∈ ℝ, 1 ≤ |𝑘| ≤ ⌊√|𝜂|⌋ and 𝜂𝑘 ≥ 0, set

𝑡|𝑘|,𝜂 = |𝜂||𝑘| − |𝜂|
2|𝑘|(|𝑘| + 1) = |𝜂||𝑘| + 1 + |𝜂|

2|𝑘|(|𝑘| + 1) , 𝑡0,𝜂 = 2|𝜂|.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3709

The critical intervals are then defined as

𝐼𝑘,𝜂 = 𝐼
𝐿
𝑘,𝜂
∪ 𝐼𝑅

𝑘,𝜂
=

{[
𝑡|𝑘|,𝜂, 𝜂

𝑘

]
∪
[
𝜂

𝑘
, 𝑡|𝑘|−1,𝜂] if 𝜂𝑘 ≥ 0 and 1 ≤ |𝑘| ≤ ⌊√|𝜂|⌋,

∅ otherwise.
(4.1)

We also introduce the resonant intervals as

𝑰𝑘,𝜂 =

{
𝐼𝑘,𝜂 if 2

√|𝜂| ≤ 𝑡|𝑘|,𝜂,
∅ otherwise.

(4.2)

We now follow the construction of [8], using (2.24)–(2.25) as the reference toy model. In
particular, for 𝑡 ∈ 𝑰𝑘,𝜂 we choose (𝑤𝑁𝑅, 𝑤𝑅) such that

𝜕𝑡𝑤𝑅 ≈

(
𝑘2

𝜂

) 1

2 1

(1 + |𝑡 − 𝜂

𝑘
|) 12 𝑤𝑁𝑅, (4.3)

𝜕𝑡𝑤𝑁𝑅 ≈
( 𝜂
𝑘2

) 1

2 1

(1 + |𝑡 − 𝜂

𝑘
|) 32 𝑤𝑅. (4.4)

We assume 𝑤𝑅(𝑡, 𝜂) = 𝑤𝑁𝑅(𝑡, 𝜂) = 1 for 𝑡 ≥ 2𝜂 and we construct the weight backward in time, by
gluing all the growths of Proposition 4.1. For simplicity, we assume 𝑘, 𝜂 ≥ 0, but the construction
below easily applies to the case 𝑘, 𝜂 ≤ 0 (when they have different signs we take𝑤𝑘(𝑡, 𝜂) ≡ 1). We
start our construction with the non-resonant part of the weight. Let𝑤𝑁𝑅 be such that𝑤𝑁𝑅(𝑡, 𝜂) =
1 for 𝑡 ≥ 2𝜂 or |𝜂| ≤ 2. Assume that 𝑤𝑁𝑅(𝑡|𝑘|−1,𝜂, 𝜂) is known. Motivated by Proposition 4.1, for
any 1 ≤ 𝑘 ≤ ⌊√𝜂⌋, we define

𝑤𝑁𝑅(𝑡, 𝜂) =

(
𝑘2

𝜂

(
1 + 𝑏𝑘,𝜂

||||𝑡 − 𝜂

𝑘

||||
))𝛾

𝑤𝑁𝑅(𝑡𝑘−1, 𝜂), for 𝑡 ∈ 𝐼𝑅
𝑘,𝜂

𝑤𝑁𝑅(𝑡, 𝜂) =

(
1 + 𝑎𝑘,𝜂

||||𝑡 − 𝜂

𝑘

||||
)−1

2
−𝛾

𝑤𝑁𝑅

(𝜂
𝑘
, 𝜂

)
, for 𝑡 ∈ 𝐼𝐿

𝑘,𝜂
,

where 𝐼𝑅
𝑘,𝜂
, 𝐼𝐿
𝑘,𝜂

have been introduced in (4.1), while 𝑏𝑘,𝜂 and 𝑎𝑘,𝜂 satisfy

𝑘2

𝜂

(
1 + 𝑏𝑘,𝜂

||||𝑡𝑘−1,𝜂 − 𝜂

𝑘

||||
)
= 1,

𝑘2

𝜂

(
1 + 𝑎𝑘,𝜂

||||𝑡𝑘,𝜂 − 𝜂

𝑘

||||
)
= 1.

In particular, we have

𝑏𝑘,𝜂 =

⎧⎪⎨⎪⎩
2(𝑘 − 1)

𝑘

(
1 −

𝑘2

𝜂

)
, for 𝑘 ≥ 2,

1 −
1

𝜂
, for 𝑘 = 1,

𝑎𝑘,𝜂 =
2(𝑘 + 1)

𝑘

(
1 −

𝑘2

𝜂

)
.

Thanks to this choice, notice that

𝑤𝑁𝑅

(𝜂
𝑘
, 𝜂

)
=

(
𝑘2

𝜂

)𝛾
𝑤𝑁𝑅(𝑡𝑘−1,𝜂, 𝜂), 𝑤𝑁𝑅(𝑡𝑘−1,𝜂, 𝜂) =

( 𝜂
𝑘2

) 1

2
+2𝛾

𝑤𝑁𝑅(𝑡𝑘,𝜂, 𝜂),
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3710 BEDROSSIAN et al.

where 𝑎𝑘,𝜂, 𝑏𝑘,𝜂 are chosen to ensure the last identity. For 𝑡 ∈ [0, 𝑡⌊√𝜂⌋,𝜂] we define 𝑤𝑁𝑅(𝑡, 𝜂) =
𝑤(𝑡⌊√𝜂⌋,𝜂, 𝜂). We then define 𝑤𝑅 as suggested by Proposition 4.1, namely

𝑤𝑅(𝑡, 𝜂) =

(
𝑘2

𝜂

(
1 + 𝑏𝑘,𝜂

||||𝑡 − 𝜂

𝑘

||||
)) 1

2

𝑤𝑁𝑅(𝑡, 𝜂), for 𝑡 ∈ 𝐼𝑅
𝑘,𝜂
,

𝑤𝑅(𝑡, 𝜂) =

(
𝑘2

𝜂

(
1 + 𝑎𝑘,𝜂

||||𝑡 − 𝜂

𝑘

||||
)) 1

2

𝑤𝑁𝑅(𝑡, 𝜂), for 𝑡 ∈ 𝐼𝐿
𝑘,𝜂
.

By the expressions of 𝑎𝑘,𝜂, 𝑏𝑘,𝜂, we also have that

𝑤𝑅(𝑡𝑘,𝜂, 𝜂) = 𝑤𝑁𝑅(𝑡𝑘,𝜂, 𝜂), 𝑤𝑅

(𝜂
𝑘
, 𝜂

)
=

√
𝑘2

𝜂
𝑤𝑁𝑅

(𝜂
𝑘
, 𝜂

)
.

The main weight 𝑤𝑘(𝑡, 𝜂) is finally given by

𝑤𝑘(𝑡, 𝜂) =

⎧⎪⎪⎨⎪⎪⎩

𝑤𝑘(𝑡[
√
𝜂,𝜂],𝜂, 𝜂), 𝑡 < 𝑡⌊√𝜂⌋,𝜂,

𝑤𝑁𝑅(𝑡, 𝜂), 𝑡 ∈ [𝑡⌊√𝜂⌋,𝜂, 2𝜂] ⧵ 𝐼𝑘,𝜂,
𝑤𝑅(𝑡, 𝜂), 𝑡 ∈ 𝐼𝑘,𝜂,

1 𝑡 ≥ 2𝜂.
(4.5)

Remark 4.3. Since 𝑎𝑘,𝜂, 𝑏𝑘,𝜂 → 0 as 𝑘 → ⌊√𝜂⌋, we also have that 𝜕𝑡𝑤 ≈ 0 for 𝑘 ≈ ⌊√𝜂⌋. This
means that estimates (4.3)–(4.4) are only useful provided that 𝑘 ≤ 1

2

√
𝜂 or 𝑡 ≥ 2√𝜂 (equivalent).

The weights 𝐴 and 𝐽 are defined in terms of 𝑤 in (2.27) and (2.31), respectively. Notice that for
𝑘 = 0 the weight 𝑤 is always non-resonant and the linear multiplier is𝑚 ≡ 1. Therefore, 𝐴0(𝑡, 𝜂)
always encodes non-resonant regularity.
The change of coordinates requires a stronger weight. More precisely, we need to propagate

the same regularity of the homogeneous case treated in [8], where the weight of the coordinate
system assigns always the resonant regularity given by the toy model (2.26). Hence, we define

𝑤𝑣𝑅(𝑡, 𝜂) =
𝑘2

𝜂

(
1 + 𝑏𝑘,𝜂

||||𝑡 − 𝜂

𝑘

||||
)
𝑤𝑁𝑅(𝑡, 𝜂), for 𝑡 ∈ 𝐼𝑅

𝑘,𝜂
,

𝑤𝑣𝑅(𝑡, 𝜂) =
𝑘2

𝜂

(
1 + 𝑎𝑘,𝜂

||||𝑡 − 𝜂

𝑘

||||
)
𝑤𝑁𝑅(𝑡, 𝜂), for 𝑡 ∈ 𝐼𝐿

𝑘,𝜂
.

The weight 𝑤𝑣(𝑡, 𝜂) is given by

𝑤𝑣(𝑡, 𝜂) =

⎧⎪⎨⎪⎩
(𝑤𝑣𝑅)

−1(𝑡[
√
𝜂,𝜂],𝜂, 𝜂), 𝑡 < 𝑡⌊√𝜂⌋,𝜂,

(𝑤𝑣𝑅(𝑡, 𝜂))
−1, 𝑡 ∈ [𝑡⌊√𝜂⌋,𝜂, 2𝜂],

1 𝑡 ≥ 2𝜂,
(4.6)

and 𝐴𝑣 is defined in (2.33).
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3711

Remark 4.4. It is immediate to check that 𝑤𝑣(𝑡, 𝜂) encodes more regularity than 𝑤(𝑡, 𝜂). Notice
that

𝑝
−
1

4

𝑘
(𝑡, 𝜂)(𝑤𝑅)

−1(𝑡, 𝜂) ≲

(|𝑘||𝜂|
) 1

2

(𝑤𝑣𝑅)
−1(𝑡, 𝜂),

and if 𝑡 ≥ 2√𝜂 then
𝑝
−
1

4

𝑘
(𝑡, 𝜂)(𝑤𝑅)

−1(𝑡, 𝜂)𝟙{𝑡≥2√𝜂} ≈
(|𝑘||𝜂|

) 1

2

(𝑤𝑣𝑅)
−1(𝑡, 𝜂)𝟙{𝑡≥2√𝜂}.

Finally, we underline the following useful inequalities:

𝐴0 ≤ 𝐴𝑣, 𝐴0 ≤ 𝐴 ≤ 𝐴, 𝐴0 ≤ 𝟙|𝑘|≤|𝜂|𝐴 ≲ 𝐴 ≲ 𝐴𝑣. (4.7)

4.2 Properties of the weights

Here we present technical results which will be used to deal with the weights, throughout the
paper. First, we recall the trichotomy lemma due to [8, Lemma 3.2].

Lemma4.5 (Lemma 3.2, [8]). Let 𝜉, 𝜂 be such that there exists some𝐶 ≥ 1with𝐶−1|𝜉| ≤ |𝜂| ≤ 𝐶|𝜉|
and let 𝑘, 𝓁 be such that 𝑡 ∈ 𝐼𝑘,𝜂 and 𝑡 ∈ 𝐼𝓁,𝜉 , hence 𝑘 ≈ 𝓁. Then at least one of the following holds:

(a) 𝑘 = 𝓁 (almost the same interval),
(b) |𝑡 − 𝜂

𝑘
| ≥ (10𝐶)−1 |𝜂|

𝑘2
and |𝑡 − 𝜉

𝓁
| ≥ (10𝐶)−1 |𝜉|

𝓁2
(far from resonance),

(c) |𝜂 − 𝜉| ≳𝐶 max{ |𝜂||𝓁| , |𝜉||𝑘| } (well-separated).

We state here some useful inequalities, whose proofs can be found in [8].

Lemma 4.6. Let 0 < 𝑠 < 1 and 𝑎, 𝑏 ≥ 0.
∙ If |𝑎 − 𝑏| ≤ 𝑏∕𝐶 for some 𝐶 > 2, then

|𝑎𝑠 − 𝑏𝑠| ≤ 𝑠

(𝐶 − 1)1−𝑠
|𝑎 − 𝑏|𝑠. (4.8)

∙ If |𝑎 − 𝑏| ≤ 𝐶𝑏 for some 𝐶 > 0, then
𝑎𝑠 ≤

(
𝐶

1 + 𝐶

)1−𝑠
(|𝑎 − 𝑏|𝑠 + 𝑏𝑠). (4.9)

4.2.1 Properties of the main weight 𝑤

We collect the properties of the main weight 𝑤𝑘(𝑡, 𝜂), which in most cases will be analogous to
[8], while the substantial differences will be carefully highlighted. First, we note that themaximal
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3712 BEDROSSIAN et al.

growth of the weight 𝑤 dictates the Gevrey-2− regularity requirements. The proof is essentially
the same as in [8] and is hence omitted here.

Lemma 4.7. Let 𝜇 = 4(1∕2 + 2𝛾). For |𝜂| > 1 we have
𝑤−1
𝑘
(0, 𝜂) = 𝑤−1

𝑘
(𝑡[

√|𝜂|],𝜂, 𝜂) ∼ 1|𝜂| 𝜇8 e
𝜇

2

√|𝜂|
.

The weight we constructed is not tracking the Gevrey regularity losses in an optimal way. In
particular, for times 𝑡 ≲

√|𝜂|we have no decay on𝑤−1
𝑘
, whereas in principle for these short times

before the resonances we could gain something. This refinement was implemented by Ionescu-
Jia in [36] to obtain the results in Gevrey-2 instead of 2− as we do here. We believe such an
improvement is possible also in our case but we do not consider this issue in this paper.
Our weights also have the analogous property of [8, Lemma 3.3]; the proof is similar and is

hence omitted.

Lemma 4.8. For 𝑡 ∈ 𝐼𝑘,𝜂 and 𝑡 > 2
√
𝜂, we have

𝜕𝑡𝑤𝑁𝑅(𝑡, 𝜂)

𝑤𝑁𝑅(𝑡, 𝜂)
≈

1

1 + | 𝜂
𝑘
− 𝑡| ≈ 𝜕𝑡𝑤𝑅(𝑡, 𝜂)

𝑤𝑅(𝑡, 𝜂)
. (4.10)

We now state two crucial results, which allow us to exchange frequency when dealing with 𝑤.
This is completely analogous to [8, Lemma 3.4] and the proof is hence omitted.

Lemma 4.9. For 𝑡 ≥ 1 and 𝑘, 𝓁, 𝜂, 𝜉 such that 2max(√|𝜉|,√|𝜂|) < 𝑡 < 2min(|𝜉|, |𝜂|), we have
𝜕𝑡𝑤𝑘(𝑡, 𝜂)

𝑤𝑘(𝑡, 𝜂)

𝑤𝓁(𝑡, 𝜉)

𝜕𝑡𝑤𝓁(𝑡, 𝜉)
≲ ⟨𝜂 − 𝜉⟩. (4.11)

For all 𝑡 ≥ 1 and 𝑘, 𝓁, 𝜂, 𝜉 such that for some 𝐶 ≥ 1, 𝐶−1|𝜉| ≤ |𝜂| ≤ 𝐶|𝜉| one has
√
𝜕𝑡𝑤𝓁(𝑡, 𝜉)

𝑤𝓁(𝑡, 𝜉)
≲𝐶

⎛⎜⎜⎝
√
𝜕𝑡𝑤𝑘(𝑡, 𝜂)

𝑤𝑘(𝑡, 𝜂)
+

|𝜂| 𝑠2
𝑡𝑠

⎞⎟⎟⎠⟨𝜂 − 𝜉⟩. (4.12)

Lemma 4.10. For all 𝑡, 𝜂, 𝜉 we have

𝑤𝑁𝑅(𝑡, 𝜉)

𝑤𝑁𝑅(𝑡, 𝜂)
≲ e𝜇|𝜂−𝜉| 12 . (4.13)

4.2.2 Properties of 𝐽, 𝐽𝑣

We show how to exchange frequencies when dealing with the weights 𝐽, 𝐽𝑣. The proof is again
analogous to that of [8]*Lemma 3.6, with a different regularity imbalance and is omitted.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3713

Lemma 4.11. In general we have

𝐽𝑘(𝜂)

𝐽𝓁(𝜉)
≲

⎛⎜⎜⎝
|𝜂|

𝑘2(1 + |𝑡 − 𝜂

𝑘
|)
⎞⎟⎟⎠
1

2

e9𝜇|𝑘−𝓁,𝜂−𝜉| 12 . (4.14)

If 𝑡 ∈ 𝑰𝑘,𝜂 ∩ 𝑰𝑘,𝜉 , 𝑘 ≠ 𝓁 then

𝐽𝑘(𝜂)

𝐽𝓁(𝜉)
≲

|𝜂| 12|𝑘|
√
𝜕𝑡𝑤𝑘(𝑡, 𝜂)

𝑤𝑘(𝑡, 𝜂)
e23𝜇|𝑘−𝓁,𝜂−𝜉| 12 , (4.15)

𝐽𝑘(𝜂)

𝐽𝓁(𝜉)
≲

|𝜂|
𝑘2

√
𝜕𝑡𝑤𝑘(𝑡, 𝜂)

𝑤𝑘(𝑡, 𝜂)

√
𝜕𝑡𝑤𝓁(𝑡, 𝜉)

𝑤𝓁(𝑡, 𝜉)
e23𝜇|𝑘−𝓁,𝜂−𝜉| 12 . (4.16)

If any of the following holds: (𝑡 ∈ 𝑰𝑐
𝑘,𝜂
) or (𝑘 = 𝓁) or (|𝜂| ≈ |𝜉| and 𝑡 ∈ 𝑰𝑘,𝜂 ∩ 𝑰𝑐𝑘,𝜉) we have

𝐽𝑘(𝜂)

𝐽𝓁(𝜉)
≲ e10𝜇|𝑘−𝓁,𝜂−𝜉| 12 , 𝐽𝑣(𝜂)

𝐽𝑣(𝜉)
≲ e10𝜇|𝜂−𝜉| 12 . (4.17)

If 𝑡 ∈ 𝑰𝑐
𝑘,𝜂
∩ 𝑰𝓁,𝜉 and |𝜂| ≈ |𝜉| then

𝐽𝑘(𝜂)

𝐽𝓁(𝜉)
≲

⎛⎜⎜⎝
𝓁2(1 + |𝑡 − 𝜉

𝓁
|)|𝜉| ⎞⎟⎟⎠

1

2

e11𝜇|𝑘−𝓁,𝜂−𝜉| 12 . (4.18)

Remark 4.12. Lemma 4.11 is analogous to [8, Lemma 3.6]. However, estimate (4.15) is due to the
specific structure of our weight. This is a consequence of the fact that our weight is slightly weaker
than the one used in [8].

When 𝑡 is small enough, 𝐽, 𝐽𝑣 attain their maximal growth and behave like exponential Fourier
multipliers, so allowing us to gain half derivative from a commutator term. This is the content of
the next result, which is the analogue of [8, Lemma 3.7].

Lemma 4.13. Let 𝑡 ≤ 1

2
min{

√|𝜂|,√|𝜉|}. Then
||||𝐽𝑘(𝜂)𝐽𝓁(𝜉)

− 1
|||| ≲ ⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩√|𝜂| + |𝜉| + |𝑘| + |𝓁|e11𝜇|𝑘−𝓁,𝜂−𝜉|

1
2 ,

||||𝐽𝑣(𝜂)𝐽𝑣(𝜉)
− 1

|||| ≲ ⟨𝜂 − 𝜉⟩√|𝜂| + |𝜉|e11𝜇|𝜂−𝜉|
1
2 .

4.2.3 Properties of 𝑝

We also need to exchange frequencies in the multiplier 𝑝.
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3714 BEDROSSIAN et al.

Lemma 4.14. Let 𝑘, 𝓁, 𝜂, 𝜉 be given. We have the following:

√
𝑝𝓁(𝜉)

𝑝𝑘(𝜂)
≲ ⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩3

⎧⎪⎪⎪⎨⎪⎪⎪⎩

|𝜂||𝑘|2(1 + | 𝜂
𝑘
− 𝑡|) , if 𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝑐𝓁,𝜉 ,

|𝓁|2(1 + | 𝜉
𝓁
− 𝑡|)|𝜉| , if 𝑡 ∈ 𝐼𝑐

𝑘,𝜂
∩ 𝐼𝓁,𝜉 ,

1, in all the other cases.

(4.19)

In general √
𝑝𝓁(𝜉)

𝑝𝑘(𝜂)
≲ ⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩3⟨𝑡⟩. (4.20)

If 𝑘 = 𝓁, we have √
𝑝𝑘(𝜉)

𝑝𝑘(𝜂)
≲ ⟨𝜂 − 𝜉⟩. (4.21)

Let 𝓁 ≠ 0, 𝑡 ≥ 1 and 1∕2 < 𝑠 < 1. Then

|𝓁, 𝜉|1− 𝑠

2 𝑝−1
𝓁
(𝜉)𝟙𝑡∈𝐼𝑐

𝓁,𝜉
≲

⟨
𝜉

𝓁𝑡

⟩−1 |𝓁, 𝜉| 𝑠2⟨𝑡⟩2𝑠 , (4.22)

1⟨𝑡⟩ |𝓁, 𝜉|1− 𝑠

2 𝑝
−
1

2

𝓁
(𝜉)𝟙𝑡∈𝐼𝑐

𝓁,𝜉
≲

⟨
𝜉

𝓁𝑡

⟩−𝑠 |𝓁, 𝜉| 𝑠2⟨𝑡⟩2𝑠 , (4.23)

1

⟨𝑡⟩ 12 |𝓁, 𝜉|1−
𝑠

2 𝑝
−
3

4

𝓁
(𝜉)𝟙𝑡∈𝐼𝑐

𝓁,𝜉
≲

⟨
𝜉

𝓁𝑡

⟩−𝑠 |𝓁, 𝜉| 𝑠2⟨𝑡⟩2𝑠 . (4.24)

Proof. First, notice that√
𝑝𝓁(𝜉)

𝑝𝑘(𝜂)
≲

⎛⎜⎜⎝
|𝓁|(1 + | 𝜉

𝓁
− 𝑡|)

|𝑘|(1 + | 𝜂
𝑘
− 𝑡|)

⎞⎟⎟⎠ ≲ ⟨𝑘 − 𝓁⟩⎛⎜⎜⎝
1 + | 𝜉

𝓁
− 𝑡|

1 + | 𝜂
𝑘
− 𝑡|

⎞⎟⎟⎠.
If 𝑡 ∈ 𝐼𝑐

𝑘,𝜂
∩ 𝐼𝓁,𝜉 , then (4.19) follows from | 𝜂

𝑘
− 𝑡| ≳ |𝜂|

𝑘2
. Now consider 𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝑐𝓁,𝜉 . It holds that

1 + | 𝜉
𝓁
− 𝑡|

1 + | 𝜂
𝑘
− 𝑡| ≤ 1 + 1

1 + | 𝜂
𝑘
− 𝑡|

(||||𝜉𝓁 − 𝜂

𝓁

|||| + ||||𝜂𝓁 − 𝜂

𝑘

||||
)

≤ 1 + 1

1 + | 𝜂
𝑘
− 𝑡|

(||𝜂 − 𝜉|| + |𝜂||𝑘𝓁| |𝑘 − 𝓁|
)
.

(4.25)
Then, if |𝓁|∕2 ≤ |𝑘| ≤ 2|𝓁| or |𝑘| ≥ 2|𝓁|, we have

|𝜂||𝑘𝓁| ≲ |𝜂||𝓁|2 .
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3715

If |𝑘| ≤ |𝓁|∕2, then |𝑘 − 𝓁| ≥ |𝓁|∕2, so that
|𝜂||𝑘𝓁| ≲ |𝓁||𝜂||𝑘||𝓁|2 ≲ |𝑘 − 𝓁| |𝜂||𝓁|2 .

Since |𝜂∕𝑘| ≈ 𝑡 ≥ 1 in this interval, combining the two bounds above with (4.25) implies
1 + | 𝜉

𝓁
− 𝑡|

1 + | 𝜂
𝑘
− 𝑡|𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑐𝓁,𝜉 ≲ ⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩2 |𝜂||𝑘|2(1 + | 𝜂

𝑘
− 𝑡|) . (4.26)

In the case 𝑡 ∈ 𝐼𝑐
𝑘,𝜂
∩ 𝐼𝑐

𝓁,𝜉
, we use (4.26) and | 𝜂

𝑘
− 𝑡| ≳ |𝜂|

𝑘2
. We are left with 𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝓁,𝜉 . We need

to use the trichotomy Lemma 4.5. If (𝑎) holds, then the conclusion follows by (4.25). If (𝑏) holds,
then we apply the reasoning for 𝑡 ∈ 𝐼𝑐

𝑘,𝜂
∩ 𝐼𝑐

𝓁,𝜉
. If (𝑐) holds, by (4.25) we deduce that

1 + | 𝜉
𝓁
− 𝑡|

1 + | 𝜂
𝑘
− 𝑡| ≤ 1 + 1

1 + | 𝜂
𝑘
− 𝑡|

(||𝜉 − 𝜂|| + |𝜉 − 𝜂||𝑘| |𝑘 − 𝓁|) ≤ ⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩2,
which gives (4.19)–(4.21). Estimates (4.22) is proved in [8, Lemma 6.1], (6.11a) and we omit the
proof. To prove (4.23), by Young’s inequality, we get

𝑎2−2𝑠𝑏2𝑠 ≤ (1 − 𝑠)𝑎2 + 𝑠𝑏2,
so that for |𝓁𝑡|∕2 < |𝜉| < 2|𝓁𝑡|, we have

1⟨𝑡⟩ |𝓁, 𝜉|1−𝑠𝑝−12𝓁 (𝜉)𝟙𝑡∈𝐼𝑐
𝓁,𝜉
≲

1⟨𝑡⟩ |𝓁|1−𝑠𝑡1−𝑠
(𝓁2 + ⟨𝜉∕𝓁⟩2) 12 ≲

1⟨𝑡⟩ |𝓁|1−𝑠𝑡1−𝑠|𝓁|1−𝑠⟨𝜉∕𝓁⟩𝑠 ≲
⟨
𝜉

𝓁𝑡

⟩−𝑠
1⟨𝑡⟩2𝑠 .

When |𝜉| ≤ |𝓁𝑡|∕2, recalling that 1∕2 < 𝑠 < 1,
1⟨𝑡⟩ |𝓁, 𝜉|1−𝑠𝑝−12𝓁 (𝜉)𝟙𝑡∈𝐼𝑐

𝓁,𝜉
≲

1⟨𝑡⟩ |𝓁𝑡|1−𝑠|𝓁𝑡| ≲
1⟨𝑡⟩1+𝑠 ≲

⟨
𝜉

𝓁𝑡

⟩−𝑠
1⟨𝑡⟩2𝑠 .

For |𝜉| > 2|𝓁𝑡|, the factor ⟨𝜉∕𝓁𝑡⟩−𝑠 plays a role.We then argue as follows
1⟨𝑡⟩ |𝓁, 𝜉|1−𝑠𝑝−12𝓁 (𝜉)𝟙𝑡∈𝐼𝑐

𝓁,𝜉
≲

1⟨𝑡⟩ |𝜉|1−𝑠|𝜉|
( |𝜉||𝓁𝑡| |𝓁𝑡||𝜉|

)𝑠
≲

1⟨𝑡⟩1+𝑠
(|𝓁𝑡||𝜉|

)𝑠
≤

⟨
𝜉

𝓁𝑡

⟩−𝑠
1⟨𝑡⟩2𝑠 ,

where 𝑠 < 1. The remaining (4.24) can be proved as above using that

𝑎
4

3
(1−𝑠)

𝑏
2

3
(1+2𝑠) ≤ 2 − 2𝑠

3
𝑎2 +

1 + 2𝑠

3
𝑏2.

The proof is over. □
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3716 BEDROSSIAN et al.

5 ELLIPTIC ESTIMATES

This section is devoted to some elliptic estimates that play a crucial role for the nonlinear bounds.
The first inequality is a lossy elliptic estimate, as it allows to gain time decay at the price of
regularity.

Proposition 5.1. Under the bootstrap hypotheses, for 𝛿 small enough,

‖‖Ψ≠‖‖𝜆,𝜎−3 ≲ ‖Ω‖𝜆,𝜎−1⟨𝑡⟩2 . (5.1)

Thanks to this result, we can treatΔ𝑡 as a perturbation ofΔ𝐿 in a lower regularity class. Its proof
is identical to [8, Lemma 4.1]: we summarize it below for convenience of the reader.

Proof of Proposition 5.1. To write Δ𝑡 as a perturbation of Δ𝐿 we introduce the notation

𝑔 = 1 − (𝑣′)2.

By definition of Δ𝑡 in (2.5), we get

Δ𝐿Ψ = Ω+ 𝑔(𝜕𝑣 − 𝑡𝜕𝑥)
2Ψ − 𝑣′′(𝜕𝑣 − 𝑡𝜕𝑧)Ψ. (5.2)

By the algebra properties of Gevrey spaces and the bound (2.44), since 𝜀𝑡
1

2 ≤ 𝛿 we deduce
‖Δ𝐿Ψ‖𝜆,𝜎−1 ≲ ‖Ω‖𝜆,𝜎−1 + ‖𝑔‖𝐺𝜆,𝜎−1‖‖(𝜕𝑣 − 𝑡𝜕𝑧)2Ψ‖‖𝜆,𝜎−1 + ‖‖𝑣′′‖‖𝜆,𝜎−1‖(𝜕𝑣 − 𝑡𝜕𝑧)Ψ‖𝜆,𝜎−1

≲ ‖Ω‖𝜆,𝜎−1 + 𝛿‖Δ𝐿Ψ‖𝜆,𝜎−1 .
As 𝛿 is small, we can absorb the last term on the left-hand side. Since 𝑝−1

𝑘
(𝜂) ≲ (⟨𝜂⟩∕⟨𝑘𝑡⟩)2, we

have

‖‖Ψ≠‖‖𝜆,𝜎−3 = ‖‖‖𝑝−1(𝑝Ψ̂≠)‖‖‖𝜆,𝜎−3 ≲ 1⟨𝑡⟩2 ‖‖(−Δ𝐿)Ψ≠‖‖𝜆,𝜎−1 ≲ ‖Ω‖𝜆,𝜎−1⟨𝑡⟩2 ,

hence proving the proposition. □

We now provide a more precise elliptic control, which plays a central role in the rest of the
paper. In fact, if one knows a priori that 𝑢𝑥0 ≡ 0 thenΔ𝑡 = Δ𝐿 and the following proposition would
not be needed.

Proposition 5.2. Under the bootstrap hypotheses, for 𝛿 small enough,

‖‖‖‖‖‖
⟨
𝜕𝑣
𝑡𝜕𝑧

⟩−1(|∇| 𝑠2
𝑡𝑞

𝐴 +

√
𝜕𝑡𝑤

𝑤
𝐴̃

)
((−Δ𝐿)Ψ)≠

‖‖‖‖‖‖
2

≲
∑

𝑗∈{𝜆,𝑤}

𝐺𝑗[Ω] + 𝛿
2(𝐺𝑣

𝑗
[1 − (𝑣′)2] + 𝐺𝑣

𝑗
[𝜕𝑣

−1
𝑣′′]) =∶ 𝐺𝛿elliptic, (5.3)
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3717

where 𝑞 is given in (2.28) and 𝐺𝑗[⋅] are defined in (2.36), while 𝐺𝑣𝑗 [⋅] are in (2.38). In addition

‖‖‖‖‖‖
(|∇| 𝑠2⟨𝑡⟩𝑞 𝐴 +

√
𝜕𝑡𝑤

𝑤
𝐴

)
(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ‖‖‖‖‖‖
2

≲
∑

𝑗∈{𝜆,𝑤}

𝐺𝑗[𝑍] + 𝜀
2
(
𝐺𝑣
𝑗
[1 − (𝑣′)2] + 𝐺𝑣

𝑗
[⟨𝜕𝑣⟩−1𝑣′′])

+ 𝜀2⟨𝑡⟩−2𝑠𝐺𝑣
𝑗
[|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′]

=∶ 𝐺𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

. (5.4)

Also the following inequality holds true

‖‖‖‖𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ‖‖‖‖
2

+ ⟨𝑡⟩−1‖‖‖‖‖‖
⟨
𝜕𝑣
𝑡𝜕𝑧

⟩−1
𝐴((−Δ𝐿)Ψ)≠

‖‖‖‖‖‖
2

≲ 𝜀2. (5.5)

Remark 5.3. Proposition 5.2 plays the role of [8, Proposition 2.4], from which the main ideas of
the following proof come from. The bound (5.3) is the same as in [8] but its validity for this prob-
lem lies within our underlying time-scale 𝑂(𝜀−2). On the other hand, the inequalities (5.4)–(5.5)
are specific to our problem. The proof of (5.4)–(5.5) crucially relies on the control of the coeffi-
cients with the stronger norm generated by 𝐴𝑣, see (2.33). Observe also that we do not need the
term ⟨𝜕𝑣∕𝑡𝜕𝑧⟩−1 since, for the bounds (5.4)–(5.5), we are able to exploit the control we have on|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′, see (2.45). In fact, also in (5.3) it would be enough to only have ⟨𝜕𝑣∕𝑡𝜕𝑧⟩−(1−𝑠), but
this is not necessary for our purposes.

Remark 5.4. Integrating in time the right-hand sides of (5.3) and (5.4), using the bootstrap
hypotheses (H1), (H2), (2.44) and (2.45), we get

∫
𝑡

1

𝐺𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

(𝜏)d𝜏 ≲ 𝜀2, ∫
𝑡

1

𝐺𝛿
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

(𝜏)d𝜏 ≲ 𝜀2⟨𝑡⟩ ≲ 𝛿2. (5.6)

Proof. The proof of (5.3) is exactly the same as the one of [8, Proposition 2.4], up to a replacement
of 𝜀 with 𝛿 (and the use of 𝐴𝟙|𝑘|≤|𝜂| ≲ 𝐴𝑣 when needed), so it is omitted. In turn, we present the
detailed proof of (5.4)which, although being heavily inspired by [8, Proposition 2.4], it shows some
substantial differences. Taking the Fourier transform of (5.2), we have

−𝑝Ψ̂ =Ω̂ + (
𝑔(𝜕𝑣 − 𝑡𝜕𝑧)

2Ψ
)
− (

𝑣′′(𝜕𝑣 − 𝑡𝜕𝑧)Ψ
)
. (5.7)

Multiplying by 𝑝−
1

4 |𝑘| 12 , we obtain
−𝑝

3

4 |𝑘| 12 Ψ̂ = 𝑍 + 𝑝−14 |𝑘| 12 ((
𝑔(𝜕𝑣 − 𝑡𝜕𝑧)

2Ψ
)
− (

𝑣′′(𝜕𝑣 − 𝑡𝜕𝑧)Ψ
))

(5.8)

=∶ 𝑍 + 𝑝
−
1

4 |𝑘| 12(𝑇𝑔 + 𝑇𝑣′′).
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3718 BEDROSSIAN et al.

Now, define the following multipliers

𝑞

𝑘
(𝑡, 𝜂) =

⎧⎪⎨⎪⎩
|𝑘, 𝜂| 𝑠2⟨𝑡⟩𝑞 𝐴𝑘(𝑡, 𝜂), if 𝑘 ≠ 0,
0, if 𝑘 = 0,

𝑤
𝑘
(𝑡, 𝜂) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
√
𝜕𝑡𝑤𝑘
𝑤𝑘

𝐴𝑘

⎞⎟⎟⎠(𝑡, 𝜂), if 𝑘 ≠ 0,
0, if 𝑘 = 0.

Hence, from (5.8) we have

∑
𝜄∈{𝑞,𝑤}

‖‖‖‖𝜄(−Δ𝐿)
3

4 |𝜕𝑧| 12 Ψ̂‖‖‖‖
2

≤ ∑
𝑗∈{𝜆,𝑤}

𝐺𝑗[𝑍] +
∑

𝜄∈{𝑞,𝑤}

‖‖‖‖𝜄(−Δ𝐿)
−
1

4 |𝜕𝑧| 12 (𝑇𝑔 + 𝑇𝑣′′ )‖‖‖‖
2

, (5.9)

where the last inequality relies on the fact that 𝐴 ≤ 𝐴. To prove (5.4), we need to control 𝑇𝑔 and
𝑇𝑣

′′ . Taking into account the decoupling with respect to the 𝑧 frequencies, wemake a paraproduct
decomposition of 𝑇𝑔 and 𝑇𝑣′′ only in the 𝑣 variable as

𝑇𝑔 = 𝑇
𝑔
𝐻𝐿 + 𝑇

𝑔
𝐿𝐻 + 𝑇

𝑔
𝐻𝐻, 𝑇𝑣

′′
= 𝑇𝑣

′′

𝐻𝐿 + 𝑇
𝑣′′

𝐿𝐻 + 𝑇
𝑣′′

𝐻𝐻,

with the notation introduced in (1.10). We start with the low-high interactions.

∙ Bounds on 𝑇𝑔𝐿𝐻 and 𝑇𝑣′′𝐿𝐻 . Among the high-low terms, we only write down the computations
for 𝑇𝑔𝐿𝐻 ,

𝜄
𝑘
(𝜂)𝑝

−
1

4

𝑘
(𝜂)|𝑘| 12 𝑇𝑔𝐿𝐻 =𝜄

𝑘
(𝜂)𝑝

−
1

4

𝑘
(𝜂)

∑
𝑁≥8∫ 𝑔(𝜂 − 𝜉)<𝑁∕8(𝜉 − 𝑘𝑡)

2|𝑘| 12 Ψ̂𝑘(𝜉)𝑁d𝜉. (5.10)

On the support of the integral |𝜂| ≈ |𝜉|. From the paraproduct decomposition in (1.10), |𝜉 − 𝜂| ≤
3∕16|𝜉|, so that Lemma 6.3 applies and e𝜆|𝑘,𝜂|𝑠 ≤ e𝜆|𝑘,𝜉|𝑠+𝑐𝜆|𝜂−𝜉|𝑠 for some 𝑐 ∈ (0, 1). In addition,
since every term of (5.10) has the same horizontal frequency 𝑘, we can appeal to (4.21), (4.17),
so obtaining that

𝑝
−
1

4

𝑘
(𝜂) ≲ ⟨𝜂 − 𝜉⟩ 12 𝑝− 14

𝑘
(𝜉), 𝐽𝑘(𝜂) ≲ e

10𝜇|𝜂−𝜉| 12 𝐽𝑘(𝜉).
Altogether, since𝑚 in (2.29) is bounded, this implies that

𝑞

𝑘
(𝜂)𝑝

−
1

4

𝑘
(𝜂) ≲ ⟨𝜂 − 𝜉⟩2e𝑐𝜆|𝜂−𝜉|𝑠𝑞

𝑘
(𝜉)𝑝

−
1

4

𝑘
(𝜉).

Turning to𝑤
𝑘
(𝜂), we use the same frequency exchanges as before, together with (4.12), to get

𝑤
𝑘
(𝜂)𝑝

−
1

4

𝑘
(𝜂) ≲ ⟨𝜂 − 𝜉⟩4e𝑐𝜆|𝜂−𝜉|𝑠 (𝑤

𝑘
(𝜉) +𝑞

𝑘
(𝜉))𝑝

−
1

4

𝑘
(𝜉).

Since (𝜉 − 𝑘𝑡)2𝑝
−
1

4

𝑘
(𝜉) ≤ 𝑝

3

4

𝑘
(𝜉), by Young’s convolution inequality and (2.44), we have for 𝜄 ∈

{𝑞, 𝑤} that

‖‖‖‖𝜄(−Δ𝐿)
−
1

4 |𝜕𝑧| 12 𝑇𝑔𝐿𝐻‖‖‖‖
2

≲ 𝛿2
∑

𝜄′∈{𝑞,𝑤}

‖‖‖‖𝜄′ (−Δ𝐿)
3

4 |𝜕𝑧| 12 Ψ‖‖‖‖
2

,
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3719

where in the last line we used that 𝜀𝑡
1

2 ≤ 𝛿. Hence, we can absorb this term on the left-hand
side of (5.9) for 𝛿 is sufficiently small. The bound for the term with 𝑇𝑣′′ is analogous and we
omit it.

∙ Bounds on 𝑇𝑔𝐻𝐿 and 𝑇
𝑣′′

𝐻𝐿. Exchanging the role of 𝜂 − 𝜉 and 𝜉 in (5.10), on the support of the
integrand we have |𝜂| ≈ |𝜉|. Notice that the Ψ could be at high frequencies in 𝑘, therefore we
further split these terms as follows

𝑇
𝑓
𝐻𝐿 = 𝑇

𝑓
𝐻𝐿(𝟙16|𝑘|>|𝜂| + 𝟙16|𝑘|≤|𝜂|) = 𝑇𝑓,𝑧𝐻𝐿 + 𝑇𝑓,𝑣𝐻𝐿,

where 𝑓 ∈ {𝑔, 𝑣′′}. When 16|𝑘| > |𝜂|, we claim that there is some 𝑐 ∈ (0, 1) such that

|𝑘, 𝜂|𝑠 ≤ |𝑘, 𝜉|𝑠 + 𝑐|𝜂 − 𝜉|𝑠. (5.11)

This can be proved thanks to (4.8), by considering separately the cases 1

16
|𝜂| ≤ |𝑘| ≤ 16|𝜂|

and |𝑘| ≥ 16|𝜂|. First, for 1

16
|𝜂| ≤ |𝑘| ≤ 16|𝜂|, we have that |𝑘, 𝜉 − 𝜂| ≤ |𝑘| + |𝜉 − 𝜂| ≤ 16|𝜂| +

24|𝜉|, where |𝜂| ≤ 25|𝜉|. Thus, we can use (4.9) which gives (5.11) and argue as in the low-high
case before. Indeed, by (5.11) we can pay regularity on 𝑔, 𝑣′′ and conclude by applying Young’s
convolution inequality. This way,

‖‖‖‖𝜄(−Δ𝐿)
−
1

4 |𝜕𝑧| 12 (𝑇𝑔,𝑧𝐻𝐿 + 𝑇𝑣′′,𝑧𝐻𝐿 )
‖‖‖‖
2

≲ 𝛿2
∑

𝜄′∈{𝑞,𝑤}

‖‖‖‖𝜄′ (−Δ𝐿)
3

4 |𝜕𝑧| 12 Ψ‖‖‖‖
2

,

which can be absorbed in the left-hand side of (5.9).

We now turn our attention to the terms where 16|𝑘| ≤ |𝜂|. Here, being the coefficients at high
frequencies,we cannot absorb these terms on the left-hand side butwe can exploit the integrability
properties ofΨ. Themost difficult term is 𝑇𝑣

′′,𝑣
𝐻𝐿 since, in view of the bounds (2.44)–(2.45), we need

to recover some derivatives for 𝑣′′. This term is explicitly given by

𝜄
𝑘
(𝜂)𝑝

−
1

4

𝑘
(𝜂)|𝑘| 12 𝑇𝑣′′,𝑣𝐻𝐿 =𝜄

𝑘
(𝜂)𝑝

−
1

4

𝑘
(𝜂)|𝑘| 12 ∑

𝑁≥8∫ 𝟙16|𝑘|≤|𝜂|𝑣′′(𝜉)𝑁((𝜕𝑦 − 𝑡𝜕𝑥)Ψ)𝑘(𝜂 − 𝜉)<𝑁∕8d𝜉.
On the support of the integrand |𝜂 − 𝜉| ≤ 3

16
|𝜉|. Since 16|𝑘| ≤ |𝜂|, we have that

||𝑘, 𝜂| − |𝜉|| ≤ |𝑘, 𝜂 − 𝜉| ≤ 1

16
|𝜂| + |𝜂 − 𝜉| ≤ 1

16
|𝜂| + 3

16
|𝜉| ≤ 9

32
|𝜉|.

In addition, from 16|𝑘| ≤ |𝜂| we also get 𝐴 ≲ 𝐴. It is now crucial to exploit the definition of the
weight 𝐴𝑣 given in (2.33). In particular, if 𝑡 ∈ 𝐼𝑘,𝜉 , by (4.19), from Remark 4.4 and Lemma 4.6, we
deduce that

(𝑝
−
1

4

𝑘
𝐴)𝑘(𝜂)𝟙𝑡∈𝐼𝑘,𝜉 ≲ 𝑝

−
1

4

𝑘
(𝜉)𝐴(𝜉)⟨𝜂 − 𝜉⟩ 12 e𝑐𝜆|𝜂−𝜉|𝑠 ≲ (|𝑘||𝜉|

) 1

2

𝐴𝑣(𝜉)e𝑐𝜆|𝜂−𝜉|𝑠 , (5.12)

for some 𝑐 ∈ (0, 1). On the other hand, if 𝑡 ∈ 𝐼𝑐
𝑘,𝜉
, then

𝑝
−
1

4

𝑘
(𝜉)𝟙𝑡∈𝐼𝑐

𝑘,𝜉
≲

(|𝑘||𝜉|
) 1

2

(5.13)

 10970312, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22123 by C

ochraneItalia, W
iley O

nline L
ibrary on [21/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3720 BEDROSSIAN et al.

and 𝐴 ≲ 𝐴𝑣 when 16|𝑘| ≤ |𝜂|. Therefore, appealing again to (4.12)–(4.17), in general we have
𝜄

𝑘
(𝜂)𝑝

−
1

4

𝑘
(𝜂) ≲

1

|𝜉| 12 𝐴𝑣(𝜉)e𝑐𝜆|𝑘,𝜂−𝜉|
𝑠

⎧⎪⎪⎨⎪⎪⎩

√
𝜕𝑡𝑤𝑘
𝑤𝑘

(𝑡, 𝜉) +
|𝜉| 𝑠2⟨𝑡⟩𝑞 if 𝜄 = 𝑤,

|𝜉| 𝑠2⟨𝑡⟩𝑞 if 𝜄 = 𝑞,

(5.14)

where we have absorbed all the low-frequency Sobolev regularity in the exponential term. As
remarked, we need to bound ⟨𝜕𝑣⟩−1𝑣′′, while up to nowwe only recovered half derivative. If |𝜉| ≤|𝑘𝑡|, observe that

1 ≲ ⟨𝑘𝑡⟩ 12 ⟨𝜉⟩−12 𝟙|𝜉|≤|𝑘𝑡|. (5.15)

When |𝜉| ≥ |𝑘𝑡|, since 𝑠 > 1∕2, we argue as follows
1

|𝜉| 12 𝟙|𝜉|≥|𝑘𝑡| =
1

|𝜉|𝑠− 12
|𝜉|𝑠⟨𝜉⟩ 𝟙|𝜉|≥|𝑘𝑡| ≤ 𝑡

1

2

𝑡𝑠
|𝜉|𝑠⟨𝜉⟩ 𝟙|𝜉|≥|𝑘𝑡|. (5.16)

Combining the bounds (5.15)–(5.16) with (5.14) and since ((𝜕𝑦 − 𝑡𝜕𝑥)Ψ) ≤ 𝑝
1

2 Ψ̂, we have that

‖‖‖‖𝜄(−Δ𝐿)
−
1

4 |𝜕𝑧| 12 𝑇𝑣′′,𝑣𝐻𝐿

‖‖‖‖
2

≲ ⟨𝑡⟩ ∑
𝑗∈{𝜆,𝑤}

(
𝐺𝑣
𝑗
[⟨𝜕𝑣⟩−1𝑣′′] + ⟨𝑡⟩−2𝑠𝐺𝑣

𝑗
[|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′])‖‖‖‖(−Δ𝐿) 12 Ψ≠

‖‖‖‖
2

𝜆,𝜎−5
. (5.17)

Then, using Proposition 5.1 and (2.41) we get

‖‖‖‖(−Δ𝐿) 12 Ψ≠
‖‖‖‖𝜆,𝜎−5 ≲ ⟨𝑡⟩‖‖Ψ≠‖‖𝜆,𝜎−4 ≲ ‖Ω‖𝜆,𝜎−1⟨𝑡⟩ ≲

𝜀

⟨𝑡⟩ 12 . (5.18)

Hence, from (5.17) and (5.18) we obtain

‖‖‖‖𝜄(−Δ𝐿)
−
1

4 |𝜕𝑧| 12 𝑇𝑣′′,𝑣𝐻𝐿

‖‖‖‖
2

≲ 𝜀2
∑

𝑗∈{𝜆,𝑤}

(
𝐺𝑣
𝑗
[⟨𝜕𝑣⟩−1𝑣′′] + ⟨𝑡⟩−2𝑠𝐺𝑣

𝑗
[|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′]). (5.19)

The control of 𝑇𝑔,𝑣𝐻𝐿 when 16|𝑘| < |𝜂| follows by a similar argument. The only difference is the
case 𝑡 ∈ 𝐼𝑐

𝑘,𝜉
. Indeed, we do not have to recover derivatives for 𝑔 but extra time decay is necessary

because one has to deal with the analogous of (5.18) with 𝑝
1

2 Ψ̂ replaced with 𝑝Ψ̂. To overcome this
problem, it is enough to split the relative size of 𝜉 with respect to 𝑘𝑡. When |𝜉| ≤ |𝑘𝑡|∕2, we have
that

𝑝
−
1

4

𝑘
(𝜉) ≲ ⟨𝑘𝑡⟩−12 .

When |𝑘𝑡|∕2 ≤ |𝜉| ≤ 2|𝑘𝑡| or |𝜉| ≥ 2|𝑘𝑡|, we can exchange the factor |𝜉|−1∕2 in (5.14) with ⟨𝑡⟩−1∕2.
Therefore, we always recover a factor 𝑡−1∕2 which is necessary to close the estimate. In particular,
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3721

one has

‖‖‖‖𝜄(−Δ𝐿)
−
1

4 |𝜕𝑧| 12 𝑇𝑔,𝑣𝐻𝐿‖‖‖‖
2

≲
1⟨𝑡⟩ ∑

𝑗∈{𝜆,𝑤}

𝐺𝑣
𝑗
[1 − (𝑣′)2]‖‖Δ𝐿Ψ≠‖‖2𝜆,𝜎−4 ≲ 𝜀2 ∑

𝑗∈{𝜆,𝑤}

𝐺𝑣
𝑗
[1 − (𝑣′)2].

∙ Bounds on 𝑇𝑔𝐻𝐻 and 𝑇𝑣′′𝐻𝐻 . For these terms it is easy to show

|𝑇𝑔𝐻𝐻| + |𝑇𝑣′′𝐻𝐻| ≲ 𝛿2 ∑
𝜄′∈{𝑞,𝑤}

‖‖‖‖𝜄′ (−Δ𝐿)
3

4 |𝜕𝑧| 12 Ψ̂‖‖‖‖
2

.

Finally, to prove (5.5), for the first term we can follow the arguments done to prove (5.4), since
no specific properties of |∇|𝑠∕2∕⟨𝑡⟩𝑞 or 𝜕𝑡𝑤∕𝑤 have been used. Analogously, the proof for the
second term is obtained from the arguments for (5.3). The bound then follows by the bootstrap
hypotheses (H1)–(H3).

□

6 BOUND ON THE ENERGY FUNCTIONAL 𝑬𝑳

In this section, we aim at proving the first part (B1) of the bootstrap Proposition 2.8. In general, we
have to estimate nonlinear terms of the type ⟨𝒖 ⋅ ∇𝑓, 𝑔⟩. To do so, we use a paraproduct decom-
position, see (1.10), where we decompose the nonlinear term in transport, reaction and remainder
contributions (with terminology from [8, 50])

⟨𝒖 ⋅ ∇𝑓, 𝑔⟩ = ∑
𝑁>8

⟨
𝒖<𝑁∕8 ⋅ ∇𝑓𝑁, 𝑔

⟩
+

∑
𝑁>8

⟨
𝒖𝑁 ⋅ ∇𝑓<𝑁∕8, 𝑔

⟩
+

∑
𝑁,𝑁′

𝑁∕8≤𝑁′≤8𝑁
⟨𝒖𝑁 ⋅ ∇𝑓𝑁′ , 𝑔⟩ (6.1)

=∶
∑
𝑁>8

𝑇𝑁 +
∑
𝑁>8

𝑅𝑁 +.

Note that if we write for example,

𝑇𝑁 =
∑
𝑘,𝓁

∫
ℝ2
𝑔𝑘(𝜂)∇̂𝑓𝓁(𝜉)𝑁 ⋅ 𝒖̂𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉,

it is important to note that on the support of the integral we have

||𝑘, 𝜂| − |𝓁, 𝜉|| ≤ |𝑘 − 𝓁, 𝜂 − 𝜉| ≤ 3

16
|𝓁, 𝜉|, 13

16
|𝓁, 𝜉| ≤ |𝑘, 𝜂| ≤ 19

16
|𝓁, 𝜉|. (6.2)

In particular, if (6.2) holds, thanks to Lemma 4.6 we have

e𝜆|𝑘,𝜂|𝑠 ≤ e𝜆|𝓁,𝜉|𝑠+ 𝑠

(13∕3)𝑠−1
𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

. (6.3)

In what follows, 𝑐 = 𝑐(𝑠, 𝜆0, 𝜎) ∈ (0, 1) will denote a generic constant, independent of 𝛿, 𝜀. It will
be mainly used in terms of the form e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 to absorb Sobolev or exponential weights as the
one in (6.3).
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3722 BEDROSSIAN et al.

We also need to distinguish between short (S), intermediate (I) and long (L) times via the cut-
offs

𝜒𝑆 = 𝟙
𝑡≤2max{√|𝜂|,√|𝜉|}, 𝜒𝐼 = 𝟙

2max{
√|𝜂|,√|𝜉|}≤𝑡≤2min{|𝜂|,|𝜉|}, 𝜒𝐿 = 𝟙𝑡≥2min{|𝜂|,|𝜉|}. (6.4)

6.1 The energy inequality

Recalling the definition of 𝐸𝐿 given in (2.34), we obtain the following result.

Lemma 6.1. For every 𝑡 ≥ 0 we have the energy inequality
d

d𝑡
𝐸𝐿 +

(
1 −

1

2𝛽

) ∑
𝑗∈{𝜆,𝑤,𝑚}

(
𝐺𝑗[𝑍] + 𝐺𝑗[𝑄]

) ≤ 𝐿𝑍,𝑄 + 𝑁𝐿𝑍,𝑄 + div + Δ𝑡 , (6.5)

where the 𝐺𝑗[⋅] are defined in (2.36) and the error terms are given by

𝐿𝑍,𝑄 =
1

4𝛽

|||||||
⟨
𝜕𝑡

⎛⎜⎜⎝
𝜕𝑡𝑝|𝑘|𝑝 1

2

⎞⎟⎟⎠𝐴𝑍,𝐴𝑄
⟩||||||| (6.6)

𝑁𝐿𝑍,𝑄 =

|||||||
⟨


([
𝐴
( 𝑝
𝑘2

)−1
4
, 𝑼

]
⋅ ∇Ω

)
,AZ + 1

4𝛽

𝜕𝑡𝑝|𝑘|𝑝 1

2

AQ

⟩|||||||
+
1

4𝛽

|||||||
⟨⎡⎢⎢⎣

𝜕𝑡𝑝|𝑘|𝑝 1

2

, 𝑼
⎤⎥⎥⎦ ⋅ ∇AZ,AQ

⟩|||||||
+

|||||||
⟨


([
𝐴
( 𝑝
𝑘2

) 1

4
𝑘,𝑼

]
⋅ ∇(𝑖𝛽Θ)

)
,AQ + 1

4𝛽

𝜕𝑡𝑝|𝑘|𝑝 1

2

AZ

⟩||||||| , (6.7)

div = 1

2
||⟨(∇ ⋅ 𝑼), |𝐴𝑍|2 + |𝐴𝑄|2⟩|| + 1

4𝛽

|||||||
⟨
(∇ ⋅ 𝑼) 𝜕𝑡𝑝|𝑘|𝑝 1

2

𝐴𝑍,𝐴𝑄

⟩|||||||, (6.8)

Δ𝑡 = 𝛽
|||||||
⟨|𝑘| 32 𝑝− 34 𝐴((Δ𝑡 − Δ𝐿)Ψ), 𝐴𝑄 + 14 𝜕𝑡𝑝|𝑘|𝑝 1

2

𝐴𝑍

⟩|||||||. (6.9)

Proof. The proof follows from the cancelations observed in [11] together with the definition of
𝐴. Commutators have been introduced to better handle the transport structure. We recall briefly

from [11] that the Miles-Howard condition arises from using |𝜕𝑡𝑝| ≤ 2|𝑘|𝑝 1

2 , to obtain

1

2𝛽
Re

⟨
𝜕𝑡𝑝|𝑘|𝑝 1

2

𝜕𝑡𝐴

𝐴
𝐴𝑍,𝐴𝑄

⟩
≤ 1

2𝛽

∑
𝑗∈{𝜆,𝑤,𝑚}

(
𝐺𝑗[𝑍] + 𝐺𝑗[𝑄]

)
.

□
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3723

6.2 Enumerating nonlinear terms

We decompose the nonlinear term 𝑁𝐿𝑍,𝑄 in (6.7) as in (6.1), where the transport nonlinearity is
further split as 𝑇𝑁 =

∑2

𝑖=1
𝑇Ω,𝑖𝑁 + 𝑇Θ,𝑖𝑁 + 𝑇𝑒𝑟𝑟𝑁 , where

𝑇Ω,1𝑁 =

||||||
⟨

([

𝐴
( 𝑝
𝑘2

)−1
4
, 𝑼<𝑁∕8

]
⋅ ∇Ω𝑁

)
, 𝐴𝑍

⟩||||||,
𝑇Ω,2𝑁 =

|||||||
⟨

([

𝐴
( 𝑝
𝑘2

)−1
4
, 𝑼<𝑁∕8

]
⋅ ∇Ω𝑁

)
,

𝜕𝑡𝑝

4𝛽|𝑘|𝑝 1

2

𝐴𝑄

⟩|||||||,
𝑇Θ,1𝑁 =

||||||
⟨

([

𝐴
( 𝑝
𝑘2

) 1

4
𝑘,𝑼<𝑁∕8

]
⋅ ∇(𝑖𝛽Θ)𝑁

)
, 𝐴𝑄

⟩||||||,
𝑇Θ,2𝑁 =

|||||||
⟨

([

𝐴
( 𝑝
𝑘2

) 1

4
𝑘,𝑼<𝑁∕8

]
⋅ ∇(𝑖𝛽Θ)𝑁

)
,

𝜕𝑡𝑝

4𝛽|𝑘|𝑝 1

2

𝐴𝑍

⟩|||||||,
𝑇𝑒𝑟𝑟𝑁 =

|||||||
⟨

⎛⎜⎜⎝
⎡⎢⎢⎣
𝜕𝑡𝑝|𝑘|𝑝 1

2

, 𝑼<𝑁∕8

⎤⎥⎥⎦ ⋅ ∇𝐴𝑍𝑁
⎞⎟⎟⎠, 𝐴𝑄

⟩|||||||.

Since |𝜕𝑡𝑝| ≤ 4𝛽|𝑘|𝑝 1

2 for 𝛽 > 1∕2, it is enough to show how to deal with 𝑇Ω,1𝑁 and 𝑇Θ,1𝑁 , as 𝑇Ω,2𝑁
and 𝑇Θ,2𝑁 are completely analogous (𝑇𝑒𝑟𝑟𝑁 will be dealt with separately). Similarly, the reaction
nonlinearity is given by 𝑅𝑁 =

∑2

𝑖=1
𝑅Ω,𝑖𝑁 + 𝑅Θ,𝑖𝑁 + 𝑅𝑒𝑟𝑟𝑁 , where

𝑅Ω,1𝑁 =

||||||
⟨

([

𝐴
( 𝑝
𝑘2

)−1
4
, 𝑼𝑁

]
⋅ ∇Ω<𝑁∕8

)
, 𝐴𝑍

⟩||||||, (6.10)

𝑅Ω,2𝑁 =

|||||||
⟨

([

𝐴
( 𝑝
𝑘2

)−1
4
, 𝑼𝑁

]
⋅ ∇Ω<𝑁∕8

)
,
𝜕𝑡𝑝

4𝛽𝑘𝑝
1

2

𝐴𝑄

⟩|||||||, (6.11)

𝑅Θ,1𝑁 =

||||||
⟨

([

𝐴
( 𝑝
𝑘2

) 1

4
𝑘,𝑼𝑁

]
⋅ ∇(𝑖𝛽Θ)<𝑁∕8

)
, 𝐴𝑄

⟩||||||, (6.12)

𝑅Θ,2𝑁 =

|||||||
⟨

([

𝐴
( 𝑝
𝑘2

) 1

4
𝑘,𝑼𝑁

]
⋅ ∇(𝑖𝛽Θ)<𝑁∕8

)
,

𝜕𝑡𝑝

4𝛽|𝑘|𝑝 1

2

𝐴𝑍

⟩|||||||, (6.13)

𝑅𝑒𝑟𝑟𝑁 =

|||||||
⟨

⎛⎜⎜⎝
⎡⎢⎢⎣
𝜕𝑡𝑝|𝑘|𝑝 1

2

, 𝑼𝑁

⎤⎥⎥⎦ ⋅ ∇𝐴𝑍<𝑁∕8
⎞⎟⎟⎠, 𝐴𝑄

⟩|||||||. (6.14)
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3724 BEDROSSIAN et al.

Finally, the remainder reads as

 =
∑
𝑁∈𝑫

∑
𝑁∕8≤𝑁′≤𝑁

|||||||
⟨

([

𝐴
( 𝑝
𝑘2

)−1
4
, 𝑼𝑁

]
⋅ ∇Ω𝑁′

)
, 𝐴𝑍 +

𝜕𝑡𝑝

4𝛽𝑘𝑝
1

2

𝐴𝑄

⟩|||||||
+

|||||||
⟨

([

𝐴
( 𝑝
𝑘2

) 1

4
𝑘,𝑼𝑁

]
⋅ ∇(𝑖𝛽Θ)𝑁′

)
, 𝐴𝑄 +

𝜕𝑡𝑝

4𝛽𝑘𝑝
1

2

𝐴𝑍

⟩|||||||
+

|||||||
⟨

⎛⎜⎜⎝
⎡⎢⎢⎣
𝜕𝑡𝑝|𝑘|𝑝 1

2

, 𝑼𝑁

⎤⎥⎥⎦ ⋅ ∇𝐴𝑍𝑁′
⎞⎟⎟⎠, 𝐴𝑄

⟩|||||||. (6.15)

In this section we prove the following.

Proposition 6.2. Under the bootstrap hypothesis one has

∑
𝑁>8

𝑇𝑁 ≲
∑

𝑗∈{𝜆,𝑤}

𝛿(𝐺𝑗[𝑍] + 𝐺𝑗[𝑄]) + 𝛿
−1𝜀2

(
𝐺𝑗[Ω] + 𝐺𝑗[∇𝐿Θ]

)
+ 𝛿

𝜀2

𝑡
3

2

(6.16)

∑
𝑁>8

𝑅𝑁 ≲ 𝛿𝐺
𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

+
∑

𝑗∈{𝜆,𝑤}

𝛿(𝐺𝑗[𝑍] + 𝐺𝑗[𝑄]) + 𝜀
2𝐺𝑣

𝜆
[ℎ] + 𝛿−1𝜀2𝑡2+2𝑠𝐺𝜆[⟨𝜕𝑣⟩−𝑠] (6.17)

+ 𝜀4 +
𝜀3

𝑡
1

2

− 𝜆̇(𝑡)𝛿−1𝜀4,

 ≲ 𝛿
𝜀2

𝑡
3

2

, (6.18)

𝐿𝑍,𝑄 ≤ 1

2
(1 −

1

2𝛽
)(𝐺𝑚[𝑍] + 𝐺𝑚[𝑄]),

div ≲ 𝜀3

𝑡2
,

Δ𝑡 ≲ 𝛿𝐺𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

+
𝜀3

𝑡
1

2

(6.19)

+
∑

𝑗∈{𝜆,𝑤}

𝛿𝐺𝑗[𝑄] + 𝛿
−1𝜀2

(
𝐺𝑣
𝑗
[1 − (𝑣′)2] + 𝐺𝑣

𝑗
[⟨𝜕𝑣⟩−1𝑣′′] + ⟨𝑡⟩−2𝑠𝐺𝑣

𝑗
[|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′]).

Using the above bounds in the energy inequality (6.5), the proof of (B1) follows from an
integration of (6.5) on (1, 𝑡), the use of the bootstrap hypothesis (H1)–(H3), (5.6), and 𝜀𝑡1∕2 ≤ 𝛿.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3725

6.3 Transport nonlinearities

In this section, we control the transport nonlinearities, defined in Section 6.2, to prove (6.16). First,
by the bootstrap hypothesis (H2), Proposition 5.1 and (H4) we get

‖𝑼(𝑡)‖𝜆,𝜎−6 ≤ ‖‖‖∇⟂Ψ≠(𝑡)‖‖‖𝜆,𝜎−6 + ‖‖‖ℎ∇⟂Ψ≠(𝑡)‖‖‖𝜆,𝜎−6 + ‖𝑣̇‖𝜆,𝜎−6 ≲ 𝜀

⟨𝑡⟩ 32 . (6.20)

As mentioned already, we present only the proof for the terms 𝑇Ω,1𝑁 , 𝑇Θ,1𝑁 and 𝑇𝑒𝑟𝑟𝑁 .

6.3.1 Bound on 𝑇Ω,1𝑁

For any Fourier multiplier𝑚1,𝑚2 and any function 𝑓 one has

[𝑚1𝑚2, 𝑓] = 𝑚1[𝑚2, 𝑓] + [𝑚1, 𝑓]𝑚2. (6.21)

Since 𝑝−1∕4𝐴 = 𝑚−1𝑝−1∕4(𝑚𝐴), using (6.21) we rewrite 𝑇Ω,1𝑁 ≤ 𝑇Ω,𝐴𝑁 + 𝑇
Ω,𝑝
𝑁 + 𝑇Ω,𝑚𝑁 with

𝑇Ω,𝐴𝑁 =

||||||
⟨
(𝑚−1

( 𝑝
𝑘2

)−1
4
([𝑚𝐴,𝑼<𝑁∕8] ⋅ ∇Ω𝑁)), 𝐴𝑍

⟩||||||,
𝑇
Ω,𝑝
𝑁 =

||||||
⟨
(𝑚−1

[( 𝑝
𝑘2

)−1
4
, 𝑼<𝑁∕8

]
⋅ ∇(𝑚𝐴Ω)𝑁), 𝐴𝑍

⟩||||||,
𝑇Ω,𝑚𝑁 =

|||⟨([𝑚−1,𝑼<𝑁∕8] ⋅ ∇(𝑚𝐴𝑍)𝑁), 𝐴𝑍
⟩|||.

Recall that on the support of the integral we always have (6.2).

∙ Bound on 𝑇Ω,𝑝𝑁 . Writing down this term and using that |𝑚| ≈ 1, we have
𝑇
Ω,𝑝
𝑁 ≲

∑
𝑘,𝓁

∫
ℝ2

 𝑝,1𝑁 +  𝑝,2𝑁 ,

where we define

 𝑝,1𝑁 =
|(𝑝𝓁(𝜉)∕𝓁2) 14 − (

𝑝𝑘(𝜉)∕𝑘
2
) 1
4 |

(𝑝𝑘(𝜂)∕𝑘2)
1

4

|𝓁, 𝜉||𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|𝐴𝑍|𝓁(𝜉)𝑁|𝐴𝑍|𝑘(𝜂),
 𝑝,2𝑁 =

|(𝑝𝑘(𝜂)∕𝑘2) 14 − (
𝑝𝑘(𝜉)∕𝑘

2
) 1
4 |

(𝑝𝑘(𝜂)∕𝑘2)
1

4

|𝓁, 𝜉||𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|𝐴𝑍|𝓁(𝜉)𝑁|𝐴𝑍|𝑘(𝜂).
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3726 BEDROSSIAN et al.

We claim that  𝑝,1𝑁 and  𝑝,2𝑁 are bounded in a way that is consistent with (6.16). To control  𝑝,1𝑁 ,
by the elementary identity

𝑎
1

4 − 𝑏
1

4 =
𝑎 − 𝑏

(𝑎
1

4 + 𝑏
1

4 )(𝑎
1

2 + 𝑏
1

2 )

,

we deduce|||||||
(
𝑝𝓁(𝜉)

𝓁2

) 1

4

−

(
𝑝𝑘(𝜉)

𝑘2

) 1

4

||||||| =
|( 𝜉
𝓁
− 𝑡) + (

𝜉

𝑘
− 𝑡)|

((𝑝𝓁(𝜉)∕𝓁2)
1

2 + (𝑝𝑘(𝜉)∕𝑘2)
1

2 )

| 𝜉
𝓁
−

𝜉

𝑘
|

((𝑝𝓁(𝜉)∕𝓁2)
1

4 + (𝑝𝑘(𝜉)∕𝑘2)
1

4 )

≲ |𝑘 − 𝓁| |𝜉||𝑘𝓁| 1

(1 + | 𝜉
𝑘
− 𝑡|)

(
𝑝𝑘(𝜉)

𝑘2

) 1

4

. (6.22)

For  𝑝,2𝑁 , by the mean value theorem, there is 𝜉′ between 𝜂 and 𝜉 such that

|||||||
(
𝑝𝑘(𝜂)

𝑘2

) 1

4

−

(
𝑝𝑘(𝜉)

𝑘2

) 1

4

||||||| ≲ |𝜂 − 𝜉| 1|𝑘|(1 + | 𝜉′
𝑘
− 𝑡|)

(
𝑝𝑘(𝜉

′)

𝑘2

) 1

4

.

Therefore, the most dangerous term will appear in  𝑝,1𝑁 , since there is a loss of order |𝜉|∕|𝓁|.
Hence, we only deal with  𝑝,1𝑁 . By means of (6.22) and (4.21), we have

|||||||
(
𝑝𝓁(𝜉)

𝓁2

) 1

4

−

(
𝑝𝑘(𝜉)

𝑘2

) 1

4

|||||||
(
𝑝𝑘(𝜂)

𝑘2

)−1
4 |𝓁, 𝜉| ≲ 𝟙𝑘≠𝓁⟨𝜂 − 𝜉, 𝑘 − 𝓁⟩3 |𝜉|2|𝑘|2 1

(1 + | 𝜉
𝑘
− 𝑡|) . (6.23)

We now have to consider different cases, depending on intermediate, short and long times.

⋄ Intermediate times. If 𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝑘,𝜉 , combining (6.23) with Lemma 4.8 and (4.11), we get

||||||
(
𝑝𝓁(𝜉)

𝓁2

) 1

4
−

(
𝑝𝑘(𝜉)

𝑘2

) 1

4

||||||(
𝑝𝑘(𝜂)

𝑘2

) 1

4

|𝓁, 𝜉|𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒𝐼 ≲ 𝟙𝑘≠𝓁⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩7𝑡2
√
𝜕𝑡𝑤𝑘(𝜂)

𝑤𝑘(𝜂)

√
𝜕𝑡𝑤𝓁(𝜉)

𝑤𝓁(𝜉)
,

(6.24)

where in the last line we used 𝑡 ≈ |𝜉∕𝑘|. Applying (5.1) we obtain
∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 𝑝,1𝑁 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒
𝐼 ≲ 𝑡2‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖‖‖

√
𝜕𝑡𝑤

𝑤
𝐴𝑍

‖‖‖‖‖‖
2

≲ 𝜀𝑡
1

2 𝐺𝑤[𝑍] ≲ 𝛿𝐺𝑤[𝑍]. (6.25)

We now have to consider 𝑡 ∉ 𝐼𝑘,𝜂 ∩ 𝐼𝑘,𝜉 . In this case, either |𝜉∕𝑘 − 𝑡| ≳ |𝜉∕𝑘2| or |𝜂∕𝑘 − 𝑡| ≳|𝜂∕𝑘2|. Hence, upon paying Sobolev regularity for the low frequencies, we can always recover
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3727

a derivative in 𝑣 in (6.23). More precisely, from (6.23), using (4.21) if necessary, notice that||||||
(
𝑝𝓁(𝜉)

𝓁2

) 1

4
−

(
𝑝𝑘(𝜉)

𝑘2

) 1

4

||||||(
𝑝𝑘(𝜂)

𝑘2

) 1

4

|𝓁, 𝜉|𝟙𝑡∈𝐼𝑐
𝑘,𝜂
∪𝐼𝑐
𝑘,𝜉
𝜒𝐼 ≲ 𝟙𝑘≠𝓁⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩5|𝜉|.

Since 2max{
√|𝜂|,√|𝜉|} ≤ 𝑡, then |𝜉| ≤ 𝑡2−2𝑠|𝜉|𝑠 ≤ 𝑡2−2𝑠|𝓁, 𝜉| 𝑠2 |𝑘, 𝜂| 𝑠2 . Thus, again from (5.1)

we get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 𝑝,1𝑁 𝟙𝑡∈𝐼𝑐
𝑘,𝜂
∪𝐼𝑐
𝓁,𝜉
𝜒𝐼 ≲ 𝑡2−2𝑠‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖

2

≲ 𝛿𝐺𝜆[𝑍],

which is consistent with (6.16).
⋄ Short times. For 𝑡 ∈ 𝐼𝑘,𝜉 , since |𝜉∕𝑘|2 ≈ 𝑡2 ≲ 𝑡2−2𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 from (6.23) and (5.1) we deduce

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 𝑝,1𝑁 𝟙𝑡∈𝐼𝑘,𝜉𝜒
𝑆 ≲ 𝑡2−2𝑠‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖

2

≲ 𝛿𝐺𝜆[𝑍]. (6.26)

When 𝑡 ∈ 𝐼𝑐
𝑘,𝜉
, the gain of one derivative in (6.23) is not enough. Thus we crucially use the

bounds on Ω. First, we notice that

|𝜉||𝓁| |
𝜉

𝑘
− 𝑡 + 𝑡|

1 + | 𝜉
𝑘
− 𝑡| ≤ |𝜉||𝓁| ⎛⎜⎜⎝

𝑡

1 + | 𝜉
𝑘
− 𝑡| + 1

⎞⎟⎟⎠.
Then, using the inequality above in (6.23), we get

 𝑝,1𝑁 𝟙𝑡∈𝐼𝑐
𝑘,𝜉
𝜒𝑆 ≲ 𝟙𝑘≠𝓁𝟙𝑡∈𝐼𝑐

𝑘,𝜉
𝜒𝑆(1 + 2),

where we define

1 = |𝜉||𝓁| 𝑡

1 + | 𝜉
𝑘
− 𝑡| |𝐴𝑍|𝓁(𝜉)𝑁|𝐴𝑍|𝑘(𝜂)⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩8|𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8,

2 = |𝜉||𝓁| 1

(1 + | 𝜉
𝓁
− 𝑡|) 12 |𝐴Ω̂|𝓁(𝜉)𝑁|𝐴𝑍|𝑘(𝜂)⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩8|𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8.

Notice that to write 2 we have used the definition of 𝑍. To control 1 we observe that
|𝜉||𝓁| 𝑡

1 + | 𝜉
𝑘
− 𝑡|𝟙𝑡∈𝐼𝑐𝑘,𝜉 𝜒𝑆 ≲ |𝜉||𝓁| 𝑡

(1 + | 𝜉
𝑘
− 𝑡|) 12 𝟙𝑡∈𝐼𝑐𝑘,𝜉 𝜒𝑆 ≲ 𝑡 |𝜉||𝓁| |𝑘||𝜉| 12 𝜒𝑆 ≲ 𝑡2−2𝑠⟨𝑘 − 𝓁⟩|𝑘, 𝜂|

𝑠

2 |𝓁, 𝜉| 𝑠2 .
(6.27)

In this way,

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

1𝟙𝑘≠𝓁𝟙𝑡∈𝐼𝑐
𝑘,𝜉
𝜒𝑆 ≲ 𝑡2−2𝑠‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖

2

≲ 𝛿𝐺𝜆[𝑍].
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3728 BEDROSSIAN et al.

Similarly, to control 2, if 𝑡 ∈ 𝐼𝓁,𝜉 then |𝜉∕𝓁| ≲ 𝑡 ≲ 𝑡1−2𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 . If 𝑡 ∈ 𝐼𝑐
𝓁,𝜉

we can argue
as in (6.27). Therefore, using (5.1), we have∑

𝑁>8

∑
𝑘,𝓁

∫
ℝ2

2𝟙𝑘≠𝓁𝟙𝑡∈𝐼𝑐
𝑘,𝜉
𝜒𝑆 ≲ 𝑡1−2𝑠‖‖𝑼≠‖‖𝜆,𝜎−6 ‖‖‖‖|∇| 𝑠2 𝐴Ω‖‖‖‖ ‖‖‖‖|∇| 𝑠2AZ‖‖‖‖

≲ 𝛿𝐺𝜆[𝑍] + 𝛿
−1𝜀2𝐺𝜆[Ω],

which agrees with (6.16).
⋄ Long times. In this case, if |𝜉| ≤ |𝜂|we know that |𝜉∕𝑘 − 𝑡| ≳ 𝑡. If |𝜉| ≥ |𝜂|, using (4.21) we have

1

1 + | 𝜉
𝑘
− 𝑡| ≲ ⟨𝜂 − 𝜉⟩ 1

1 + | 𝜂
𝑘
− 𝑡| ≲ ⟨𝜂 − 𝜉⟩ 1⟨𝑡⟩ . (6.28)

Therefore, we always gain factor of times from the denominator in (6.23). This implies

|𝜉|2|𝑘|2 1

(1 + | 𝜉
𝑘
− 𝑡|)𝜒𝐿 ≲ ⟨𝜂 − 𝜉⟩2𝑡1−𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 .

Thus, using the bound above in (6.23) we get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 𝑝,1𝑁 𝜒𝐿 ≲ 𝑡1−𝑠‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖
2

≲
𝜀

𝑡
1

2
+𝑠

‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖
2

≲ 𝜀𝐺𝜆[𝑍]. (6.29)

This shows that  𝑝,1𝑁 produces the bound (6.16). As a consequence, the bound on𝑇Ω,𝑝𝑁 is proven.

∙ Bound on 𝑇𝐴𝑁 . Turning to 𝑇
𝐴
𝑁 , we write the commutator in each of its components as

[𝐴,𝑼<𝑁∕8] = [e
𝜆|⋅|𝑠 , 𝑼<𝑁∕8]⟨⋅⟩𝜎𝐽 + e𝜆|⋅|𝑠 [⟨⟩𝜎,𝑼<𝑁∕8]𝐽 + e𝜆|⋅|𝑠⟨⋅⟩𝜎[𝐽,𝑼<𝑁∕8]

and bound |𝑇Ω,𝐴𝑁 | ≲∑
𝑘,𝓁

∫
ℝ2

 1𝑁 +  2𝑁 +  𝐽𝑁, (6.30)

where

 1𝑁 =
(
𝑝𝓁(𝜉)

𝑝𝑘(𝜂)

) 1

4 |𝑘| 12
|𝓁| 12 |||e𝜆(|𝑘,𝜂|𝑠−|𝓁,𝜉|𝑠) − 1||| ||𝓁, 𝜉||𝑼̂𝑘−𝓁(𝜂 − 𝜉)|<𝑁∕8|𝐴𝑍𝓁(𝜉)|𝑁|𝐴𝑍𝑘(𝜂)|,

 2𝑁 =
(
𝑝𝓁(𝜉)

𝑝𝑘(𝜂)

) 1

4 |𝑘| 12
|𝓁| 12 e𝜆(|𝑘,𝜂|

𝑠−|𝓁,𝜉|𝑠) |||||𝑘, 𝜂
𝜎

𝓁, 𝜉
𝜎 − 1

||||| |𝓁, 𝜉||𝑼̂𝑘−𝓁(𝜂 − 𝜉)|<𝑁∕8|𝐴𝑍𝓁(𝜉)|𝑁|𝐴𝑍𝑘(𝜂)|,
 𝐽𝑁 =

(
𝑝𝓁(𝜉)

𝑝𝑘(𝜂)

) 1

4 |𝑘| 12
|𝓁| 12 e𝜆(|𝑘,𝜂|

𝑠−|𝓁,𝜉|𝑠) 𝑘, 𝜂𝜎
𝓁, 𝜉

𝜎

||||𝐽𝑘(𝜂)𝐽𝓁(𝜉)
− 1

|||| |𝓁, 𝜉|
×|𝑼̂𝑘−𝓁(𝜂 − 𝜉)|<𝑁∕8|𝐴𝑍𝓁(𝜉)|𝑁|𝐴𝑍𝑘(𝜂)|.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3729

That  1𝑁 and  2𝑁 satisfy bounds that comply with (6.16) follows from an argument analogous to

[8, Section 5], thanks to (4.20) and the fact that 𝜀𝑡
1

2 ≤ 𝛿. We therefore only focus on the more
problematic term  𝐽𝑁 . It is convenient to split  𝐽𝑁 as

 𝐽𝑁 =  𝐽𝑁𝟙𝑡≤ 1

2
min{

√|𝜂|,√|𝜉|} +  𝐽𝑁(𝟙𝑡∈𝐷 + 𝟙𝑡∈𝐷𝑐 ), (6.31)

where the difficult domain is defined as

𝐷 = 𝐼𝑘,𝜂 ∩ 𝐼𝑘,𝜉 ∩ {𝑘 ≠ 𝓁} ∩ {𝑡 ≥ 1

2
min{

√|𝜂|,√|𝜉|}}. (6.32)

Using Lemma 4.13, the bounds (4.20) and (6.20), as in [8, Section 5] we get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 𝐽𝑁𝟙𝑡≤ 1

2
min{

√|𝜂|,√|𝜉|} ≲ 𝑡 12 ‖𝑼‖𝜆,𝜎−6‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖
2

≲ 𝛿𝐺𝜆[𝑍],

which is consistent with (6.16). We now turn our attention to the terms where 𝑡 ≥
1

2
min{

√|𝜂|,√|𝜉|}.
The term with 𝑡 ∈ 𝐷 is the most delicate one. In this case, we cannot gain anything from

the commutator. Notice that in this interval we may have a loss in the bound (4.19) and (4.15).
Combining (4.19) with (4.15) and Lemma 4.8 we get

(
𝑝𝓁(𝜉)

𝑝𝑘(𝜂)

) 1

4 |𝑘| 12
|𝓁| 12 e𝜆(|𝑘,𝜂|

𝑠−|𝓁,𝜉|𝑠) ⟨𝑘, 𝜂⟩𝜎⟨𝓁, 𝜉⟩𝜎 ||||𝐽𝑘(𝜂)𝐽𝓁(𝜉)
− 1

|||||𝓁, 𝜉|𝟙𝑡∈𝐷
≲ |𝑘, 𝜂| 𝜂|𝑘|2 1

1 + | 𝜂
𝑘
− 𝑡| ⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩3e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲ 𝑡2

√
𝜕𝑡𝑤𝓁(𝜉)

𝑤𝓁(𝜉)

√
𝜕𝑡𝑤𝑘(𝜂)

𝑤𝑘(𝜂)
⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩3e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 ,

where in the last line we have used that 𝑡 ≈ |𝜂∕𝑘|. Then, using (4.7) and (5.1) we have
∑
𝑘,𝓁

∫
ℝ2

 𝐽𝑁𝟙𝑡∈𝐷 ≲ 𝑡2‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴𝑍

‖‖‖‖‖‖
2

≲ 𝛿𝐺𝑤[𝑍],

which works well with (6.16). For the remaining terms we need to consider two subcases, namely|𝓁| > 100|𝜉| and |𝓁| < 100|𝜉|. In the first scenario, using (4.7) and (4.20), we can repeat the
argument in [8, Section 5] and obtain

∑
𝑘,𝓁

∫
ℝ2

 𝐽𝑁𝟙{𝑡∈𝐷𝑐}∩{|𝓁|>100|𝜉|} ≲ 𝛿𝐺𝜆[𝑍].
When |𝓁| ≤ 100|𝜉|, we can again ignore any gain from the commutator. Indeed, for the terms
we are considering we can always apply (4.17). Then, if 𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝑐𝓁,𝜉 , by (4.19) and since
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3730 BEDROSSIAN et al.

|𝓁, 𝜉| ≲ |𝜉| ≲ |𝜂|, we have
(
𝑝𝓁(𝜉)

𝑝𝑘(𝜂)

) 1

4 |𝑘| 12
|𝓁| 12 e𝜆(|𝑘,𝜂|

𝑠−|𝓁,𝜉|𝑠) ⟨𝑘, 𝜂⟩𝜎⟨𝓁, 𝜉⟩𝜎 ||||𝐽𝑘(𝜂)𝐽𝓁(𝜉)
− 1

|||||𝓁, 𝜉|𝟙{𝑡∈𝐼𝑘,𝜂∩𝐼𝑐𝓁,𝜉∩𝐷𝑐}∩{|𝓁|≤100|𝜉|}
≲ ⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩ 32 e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 |𝜂||𝑘| |𝜂| 12

(1 + | 𝜂
𝑘
− 𝑡|) 12 .

We can now apply the same reasoning done for the terms  𝑝,1𝑁 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑐𝓁,𝜉
, see for example, (6.24).

Namely, as in (6.25), (6.26) and (6.29) we get∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 𝐽𝑁𝟙{𝑡∈𝐷𝑐∩𝐼𝑘,𝜂∩𝐼𝑐𝓁,𝜉 }∩{|𝓁|≤100|𝜉|} ≲ 𝛿(𝐺𝑤[𝑍] + 𝐺𝜆[𝑍]).
For the remaining terms, since we always have 𝑡 ∈ 𝐼𝑐

𝑘,𝜂
∪ 𝐼𝓁,𝜉 we do not lose anything from

𝑝𝓁(𝜉)∕𝑝𝑘(𝜂). Therefore, we simply exploit the fact that |𝜉| ≲ 𝑡2, to get |𝓁, 𝜉| ≲ 𝑡2−2𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 ,
which implies

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 𝐽𝑁𝟙{𝑡∈𝐷𝑐∩𝐼𝑐𝑘,𝜂}∩{|𝓁|≥100|𝜉|} ≲ 𝜀𝑡
1

2
1

𝑡2𝑠

‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖
2

≲ 𝛿𝐺𝜆[𝑍].

As a consequence, 𝑇𝐴𝑁 is bounded as in (6.16), as we wanted.

∙ Bound on 𝑇𝑚𝑁 . Writing this term explicitly and using that |𝑚| ≈ 1 we find
𝑇𝑚𝑁 ≲

∑
𝑘,𝓁

∫
ℝ2

 𝑚,1𝑁 +  𝑚,2𝑁 ,

where

 𝑚,1𝑁 =
|||𝑚−1

𝑘
(𝜉) − 𝑚−1

𝓁
(𝜉)

||||𝓁, 𝜉||𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|𝐴𝑍|𝓁(𝜉)𝑁|𝐴𝑍|𝑘(𝜂),
 𝑚,2𝑁 =

|||𝑚−1
𝑘
(𝜂) − 𝑚−1

𝑘
(𝜉)

||||𝓁, 𝜉||𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|𝐴𝑍|𝓁(𝜉)𝑁|𝐴𝑍|𝑘(𝜂).
Again, we want to show that these terms satisfy (6.16). We are going to proceed in analogy to
whatwas done for the term𝑇Ω,𝑝𝑁 . Recalling the definition of𝑚 (2.29), by themean value theorem
we have that there is 𝜉′ between 𝜂 and 𝜉 such that

|||𝑚−1
𝑘
(𝜂) − 𝑚−1

𝑘
(𝜉)

||| ≲ |𝜂 − 𝜉| 1|𝑘|(1 + (𝑡 − 𝜉′

𝑘
)2)
.

Thus, for  𝑚,2𝑁 we can repeat the arguments done to handle𝑇Ω,𝑝𝑁 . For what concerns  𝑚,1𝑁 , since|𝑒𝑥 − 1| ≤ |𝑥|𝑒𝑥, notice that
|||𝑚−1

𝑘
(𝜉) − 𝑚−1

𝓁
(𝜉)

||| ≲ |||||arctan
(
𝜉

𝑘
− 𝑡

)
− arctan

(
𝜉

𝓁
− 𝑡

)||||| =
|||||||arctan

⎛⎜⎜⎝
𝜉

𝑘𝓁
(𝑘 − 𝓁)

1 + (
𝜉

𝑘
− 𝑡)(

𝜉

𝓁
− 𝑡)

⎞⎟⎟⎠
|||||||,
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3731

where the last equality follows by trigonometric identities. Now we claim that

|||𝑚−1
𝑘
(𝜉) − 𝑚−1

𝓁
(𝜉)

||| ≲ |𝑘 − 𝓁| |𝜉||𝑘𝓁| ⎛⎜⎜⎝
1

1 + | 𝜉
𝑘
− 𝑡| + 1

1 + | 𝜉
𝓁
− 𝑡|

⎞⎟⎟⎠. (6.33)

To prove the inequality above, if |1 + (𝜉∕𝑘 − 𝑡)(𝜉∕𝓁 − 𝑡)| ≥ 16|𝜉∕(𝑘𝓁)||𝑘 − 𝓁| and |𝜉∕𝑘 − 𝑡| ≥
16, |𝜉∕𝓁 − 𝑡| ≥ 16, then (6.33) follows by Taylor’s expansion of the arctan. If |1 + (𝜉∕𝑘 −
𝑡)(𝜉∕𝓁 − 𝑡)| ≤ 16|𝜉∕(𝑘𝓁)||𝑘 − 𝓁| and |𝜉∕𝑘 − 𝑡| ≥ 16, |𝜉∕𝓁 − 𝑡| ≥ 16, then it is enough to use
the uniform boundedness of the arctan andmultiply and divide by 1 + |𝜉∕𝑘 − 𝑡|. When |𝜉∕𝑘 −
𝑡| ≤ 16 or |𝜉∕𝓁 − 𝑡| ≤ 16, (6.33) follows by | arctan(𝑥) − arctan(𝑦)| ≤ |𝑥 − 𝑦|. From (6.33), we
can now obtain an estimate as in (6.23) and argue as done to control  𝑝,1𝑁 to get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 𝑚,1𝑁 ≲ 𝛿(𝐺𝑤[𝑍] + 𝐺𝜆[𝑍]).

6.3.2 Bound on 𝑇Θ,1𝑁

Using (6.21), we rewrite 𝑇Θ,1𝑁 = 𝑇Θ,𝐴𝑁 + 𝑇
Θ,𝑝
𝑁 + 𝑇Θ,𝑚𝑁 + 𝑇Θ,𝑧𝑁 where

𝑇Θ,𝐴𝑁 =

||||||
⟨
(𝑚−1

( 𝑝
𝑘2

) 1

4
𝑘([𝑚𝐴,𝑼<𝑁∕8] ⋅ ∇(𝑖𝛽Θ)), 𝐴𝑄

⟩||||||,
𝑇
Θ,𝑝
𝑁 =

||||||
⟨
(𝑚−1𝑘

[( 𝑝
𝑘2

) 1

4
, 𝑼<𝑁∕8

]
⋅ ∇(𝑖𝑚𝐴𝛽Θ)𝑁), 𝐴𝑄

⟩||||||,
𝑇Θ,𝑚𝑁 =

|||⟨([𝑚−1,𝑼<𝑁∕8] ⋅ ∇(𝑚𝐴𝑄)𝑁), 𝐴𝑄
⟩|||,

𝑇Θ,𝑧𝑁 =

||||||
⟨
(𝑚−1[𝑘,𝑼<𝑁∕8] ⋅ ∇

(
𝑖𝑚𝐴𝛽

( 𝑝
𝑘2

) 1

4
Θ𝑁

)
), 𝐴𝑄

⟩||||||.
The terms 𝑇Θ,𝐴𝑁 and 𝑇Θ,𝑚𝑁 can be bounded with exactly the same arguments used for 𝑇Ω,𝐴𝑁 and
𝑇Ω,𝑚𝑁 . The term 𝑇

Θ,𝑝
𝑁 is equivalent to 𝑇Ω,𝑝𝑁 with the role of (𝑘, 𝜂) and (𝓁, 𝜉) switched. Just notice

that the extra factor of 𝑘 out of the commutator can be easily moved onto the high-frequency part
by paying Sobolev regularity on𝑼. In addition, we need to replace the bounds onΩwith the ones
for ∇𝐿Θ. We do not detail more the bounds for these three terms. On the other hand, we present
the bounds for 𝑇Θ,𝑧𝑁 . Here, we again need to use the bounds available for ∇𝐿Θ.

∙ Bound on 𝑇Θ,𝑧𝑁 . Writing explicitly this term in the Fourier space and using that𝑚 ≈ 1we have

𝑇Θ,𝑧𝑁 ≲
∑
𝑘,𝓁

∫
ℝ2

 Θ
𝑁 , 𝑧 =

∑
𝑘,𝓁

∫
ℝ2

|𝑘 − 𝓁||𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|𝓁, 𝜉|(𝑝𝓁(𝜉)𝓁2

) 1

4 |𝐴Θ̂|𝓁(𝜉)𝑁|AQ|𝑘(𝜂)d𝜂d𝜉.
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3732 BEDROSSIAN et al.

Observe that (
𝑝𝓁(𝜉)

𝓁2

) 1

4 |𝓁, 𝜉| = |𝓁, 𝜉|
|𝓁| 12 𝑝 1

4

𝓁
(𝜉)

𝑝

1

2

𝓁
(𝜉) ≲

⟨
𝜉

𝓁

⟩
1

(1 + | 𝜉
𝓁
− 𝑡|) 12 𝑝

1

2

𝓁
(𝜉). (6.34)

Again, our goal is to bound the above term as in (6.16).

⋄ Intermediate times. When 𝑡 ∈ 𝐼𝓁,𝜉 we need to use Lemma 4.8. In addition, observe that in this

interval ⟨𝜉∕𝓁⟩ ≲ 𝑡1− 𝑠

2 |𝑘, 𝜂| 𝑠2 . Thus, combining (5.1) with the previous inequality we have
∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 Θ,𝑧𝑁 𝟙𝑡∈𝐼𝓁,𝜉𝜒
𝐼 ≲ 𝑡

1−
𝑠

2 ‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴∇𝐿Θ

‖‖‖‖‖‖
‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖

≲ 𝛿𝐺𝜆[𝑄] + 𝛿
−1𝜀2𝐺𝑤[∇𝐿Θ].

Then, if |𝜉| ≥ |𝓁| and 𝑡 ∈ 𝐼𝑐
𝓁,𝜉
, we know that⟨

𝜉

𝓁

⟩
1

(1 + | 𝜉
𝓁
− 𝑡|) 12 𝟙𝑡∈𝐼𝑐𝓁,𝜉𝜒𝐼 ≲

|𝜉||𝓁| |𝓁|
|𝜉| 12 ≲ 𝑡1−2𝑠|𝑘, 𝜂|

𝑠

2 |𝓁, 𝜉| 𝑠2 ,
where in the last inequality we used 2max{

√|𝜂|,√|𝜉|} ≤ 𝑡. When |𝜉| ≤ |𝓁| one simply

observes that since 𝑡 ≤ 2min{|𝜂|, |𝜉|} then 1 ≤ 𝑡−𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 . In this way, since 𝑠 < 1 from
(6.34) and (5.1) we have∑

𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 Θ,𝑧𝑁 𝟙𝑡∈𝐼𝑐
𝓁,𝜉
𝜒𝐼 ≲ 𝑡1−2𝑠‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖,
≲ 𝛿𝐺𝜆[𝑄] + 𝛿

−1𝜀2𝐺𝜆[∇𝐿Θ], (6.35)

as needed for (6.16).
⋄ Short times. If 𝑡 ∈ 𝐼𝓁,𝜉 then ⟨𝜉∕𝓁⟩ ≈ 𝑡 ≤ 𝑡1−2𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 so that we can repeat the argument
done to obtain (6.35). When 𝑡 ∈ 𝐼𝑐

𝓁,𝜉
then⟨

𝜉

𝓁

⟩
1

(1 + | 𝜉
𝓁
− 𝑡|) 12 𝟙𝑡∈𝐼𝑐𝓁,𝜉𝜒𝑆 ≲ max{1,

|𝜉||𝓁| |𝓁|
|𝜉| 12 } ≲ |𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 ,

where we also used 𝑠 > 1∕2. Hence∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 Θ,𝑧𝑁 𝟙𝑡∈𝐼𝑐
𝓁,𝜉
𝜒𝑆 ≲ ‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖ ≲ 𝛿𝐺𝜆[𝑄] + 𝛿−1𝜀2𝐺𝜆[∇𝐿Θ],

consistent with (6.16).
⋄ Long times. Since 𝑡 ≥ 2min{|𝜂|, |𝜉|}, arguing as in (6.28) we get⟨

𝜉

𝓁

⟩
1

(1 + | 𝜉
𝓁
− 𝑡|) 12 𝜒𝐿 ≲ 𝑡−

1

2 ⟨𝜉⟩𝜒𝐿 ≲ 𝑡 12−𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 .
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3733

This implies∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

 Θ,𝑧𝑁 𝜒𝐿 ≲ 𝑡
1

2
−𝑠‖‖𝑼≠‖‖𝜆,𝜎−6‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖ ≲ 𝛿𝐺𝑄𝜆 [𝑄] + 𝛿−1𝜀2𝐺𝜆[∇𝐿Θ].

implying (6.16) for this term as well.

6.3.3 Bound on 𝑇𝑒𝑟𝑟𝑁

We split this term as

𝑇𝑒𝑟𝑟𝑁 ≲
∑
𝑘,𝓁

∫
ℝ2

 𝑒𝑟𝑟,1𝑁 +  𝑒𝑟𝑟,2𝑁 ,

where

 𝑒𝑟𝑟,1𝑁 =

||||||||
𝜕𝑡𝑝𝑘(𝜉)

|𝑘|𝑝 1

2

𝑘
(𝜉)

−
𝜕𝑡𝑝𝓁(𝜉)

|𝓁|𝑝 1

2

𝓁
(𝜉)

|||||||||𝓁, 𝜉||𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|𝐴𝑍|𝓁(𝜉)𝑁|𝐴𝑄|𝑘(𝜂),

 𝑒𝑟𝑟,2𝑁 =

||||||||
𝜕𝑡𝑝𝑘(𝜂)

|𝑘|𝑝 1

2

𝑘
(𝜂)

−
𝜕𝑡𝑝𝑘(𝜉)

|𝑘|𝑝 1

2

𝑘
(𝜉)

|||||||||𝓁, 𝜉||𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|𝐴𝑍|𝓁(𝜉)𝑁|𝐴𝑄|𝑘(𝜂).
To control 𝑇𝑒𝑟𝑟,1𝑁 , we first notice that

||||||||
𝜕𝑡𝑝𝑘(𝜉)

|𝑘|𝑝 1

2

𝑘
(𝜉)

−
𝜕𝑡𝑝𝓁(𝜉)

|𝓁|𝑝 1

2

𝓁
(𝜉)

|||||||| =
||||||||

𝜉

𝑘
− 𝑡

(1 + (
𝜉

𝑘
− 𝑡)2)

1

2

−

𝜉

𝓁
− 𝑡

(1 + (
𝜉

𝓁
− 𝑡)2)

1

2

||||||||.
Then, using the bound

||||||
𝑎

(1 + 𝑎2)
1

2

−
𝑏

(1 + 𝑏2)
1

2

|||||| =
||||||
(𝑎 − 𝑏)(1 + 𝑏2)

1

2 − 𝑏((1 + 𝑎2)
1

2 − (1 + 𝑏2)
1

2 )

(1 + 𝑎2)
1

2 (1 + 𝑏2)
1

2

|||||| ≲ |𝑎 − 𝑏| 1

(1 + 𝑎2)
1

2

,

we get ||||||||
𝜕𝑡𝑝𝑘(𝜉)

|𝑘|𝑝 1

2

𝑘
(𝜉)

−
𝜕𝑡𝑝𝓁(𝜉)

|𝓁|𝑝 1

2

𝓁
(𝜉)

|||||||| ≲ |𝑘 − 𝓁| |𝜉||𝑘𝓁| 1

1 + | 𝜉
𝑘
− 𝑡| ,

which means we can repeat the arguments done for 𝑇𝑝,1𝑁 . For 𝑇𝑒𝑟𝑟,2𝑁 , since

𝜕𝜂

⎛⎜⎜⎝
𝜕𝑡𝑝|𝑘|𝑝 1

2

⎞⎟⎟⎠ = 2
1

𝑘(1 + | 𝜂
𝑘
− 𝑡|2) 32 ,
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3734 BEDROSSIAN et al.

we can again apply the mean value theorem. Overall, we obtain

𝑇𝑒𝑟𝑟𝑁 ≲ 𝛿
∑

𝑗∈{𝜆,𝑤}

(𝐺𝑗[𝑍] + 𝐺𝑗[𝑄]).

Therefore, the proof of (6.16) is completed.

6.4 Reaction nonlinearities

We will decompose a function 𝐹 = 𝐹(𝑡, 𝑘, 𝓁, 𝜂, 𝜉) as

𝐹 = 𝐹(𝑅,𝑅) + 𝐹(𝑁𝑅,𝑅) + 𝐹(𝑅,𝑁𝑅) + 𝐹(𝑁𝑅,𝑁𝑅) + 𝐹𝑆 + 𝐹𝐿, (6.36)

where, recalling the definition of 𝑰𝑘,𝜂 in (4.2), we denote

𝐹(𝑅,𝑅) = 𝐹𝜒𝐼𝟙𝑡∈𝑰𝑘,𝜂∩𝑰𝓁,𝜉 , 𝐹(𝑁𝑅,𝑅) = 𝐹𝜒𝐼𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝓁,𝜉

, 𝐹(𝑅,𝑁𝑅) = 𝐹𝜒𝐼𝟙𝑡∈𝑰𝑘,𝜂∩𝑰𝑐𝓁,𝜉
,

𝐹(𝑁𝑅,𝑁𝑅) = 𝐹𝜒𝐼𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝑐
𝓁,𝜉
, 𝐹𝑆 = 𝐹𝜒𝑆, 𝐹𝐿 = 𝐹𝜒𝐿.

This decomposition will be used in essentially all the reaction terms appearing in (6.10)–(6.14).
Besides the distinction between intermediate, short and long times, among the intermediate times
we need to separate the resonant (R) versus the non-resonant (NR) interactions. As we shall see,
the hardest terms to treat are those of the form 𝑅Ω,𝑖𝑁 in (6.10)–(6.11), on which the toy model has
been constructed. The terms 𝑅Θ,𝑖𝑁 in (6.12)–(6.13) will be simpler to handle.
The goal of this section is to prove that the reaction term satisfies the bound (6.17). Recall that

throughout this section, on the support of the integral we have (6.2).

6.4.1 Bound on 𝑅Ω,𝑖𝑁

The bounds for 𝑅Ω,1𝑁 and 𝑅Ω,2𝑁 are analogous since |𝜕𝑡𝑝|∕(|𝑘|𝑝 1

2 ) ≤ 2. We will then consider just
the first one. We split this term as

𝑅Ω,1𝑁 ≤ 𝑅Ω𝑁,Ψ + 𝑅Ω𝑁,𝑣̇ + 𝑅Ω𝑁,𝛿 + 𝑅Ω𝑁,𝑐𝑜𝑚,
where we use that𝑼 = 𝑣′∇⟂Ψ≠ + (0, 𝑣̇) and we define

𝑅Ω𝑁,Ψ =
∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑍|𝑘(𝜂)(𝐴𝑝−14 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉||Ψ̂≠|𝓁(𝜉)𝑁|Ω̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
𝑅Ω
𝑁,𝛿

=
∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑍|𝑘(𝜂)(𝐴𝑝−14 )𝑘(𝜂)|𝑘| 12 |(ℎ∇⟂Ψ≠)|𝓁(𝜉)𝑁|∇̂Ω|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉 (6.37)

𝑅Ω
𝑁,𝑣̇

=
∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑍|𝑘(𝜂)(𝐴𝑝−14 )𝑘(𝜂)|𝑘| 12 |𝑣̇|(𝜉)𝑁|𝜕𝑣Ω|𝑘(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉 (6.38)

𝑅Ω𝑁,𝑐𝑜𝑚 =
∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑍|𝑘(𝜂)|𝑼|𝓁(𝜉)𝑁|𝐴∇𝑍|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3735

Themain contributionwill be the one given by 𝑅Ω𝑁,Ψ and the term 𝑅
Ω
𝑁,𝛿

can be considered, roughly
speaking, as a perturbation of it. The term 𝑅Ω𝑁,𝑐𝑜𝑚 comes from the commutator which we had to
introduce to deal with the transport nonlinearities. When the velocity is at high frequencies, we
do not need to gain anything from the commutator and we can deal with this term separately.

∙ Bound on 𝑅Ω𝑁,Ψ. In view of the notation introduced in (6.36), we split the term as

𝑅Ω𝑁,Ψ =
∑
𝑘,𝓁

∫
ℝ2

Ω,(𝑅,𝑅)
𝑁,Ψ +Ω,(𝑁𝑅,𝑅)

𝑁,Ψ +Ω,(𝑅,𝑁𝑅)
𝑁,Ψ +Ω,(𝑁𝑅,𝑁𝑅)

𝑁,Ψ +Ω,𝑆
𝑁,Ψ +Ω,𝐿

𝑁,Ψ,

and bound each term in a way that is consistent with (6.17).

⋄ Bound onΩ,(𝑅,𝑁𝑅)
𝑁,Ψ . First of all, observe that on the support of the integral, we have

|𝑘| ≤ 1

4
|𝜂|, 𝐴𝑘(𝜂) ≲ 𝐴𝑘(𝜂), |𝜂𝓁 − 𝑘𝜉| ≤ |𝑘, 𝜂||𝑘 − 𝓁, 𝜂 − 𝜉| ≲ |𝜂||𝑘 − 𝓁, 𝜂 − 𝜉|.

(6.39)
Then, since 𝑡 ≥ 2max{√|𝜂|,√|𝜉|}, from (4.10) we have

𝑝
−
1

4

𝑘
(𝜂)|𝑘| 12 𝟙𝑡∈𝑰𝑘,𝜂𝜒𝐼 ≲

√
𝜕𝑡𝑤𝑘
𝑤𝑘

(𝜂).

Using this and appealing to (4.14), (6.39) we deduce

(𝐴𝑝
−
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉|𝟙𝑡∈𝑰𝑘,𝜂∩𝑰𝑐𝓁,𝜉𝜒𝐼 ≲
√
𝜕𝑡𝑤𝑘(𝜂)

𝑤𝑘(𝜂)

|𝜂| 32
|𝑘|(1 + |𝑡 − 𝜂

𝑘
|) 12 𝐴𝓁(𝜉)e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|

𝑠

≲
|𝜂| 32
|𝑘| 32

𝜕𝑡𝑤𝑘(𝜂)

𝑤𝑘(𝜂)
𝑝
−
3

4

𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

(6.40)

Since 𝑡 ∈ 𝑰𝑐
𝓁,𝜉
, we observe that

(|𝜂||𝑘|
) 3

2

𝑝
−
3

4

𝓁
(𝜉)𝟙𝑡∈𝑰𝑐

𝓁,𝜉
≲

(|𝜂||𝑘|
) 3

2
⟨
𝜉

𝓁

⟩−3
2

≲ ⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩ 32 . (6.41)

Combining (4.11), (6.40) , (6.41), (5.4) and the bootstrap hypothesis (H2) we get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω,(𝑅,𝑁𝑅)
𝑁,Ψ ≲

‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴𝑍

‖‖‖‖‖‖
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ‖‖‖‖‖‖‖𝐴Ω‖𝜆,𝜎−5
≲ 𝛿(𝐺𝑤[𝑍] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

),

as required by (6.17).
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3736 BEDROSSIAN et al.

⋄ Bound onΩ,(𝑁𝑅,𝑅)
𝑁,Ψ . For this term we know that 4|𝓁|2 ≤ |𝜉|. Hence, from (6.2) we deduce

|𝑘| ≤ |𝓁| + 3

16
|𝓁, 𝜉| ≤ 31

64
|𝜉| ≤ 31

624
(|𝑘| + |𝜂|)⟹ |𝑘| ≤ 31

593
|𝜂|. (6.42)

Hence, we always have 𝐴 ≲ 𝐴. We now have to exploit the fact that when exchanging

(𝐴𝑝
−
1

4 )𝑘(𝜂) with (𝐴𝑝
−
1

4 )𝓁(𝜉) we gain derivatives in 𝑣, namely 1∕2 from 𝐴 and 1∕2 from 𝑝
−
1

4 .
More precisely, since 𝑡 ∈ 𝑰𝑐

𝑘,𝜂
∩ 𝑰𝓁,𝜉 , by (4.19) and (4.18) we get

𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝓁,𝜉

(𝐴𝑝
−
1

4 )𝑘(𝜂)|𝑘| 12 ≲ |𝓁|2(1 + |𝑡 − 𝜉

𝓁
|)|𝜉| |𝓁| 12 (𝐴𝑝−14 )𝓁(𝜉)e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

Appealing to Lemma 4.8 and the fact that |𝜂𝓁 − 𝑘𝜉| ≲ |𝓁, 𝜉||𝑘 − 𝓁, 𝜂 − 𝜉| ≲ |𝜉||𝑘 − 𝓁, 𝜂 − 𝜉|,
we have

𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝓁,𝜉

(𝐴𝑝
−
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉| ≲ |𝓁|
𝑝

1

2

𝓁
(𝜉)

|𝓁| 12 (𝐴𝑝 3

4 )𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲
𝜕𝑡𝑤𝓁
𝑤𝓁

(𝜉)|𝓁| 12 (𝐴𝑝 3

4 )𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

Combining the inequality abovewith (4.11), using the bootstrap hypothesis (H2) and the elliptic
estimate (5.4) we get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω,(𝑁𝑅,𝑅)
𝑁,Ψ ≲

‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴𝑍

‖‖‖‖‖‖
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ‖‖‖‖‖‖‖Ω‖𝜆,𝜎−5 ≲ 𝛿(𝐺𝑤[𝑍] + 𝐺𝜀𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐),
whence proving (6.17).

⋄ Bound onΩ,(𝑁𝑅,𝑁𝑅)
𝑁,Ψ . For this term, since 𝑡 ∈ 𝑰𝑐

𝑘,𝜂
∩ 𝑰𝑐

𝓁,𝜉
from (4.17) and (4.19) we deduce

𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝑐
𝓁,𝜉
(𝐴𝑝

−
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉| ≲ |𝑘, 𝜂| 𝑠2 |𝓁, 𝜉|1− 𝑠

2 𝑝−1
𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

Appealing to (4.22), the bootstrap hypothesis (H2) and (5.4), from the inequality above we then
deduce that

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω,(𝑁𝑅,𝑁𝑅)
𝑁,Ψ ≲

1

𝑡𝑠
‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖

‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖‖Ω‖𝜆,𝜎−5 ≲ 𝛿(𝐺𝜆[𝑍] + 𝐺𝜀𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐),
as needed for (6.17).

⋄ Bound on 𝑅Ω,(𝑅,𝑅)𝑁,Ψ . When 𝑡 ∈ 𝑰𝑘,𝜂 ∩ 𝑰𝓁,𝜉 we necessarily have 4|𝑘| ≤ |𝜂| and 4|𝓁| ≤ |𝜉| Indeed,
𝑡|𝑘|,𝜂 ≥ 2√|𝜂| implies that |𝑘| ≤ √|𝜂|∕2. Since |𝑘| ≥ 1, we have √|𝜂| ≥ 2 so that |𝑘| ≤ |𝜂|∕4.
Hence, |𝑘, 𝜂| ≈ |𝜂| and |𝓁, 𝜉| ≈ |𝜉|. Then, on the support of the integrand |𝑘, 𝜂| ≈ |𝓁, 𝜉| so that|𝜂| ≈ |𝜉|. Therefore we can apply the trichotomy Lemma 4.5. If case (b) holds, then we repeat
the same argument done for 𝑅Ω,(𝑁𝑅,𝑁𝑅)𝑁,Ψ and we omit the details.
If we are in the case (a), namely 𝑘 = 𝓁, then appealing to (4.21) and (4.17) we get

(𝐴𝑝
−
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉|𝟙{𝑡∈𝑰𝑘,𝜂∩𝑰𝓁,𝜉 }∩{𝑘=𝓁} ≲ |𝓁||𝜂 − 𝜉|𝑝−1
𝓁
(𝜉)|𝓁| 12 (𝐴𝑝 3

4 )𝓁(𝜉)e
𝑐𝜆|𝜂−𝜉|𝑠 .
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3737

Now observe that since 𝑡 ≥ 2max{√|𝜂|,√|𝜉|}, (4.10) implies
|𝓁|𝑝−1

𝓁
(𝜉)𝜒𝐼𝟙𝑡∈𝑰𝓁,𝜉 ≤ 1|𝓁|(1 + |𝑡 − 𝜉

𝓁
|2)𝜒𝐼𝟙𝑡∈𝑰𝓁,𝜉 ≲ 𝜕𝑡𝑤𝓁

𝑤𝓁
(𝜉).

We also have 𝐴𝑘(𝜂) ≲ 𝐴𝑘(𝜂) and 𝐴𝓁(𝜉) ≲ 𝐴𝓁(𝜉). Using (4.11) and (H2) we deduce

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω,(𝑅,𝑅)
𝑁,Ψ 𝟙𝑘=𝓁 ≲

‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴𝑍

‖‖‖‖‖‖
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ‖‖‖‖‖‖‖Ω‖𝜆,𝜎−4
≲ 𝛿(𝐺𝑤[𝑍] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

In case (c) of Lemma 4.5 one has

|𝜂𝓁 − 𝑘𝜉| ≤ |𝓁||𝜂 − 𝜉| + |𝜉||𝑘 − 𝓁| = |𝓁||𝜂 − 𝜉| + |𝜉||𝑘| |𝑘||𝑘 − 𝓁| ≲ |𝓁|⟨𝜂 − 𝜉, 𝑘 − 𝓁⟩2.
Therefore we can repeat the same argument as above.

⋄ Bound on Ω,𝑆
𝑁,Ψ. When 𝑡 ≤ 2max{√|𝜂|,√|𝜉|}, if 𝑡 ∈ 𝐼𝑘,𝜂 then |𝑘| ≳√|𝜂|. Hence, from (4.19)

we have

𝑝
−
1

4

𝑘
(𝜂)𝜒𝑆 ≲ ⟨𝑘 − 𝓁, 𝜂 − 𝜉⟩ 32 𝑝− 14

𝓁
(𝜉).

Analogously, we can always apply (4.17). Then, if 𝑡 ∈ 𝑰𝑐
𝓁,𝜉

we argue as done for Ω,(𝑁𝑅,𝑁𝑅)
𝑁,Ψ to

obtain ∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω,𝑆
𝑁,Ψ𝟙𝑡∈𝑰𝑐𝓁,𝜉

≲ 𝛿(𝐺𝜆[𝑍] + 𝐺
𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

If 𝑡 ∈ 𝐼𝓁,𝜉 and 𝑡 ≤ 2max{√|𝜂|,√|𝜉|}, then |𝜉| ≲ |𝓁|2. Therefore |𝜂𝓁 − 𝑘𝜉| ≲ |𝓁|2|𝑘 − 𝓁, 𝜂 − 𝜉|,
hence

Ω,𝑆
𝑁,Ψ𝟙𝑡∈𝐼𝓁,𝜉 ≲ (|𝐴𝑍|)𝑘(𝜂)|𝓁|2𝑝−1𝓁 (𝜉)|𝓁| 12 (𝐴𝑝 3

4 |Ψ̂|)𝓁(𝜉)𝑁e𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 |Ω̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8.
Since |𝓁|2𝑝−1

𝓁
(𝜉) ≤ 1 ≲ 𝑡−2𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 , appealing to (H2) we find∑

𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω,𝑆
𝑁,Ψ𝟙𝑡∈𝐼𝓁,𝜉 ≲ 𝛿(𝐺𝜆[𝑍] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

),

as required for (6.17).
⋄ Bound onΩ,𝐿

𝑁,Ψ. In this case, from (4.21) we know that

𝑝
−1∕4

𝑘
(𝜂) + 𝑝

−1∕4

𝓁
(𝜉) ≲

1

𝑡
1

2

⟨𝜂 − 𝜉⟩1∕2. (6.43)

When 𝑡 ∈ 𝐼𝑐
𝓁,𝜉
, in view of (4.17) we find

(𝐴𝑝
−
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉|𝜒𝐿𝟙𝑡∈𝐼𝑐
𝓁,𝜉
≲ 𝟙𝑡∈𝐼𝑐

𝓁,𝜉

1

𝑡
1

2

|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉|1− 𝑠

2 𝑝
−
3

4

𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 ,
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3738 BEDROSSIAN et al.

whence, using (4.24) we get∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω,𝐿
𝑁,Ψ𝟙𝑡∈𝐼𝑐𝓁,𝜉

≲ 𝛿(𝐺𝜆[𝑍] + 𝐺
𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

If 𝑡 ∈ 𝐼𝓁,𝜉 then |𝓁, 𝜉| ≲ |𝜉| so that from (6.43) we have

(𝐴𝑝
−
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉|𝜒𝐿𝟙𝑡∈𝐼𝓁,𝜉 ≲ 1

𝑡
1

2

|𝜉|𝑝−34
𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲
min{|𝜉|, |𝜂|}1−𝑠

𝑡2
|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 |𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

Since 2min{|𝜂|, |𝜉|} ≤ 𝑡 we have 𝑡−2|min{|𝜉|, |𝜂|}|1−𝑠 ≲ 𝑡−1−𝑠, so that∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω,𝐿
𝑁,Ψ𝟙𝑡∈𝐼𝓁,𝜉 ≲ 𝛿(𝐺𝜆[𝑍] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

),

as we wanted.

∙ Bound on 𝑅Ω
𝑁,𝛿

. First observe that

ℎ∇⟂Ψ = ∇⟂(ℎΨ) + (Ψ𝜕𝑣ℎ, 0).

Hence, by the definition (6.37) we have

𝑅Ω
𝑁,𝛿

≤ ∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑍|𝑘(𝜂)(𝐴𝑝−14 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉||(ℎΨ)|𝓁(𝜉)𝑁|Ω̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
+

∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑍|𝑘(𝜂)(𝐴𝑝−14 )𝑘(𝜂)|𝑘| 12 |(Ψ𝜕𝑣ℎ)|𝓁(𝜉)𝑁|𝜕𝑧Ω|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
=𝑅1

𝑁,𝛿
+ 𝑅2

𝑁,𝛿
.

One would like to directly treat these terms as a 𝛿-perturbation of 𝑅Ω𝑁,Ψ, however, this is not
true in general. More precisely, as done in the proof of Proposition 5.2, we first consider the
following paraproduct decomposition in the 𝑣-variable (since 𝑣′ does not depend on 𝑧):

ℎΨ = ℎ𝐻𝑖Ψ𝑙𝑜 + ℎ𝑙𝑜Ψ𝐻𝑖 + ℎ𝐻𝑖Ψ𝐻𝑖, Ψ𝜕𝑣ℎ = Ψ𝑙𝑜(𝜕𝑣ℎ)𝐻𝑖 + Ψ𝐻𝑖(𝜕𝑣ℎ)𝑙𝑜 + Ψ𝐻𝑖(𝜕𝑣ℎ)𝐻𝑖.

and we define
𝑅𝑖
𝑁,𝛿

= 𝑅𝑖
𝛿,𝐿𝐻

+ 𝑅𝑖,𝑧
𝛿,𝐻𝐿

+ 𝑅𝑖,𝑣
𝛿,𝐻𝐿

+ 𝑅𝑖
𝛿,𝐻𝐻

, (6.44)

where the term 𝑅𝑖,𝑧
𝛿,𝐻𝐿

denote the part of 𝑅𝑖
𝛿,𝐻𝐿

with the cut-off 𝜒𝑧 = 𝟙|𝓁|≥16|𝜉′|. Analogously,
𝑅𝑖,𝑣
𝛿,𝐻𝐿

has the cut-off 𝜒𝑣 = 𝟙|𝓁|≤16|𝜉′|. With a slight abuse of notation we omitted the subscript
𝑁.

⋄ Coefficients in (relatively) low frequencies. In the proof of Proposition 5.2 we have seen that we
can treat in the same way the low-high case or high-low with |𝑘| ≥ 16|𝜂|. This because we can
always pay derivatives on the coefficients. Therefore, the most problematic term will be 𝑅1

𝑁,𝛿
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3739

since more derivatives are hitting Ψ. However, the case under consideration can be treated by
reasoning as done for the term 𝑅Ω𝑁,Ψ. More precisely, we first claim that the following inequality
holds true

𝑝3∕4 =
‖‖‖‖‖‖
(|∇| 𝑠2⟨𝑡⟩𝑞 𝐴 +

√
𝜕𝑡𝑤

𝑤
𝐴

)
(−Δ𝐿)

3

4 |𝜕𝑧| 12 (ℎ𝑙𝑜Ψ𝐻𝑖 + 𝜒𝑧ℎ𝐻𝑖Ψ𝑙𝑜))≠‖‖‖‖‖‖
2

≲ 𝛿2𝐺𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

, (6.45)

where 𝜒𝑧
𝑘
(𝑡, 𝜂) = 𝟙|𝑘|≥16|𝜂|. Indeed, first observe that since 𝑣 does not depend on 𝑧, the factor|𝜕𝑧| 12 is always on the stream function. To prove (6.45), one can always use (4.21), (4.17) to move

the multipliers onto Ψ by paying regularity on ℎ. We omit the details of this argument since it
has been done in the proof of Proposition 5.2. Hence, from Young’s convolution inequality, the
bootstrap hypothesis (H3) and Proposition 5.2 we infer

𝑝3∕4 ≲ ‖ℎ‖2𝜆,𝜎−4‖‖‖‖‖‖
(|∇| 𝑠2⟨𝑡⟩𝑞 𝐴 +

√
𝜕𝑡𝑤

𝑤
𝐴

)
(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ)≠‖‖‖‖‖‖
2

≲ 𝛿2𝐺𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

,

where in the last inequality we used (5.3). Having at hand (6.45), we can repeat exactly the same
argument done for 𝑅Ω𝑁,Ψ to conclude that∑

𝑁,𝑀>8

𝑅Ω
𝛿,𝐿𝐻

=
∑

𝑁,𝑀>8

2∑
𝑖=1

𝑅𝑖
𝛿,𝐿𝐻

+ 𝑅𝑖,𝑧
𝛿,𝐻𝐿

≲ 𝛿
∑
𝑁>8

𝑅Ω𝑁,Ψ.

Using the bounds done for 𝑅Ω𝑁,Ψ, we see that also in this case we get a bound consistent with
(6.17).

⋄ Coefficients (truly) at high-frequencies. We now have to deal with the high-low case when |𝑘| ≤
16|𝜂|. In this case, as evident from 𝑅2

𝑁,𝛿
we need to recover some derivative for the term 𝜕𝑣ℎ.

We will treat only 𝑅2
𝑁,𝛿

since the term 𝑅1
𝑁,𝛿

is analogous in this high-low regime. Writing down
the term explicitly one has

𝑅2,𝑣
𝛿,𝐻𝐿

≤ ∑
𝑁,𝑀>8

∑
𝑘,𝓁

∫
ℝ3

|𝐴𝑍|𝑘(𝜂)(𝐴𝑝−14 )𝑘(𝜂)|𝑘| 12 𝜌𝑁(𝜉)𝓁𝟙|𝓁|≤16|𝜉′||𝜉′|ℎ̂(𝜉′)𝑀
× |Ψ̂|𝓁(𝜉 − 𝜉′)<𝑀∕8|𝜕𝑧Ω|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉d𝜉′, (6.46)

where 𝜌𝑁 is the cut-off of the paraproduct decomposition as defined in (1.10). We now have to
exploit the fact that we control the coefficients with a stronger norm. More precisely, by the
definition of 𝐴𝑣, see (2.33), reasoning as in (5.12)–(5.13) we have

(𝐴𝑝
−
1

4 )𝑘(𝜂)|𝜉′| ≲ |𝜉′|⟨ 𝑘

𝜉′

⟩ 1

2

𝐴𝑣(𝜉′)e𝑐𝜆|𝓁,𝜉′−𝜉|𝑠+𝑐𝜆|𝜂−𝜉|𝑠 ≲ |𝜉′| 12 𝐴𝑣(𝜉′)e𝑐𝜆|𝓁,𝜉′−𝜉|𝑠+𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 ,
where we also used the fact that 𝐴 ≲ 𝐴 when |𝓁| ≤ 16|𝜉′|. Hence, since 𝑠 > 1∕2, appealing to
Proposition 5.1 and the bootstrap hypotheses (H2), we infer∑

𝑁,𝑀>8

𝑅2,𝑣
𝛿,𝐻𝐿

≲
‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖‖‖‖‖|𝜕𝑣| 𝑠2 𝐴𝑣ℎ‖‖‖‖‖Ψ‖𝜆,𝜎−4‖Ω‖𝜆,𝜎−4 ≲ 𝛿(𝐺𝜆[𝑍] + 𝜀2𝐺𝑣𝜆[ℎ]),

as needed for (6.17).
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3740 BEDROSSIAN et al.

⋄ The high-high term. Applying the same reasoning of [8], we have

∑
𝑁>8

2∑
𝑖=1

𝑅𝑖
𝛿,𝐻𝐻

≲ 𝛿2
𝜀2

𝑡
3

2

.

∙ Bound on 𝑅Ω
𝑁,𝑣̇

. To control this term, we are going to exploit the consequences of the bootstrap
hypotheses (2.46)–(2.48). Indeed, we recall that to we control 𝑣̇ via (H4) and bounds on .
Notice that we need to recover 𝑠-derivatives but this will be balanced by the extra decay in time
available for (or 𝜕𝑣𝑣̇). From (6.38) we have

𝑅Ω
𝑁,𝑣̇

≲
∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑍|𝑘(𝜂)(𝐴𝑝−14 )𝑘(𝜂)|𝑘| 12 |ˆ̇𝑣|(𝜉)𝑁|𝜕𝑣Ω|𝑘(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
=

∑
𝑘,𝓁

∫
ℝ2

Ω
𝑁,𝑣̇
(𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒

𝐼 + (1 − 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒
𝐼)).

Since Ω is at low frequencies we can always move all the factors |𝑘| to this term. Here, the
most dangerous case is when 𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝑘,𝜉 . Indeed, we know that 𝑣̇ always has non-resonant
regularity since does not depend on 𝑧, whereas the weight 𝐴 is at resonant regularity. Due
to the regularity gap between 𝑤𝑅 and 𝑤𝑁𝑅, we will lose 1∕2 derivatives in 𝑣. In particular,
when 𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝑘,𝜉 and 2max{

√|𝜂|,√|𝜉|} ≤ 𝑡 ≤ 2min{|𝜂|, |𝜉|}, from (4.15), Lemma 4.8 and
the definition of the weight 𝑤, see (4.5), we have

(𝐴𝑝
−
1

4 )𝑘(𝜂)𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒
𝐼 ≲

|𝜂| 12+𝑠
|𝑘| 32

𝜕𝑡𝑤𝑘(𝜂)

𝑤𝑘(𝜂)

𝐴0(𝜉)⟨𝜉⟩𝑠 e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 . (6.47)

Since 𝑡 ∈ 𝐼𝑘,𝜂 (and 𝑠 < 1) we know that |𝜂|1∕2+𝑠∕|𝑘|3∕2 ≲ 𝑡1∕2+𝑠. Hence, combining the
inequality above with (4.11) and (2.48) we get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω
𝑁,𝑣̇
𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒

𝐼 ≲ 𝑡
1

2
+𝑠
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴𝑍

‖‖‖‖‖‖
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤

𝐴0⟨𝜕𝑣⟩𝑠 𝑣̇
‖‖‖‖‖‖‖Ω‖𝜆,𝜎−6

≲ 𝛿𝐺𝑤[𝑍] + 𝛿
−1𝜀2𝑡2+2𝑠𝐺𝑤[⟨𝜕𝑣⟩−𝑠]),

as required by (6.17). For the remaining term, thanks to (4.17) we and (4.13) we know that we
never lose derivatives from 𝐴𝑘(𝜂)∕𝐴0(𝜉). In particular, we have

(𝐴𝑝
−
1

4 )𝑘(𝜂)(1 − 𝟙𝑡∈𝐼𝑐
𝑘,𝜂
𝜒𝐼) ≲ |𝑘, 𝜂| 𝑠2 |𝜉| 𝑠2 𝐴0(𝜉)⟨𝜉⟩𝑠 e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 .

This way, we conclude that

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω
𝑁,𝑣̇
(1 − 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒

𝐼) ≲ 𝜀𝑡
1

2
‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠 𝑣̇

‖‖‖‖‖
≲ 𝛿

1

𝑡
1

2
+𝑠

‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖
2

+ 𝛿−1
𝜀2

𝑡
1

2
+𝑠
𝑡2+2𝑠

‖‖‖‖‖|𝜕𝑣|
𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠 𝑣̇

‖‖‖‖‖
2

.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3741

Since 𝑠 > 1∕2, appealing to (2.47) we get∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Ω
𝑁,𝑣̇
(1 − 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒

𝐼) ≲ 𝛿𝐺𝜆[𝑍] + 𝛿
−1𝜀2𝑡2+2𝑠𝐺𝜆[⟨𝜕𝑣⟩−𝑠𝑣̇]

≲ 𝛿𝐺𝜆[𝑍] + 𝛿
−1𝜀2(⟨𝑡⟩2+2𝑠𝐺𝜆[⟨𝜕𝑣⟩−𝑠] − 𝜆̇(𝑡)𝜀2𝑡2+2𝑠−4),

that is in agreement with (6.17) since 𝑠 < 1.
∙ Bound onΩ

𝑐𝑜𝑚. This is the easiest term to control since we have room to pay regularity on𝑼
in order to get integrability. In particular, since on the support of the integrand |𝑘 − 𝓁, 𝜂 − 𝜉| ≲|𝓁, 𝜉|, by Cauchy-Schwarz and Young’s convolution inequality we get∑

𝑁>8

𝑅Ω𝑁,𝑐𝑜𝑚 ≤ ‖𝐴𝑍‖2‖𝑼‖𝐻𝜎−5 ≲ 𝜀3

𝑡
3

2

,

as needed in (6.17).

6.4.2 Bound on 𝑅Θ,𝑖𝑁

As done in Section 6.4.1, we will consider just the bound for 𝑅Θ,1𝑁 and we split this term as

𝑅Θ,1𝑁 ≲ 𝑅Θ𝑁,Ψ + 𝑅
Θ0
𝑁,Ψ + 𝑅

Θ
𝑁,𝛿

+ 𝑅Θ
𝑁,𝑣̇

+ 𝑅
𝑄
𝑁,𝑐𝑜𝑚.

where we define

𝑅Θ𝑁,Ψ =
∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑄|𝑘(𝜂)(𝐴𝑝 1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉||Ψ̂≠|𝓁(𝜉)𝑁|Θ̂≠|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
𝑅
Θ0
𝑁,Ψ =

∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑄|𝑘(𝜂)(𝐴𝑝 1

4 )𝑘(𝜂)|𝑘| 32 |Ψ̂≠|𝑘(𝜉)𝑁|𝜕𝑣Θ0|(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
𝑅Θ
𝑁,𝛿

=
∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑄|𝑘(𝜂)(𝐴𝑝 1

4 )𝑘(𝜂)|𝑘| 12 |(ℎ∇⟂Ψ≠)|𝓁(𝜉)𝑁|∇̂Θ|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
𝑅Θ
𝑁,𝑣̇

=
∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑄|𝑘(𝜂)(𝐴𝑝 1

4 )𝑘(𝜂)|𝑘| 12 |𝑣̇|(𝜉)𝑁|𝜕𝑣Θ|𝑘(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
𝑅
𝑄
𝑁,𝑐𝑜𝑚 =

∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑄|𝑘(𝜂)|𝑼̂|𝓁(𝜉)𝑁|𝐴∇𝑄|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
Throughout this section, we will make use of the bound (2.42) and, as a direct consequence of
(H2), we also have

‖𝜕𝑣Θ0(𝑡)‖𝜆,𝜎 = 𝛽−1‖𝛽(∇𝐿Θ)0(𝑡)‖𝜆,𝜎 ≲ 𝜀𝑡 12 ≲ 𝛿. (6.48)

In view of the inequality (2.42), the bounds for 𝑅Θ,1𝑁 will be easier with respect to the ones for
𝑅Ω,1𝑁 . In particular, we immediately have a factor 𝜀𝑡−1∕2 from the low frequency part, whereas in
Section 6.4.1 the low frequency contribution give us 𝜀𝑡1∕2.
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3742 BEDROSSIAN et al.

∙ Bound on 𝑅Θ𝑁,Ψ. Following the notation introduced in (6.36), we split the term as

𝑅Θ𝑁,Ψ =
∑
𝑘,𝓁

∫
ℝ2

Θ,(𝑅,𝑅)
𝑁,Ψ +Θ,(𝑁𝑅,𝑅)

𝑁,Ψ +Θ,(𝑅,𝑁𝑅)
𝑁,Ψ +Θ,(𝑁𝑅,𝑁𝑅)

𝑁,Ψ +Θ,𝑆
𝑁,Ψ +Θ,𝐿

𝑁,Ψ.

We now control each term separately.

⋄ Bound on Θ,(𝑅,𝑁𝑅)
𝑁,Ψ . Using |𝜂𝓁 − 𝑘𝜉| ≲ |𝓁, 𝜉||𝑘 − 𝓁, 𝜂 − 𝜉| and 𝑡 ≈ |𝜂∕𝑘|, from (4.14) and

(4.24), we get

(𝐴𝑝
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉|𝟙𝑡∈𝑰𝑘,𝜂∩𝑰𝑐𝓁,𝜉 𝜒𝐼 ≲ |𝓁, 𝜉| |𝜂| 12|𝑘|(1 + |𝑡 − 𝜂

𝑘
|) 12 𝑝

1

4

𝑘
(𝜂)𝑝

−
3

4

𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲ 𝑡
1

2 |𝑘, 𝜂| 𝑠2 |𝓁, 𝜉|1− 𝑠

2 𝑝
−
3

4

𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 𝟙𝑡∈𝑰𝑐

𝓁,𝜉

≲ 𝑡1−2𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 |𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

This way, combining the inequality above with (2.42) and Proposition 5.2, we have

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ,(𝑅,𝑁𝑅)
𝑁,Ψ ≲ 𝑡1−𝑠

‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖
‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4
≲ 𝛿(𝐺𝜆[𝑄] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

), (6.49)

implying (6.17) for this term.
⋄ Bound onΘ,(𝑁𝑅,𝑅)

𝑁,Ψ . This is themost dangerous term sincewe lose to exchange𝑝𝑘(𝜂)with𝑝𝓁(𝜉)
(but we gain when we exchange 𝐴𝑘(𝜂) with 𝐴𝓁(𝜉)). On the support of the integrand we know
4|𝓁|2 ≤ |𝜉| and (6.42), meaning that we have 𝐴 ≲ 𝐴. Then, appealing to (4.18) and (4.19) (with
the role of (𝑘, 𝜂) and (𝓁, 𝜉) switched), we get

(𝐴𝑝
1

4 )𝑘(𝜂)|𝑘| 12 𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝓁,𝜉

𝜒𝐼 = 𝑝
−
1

2

𝑘
(𝜂)(𝐴𝑝

3

4 )𝑘(𝜂)|𝑘| 12 𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝓁,𝜉

𝜒𝐼

≲ 𝑝
−
1

2

𝑘
(𝜂)

|𝓁|(1 + |𝑡 − 𝜉

𝓁
|) 12

|𝜉| 12 |𝜉| 32|𝓁|3(1 + |𝑡 − 𝜉

𝓁
|) 32 |𝓁|

1

2 (𝐴𝑝
3

4 )𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲
|𝑘|⟨𝜂⟩ |𝜉||𝓁|2 𝜕𝑡𝑤𝓁(𝜉)𝑤𝓁(𝜉)

|𝓁| 12 (𝐴𝑝 3

4 )𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲
𝑡|𝜉| 𝜕𝑡𝑤𝓁(𝜉)𝑤𝓁(𝜉)

|𝓁| 12 (𝐴𝑝 3

4 )𝓁(𝜉)e
𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

Since |𝜂𝓁 − 𝑘𝜉| ≲ |𝜉||𝑘 − 𝓁, 𝜂 − 𝜉|, combining the inequality above with (4.11), (2.42) and
Proposition 5.2, we infer

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ,(𝑁𝑅,𝑅)
𝑁,Ψ ≲ 𝑡

‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴𝑄

‖‖‖‖‖‖
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4
≲ 𝛿(𝐺𝑤[𝑄] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

), (6.50)

consistent with (6.17).
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3743

⋄ Bound onΘ,(𝑁𝑅,𝑁𝑅)
𝑁,Ψ . From (4.17) and (4.19) we have

(𝐴𝑝
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉|𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝑐
𝓁,𝜉
𝜒𝐼 ≲ 𝟙𝑡∈𝑰𝑐

𝓁,𝜉
|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉|1− 𝑠

2 𝑝
−
1

2

𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

From (4.23), (2.42) and the elliptic estimate (5.4) we have

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ,(𝑁𝑅,𝑁𝑅)
𝑁,Ψ ≲ 𝑡1−𝑠

‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖
‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4
≲ 𝛿(𝐺𝜆[𝑄] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

), (6.51)

as required for (6.17).
⋄ Bound on Θ,(𝑅,𝑅)

𝑁,Ψ . On the support of the integral we know that 4|𝑘|2 ≤ |𝜂| and 4|𝓁|2 ≤ |𝜉|.
Then, since 𝑘 ≠ 𝓁, we know that we can only have cases (𝑏) or (𝑐) in Lemma 4.5. The case (𝑐)
is straightforward. In case (𝑏)we are in a situation similar toΘ,(𝑁𝑅,𝑁𝑅)

𝑁,Ψ . Indeed, we know that
we can apply (4.17), so that from (4.19) we get

(𝐴𝑝
1

4 )𝑘(𝜂)|𝜂𝓁 − 𝑘𝜉||𝑘| 12 𝟙𝑰𝑘,𝜂∩𝑰𝓁,𝜉𝜒𝐼 ≲ |𝜉|𝑝−12
𝓁
(𝜉)|𝓁| 12 (𝐴𝑝 3

4 )𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

We also have

|𝜉|𝑝−12
𝓁
(𝜉) ≲

⟨
𝜉

𝓁

⟩
𝜕𝑡𝑤𝓁(𝜉)

𝑤𝓁(𝜉)
≲ 𝑡

𝜕𝑡𝑤𝓁(𝜉)

𝑤𝓁(𝜉)
. (6.52)

Therefore, thanks to (2.42) and (5.4) we conclude that

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ,(𝑅,𝑅)
𝑁,Ψ ≲ 𝑡

‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴𝑄

‖‖‖‖‖‖
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4
≲ 𝛿(𝐺𝑤[𝑄] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

), (6.53)

in agreement with (6.17).
⋄ Bound onΘ,𝑆

𝑁,Ψ. From (4.17) and (4.19) we deduce

(𝐴𝑝
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉|𝜒𝑆 ≲ |𝓁, 𝜉|𝑝−12
𝓁
(𝜉)|𝓁| 12 (𝐴𝑝 3

4 )𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

If 𝑡 ∈ 𝐼𝓁,𝜉 one has |𝓁, 𝜉|𝑝−12𝓁 (𝜉) ≲ 𝑡1−2𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 . If 𝑡 ∈ 𝐼𝑐
𝓁,𝜉

we use (4.23), so that, in general
we have

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ,𝑆
𝑁,Ψ𝟙𝑡∈𝐼𝑐𝓁,𝜉

≲ 𝑡1−𝑠
‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖

‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4
≲ 𝛿

(
𝐺𝜆[𝑄] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

)
, (6.54)

as needed for (6.17).
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3744 BEDROSSIAN et al.

⋄ Bound onΘ,𝐿
𝑁,Ψ. When 𝑡 ∈ 𝐼𝑐

𝓁,𝜉
, in view of (4.19) and (4.17) we find

(𝐴𝑝
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉|𝜒𝐿𝟙𝑡∈𝐼𝑐
𝓁,𝜉
≲ 𝟙𝑡∈𝐼𝑐

𝓁,𝜉
|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉|1− 𝑠

2 𝑝
−
1

2

𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 ,

whence, using (4.23) we get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ,𝐿
Ψ 𝟙𝑡∈𝐼𝑐

𝓁,𝜉
≲ 𝛿(𝐺𝜆[𝑄] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

). (6.55)

If 𝑡 ∈ 𝐼𝓁,𝜉 , then |𝓁, 𝜉| ≲ |𝜉|. Since 𝑡 ≥ 2min{|𝜂|, |𝜉|} we also have 𝑝

1

4

𝑘
(𝜂) ≲ 𝑡

1

2 ⟨𝑘⟩ 12 and
𝑝
−3∕4

𝓁
(𝜉) ≲ (|𝑘|⟨𝑡⟩)−3∕2. Hence

(𝐴𝑝
1

4 )𝑘(𝜂)|𝑘| 12 |𝜂𝓁 − 𝑘𝜉|𝜒𝐿𝟙𝑡∈𝐼𝓁,𝜉 ≲ 𝑡 12 ⟨𝑘⟩ 12 |𝜉|𝑝−34𝓁 (𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲
|min{|𝜉|, |𝜂|}|1−𝑠

𝑡
|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 |𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

Exploiting the bound 𝑡−1|min{|𝜉|, |𝜂|}|1−𝑠 ≲ 𝑡−𝑠, we get
∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ,𝐿
Ψ 𝟙𝑡∈𝐼𝓁,𝜉 ≲

‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖
‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 (−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4 (6.56)

≲
𝛿

𝑡

‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖
‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 (−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖ ≲ 𝛿(𝐺𝜆[𝑄] + 𝐺𝜀𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐),
as required in (6.17).

∙ Bound on 𝑅Θ0𝑁,Ψ. For this term, since Ψ is at the same frequency 𝑘, we can move the multiplier

𝐴𝑝
1

4 without losing derivatives in the high-frequency part. In addition, we only need to recover
one derivative in 𝑧. Observe that, appealing to (4.21) and (4.17), we have

(𝐴𝑝
1

4 )𝑘(𝜂)|𝑘| 32 ≲ |𝑘|
(|𝑘|2 + |𝜉 − 𝑘𝑡|2) 12 |𝑘|

1

2 (𝐴𝑝
3

4 )𝑘(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 . (6.57)

Then, we split this term as follows

𝑅
Θ0
𝑁,Ψ =

∑
𝑘,𝓁

∫
ℝ2

Θ0
𝑁,Ψ(𝜒

𝑆 + (1 − 𝜒𝑆)(𝟙𝑡∈𝐼𝑘,𝜉 + 𝟙𝑡∈𝐼𝑐𝑘,𝜉
)), (6.58)

where the cut-off are defined in (6.4). Then, when 𝑡 ∈ 𝐼𝑘,𝜉 , combining (6.57) with Lemma 4.8
we have

(𝐴𝑝
1

4 )𝑘(𝜂)|𝑘| 32 𝟙𝑡∈𝐼𝑘,𝜉 (1 − 𝜒𝑆) ≲ 𝜕𝑡𝑤𝑘(𝜉)

𝑤𝑘(𝜉)
|𝑘| 12 (𝐴𝑝 3

4 )𝑘(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3745

Since on the support of the integrand |𝜂| ≈ |𝜉|, in view of (4.12) and (6.48) we get

∑
𝑁>8

Θ0
𝑁,Ψ𝟙𝑡∈𝐼𝑘,𝜉 (1 − 𝜒

𝑆) ≲

‖‖‖‖‖‖
(√

𝜕𝑡𝑤

𝑤
𝐴 +

|∇| 𝑠2⟨𝑡⟩𝑠 𝐴
)
𝑄

‖‖‖‖‖‖
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ‖‖‖‖‖‖‖𝜕𝑣Θ0‖𝜆,𝜎−6
≲ 𝛿(𝐺𝑤[𝑄] + 𝐺𝜆[𝑄] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

When 𝑡 ∈ 𝐼𝑐
𝑘,𝜉
, 𝑡 ≥ 2max{√|𝜂|,√|𝜉|} and |𝑘𝑡|∕2 ≤ |𝜉| ≤ 2|𝑘𝑡|, since 𝑠 > 1∕2 observe that

|𝑘|
(|𝑘|2 + |𝜉 − 𝑘𝑡|2) 12 ≲

|𝑘|
(|𝑘|2 + |𝜉|2∕|𝑘|2) 12 ≲

|𝑘|
|𝜉| 12 ≲

|𝜉| 12
𝑡

≲ 𝑡
−
1

2
−𝑠|𝜉|𝑠,

which, since 𝑞 ≤ 1∕4 + 𝑠∕2, implies
∑
𝑁>8

Θ0
𝑁,Ψ𝟙{𝑡∈𝐼𝑐𝑘,𝜉 }∩{|𝑘𝑡|∕2≤|𝜉|≤2|𝑘𝑡|}(1 − 𝜒𝑆) ≲ 𝑡−𝑞‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖

‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑞 𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖‖𝜕𝑣Θ0‖𝜆,𝜎−6
≲ 𝛿(𝐺𝜆[𝑄] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

If |𝜉| ≤ |𝑘𝑡|∕2 or |𝜉| ≥ 2|𝑘𝑡| we have
|𝑘|

(|𝑘|2 + |𝜉 − 𝑘𝑡|2) 12 𝟙|𝜉|≤|𝑘𝑡|∕2 ≲
1

𝑡
,

|𝑘|
(|𝑘|2 + |𝜉 − 𝑘𝑡|2) 12 𝟙|𝜉|≥2|𝑘𝑡| ≲

1|𝜉∕𝑘| ≲ 1

𝑡

⟨
𝜉

𝑘𝑡

⟩−1
.

(6.59)
Then, from (5.5), (6.57) and (H1) we obtain∑
𝑁>8

Θ0
𝑁,Ψ𝟙𝑡∈𝐼𝑐𝑘,𝜉∩{|𝜉|≤|𝑘𝑡|∕2}∩{|𝜉|≥2|𝑘𝑡|}(1 − 𝜒𝑆) ≲ 1

𝑡
‖𝐴𝑄‖‖‖‖‖𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ‖‖‖‖‖𝜕𝑣Θ0‖𝜆,𝜎−6 ≲ 𝜀3

𝑡
1

2

.

When 𝑡 ≤ 2max{√|𝜂|,√|𝜉|} we use 1 ≲ 𝑡−2𝑠|𝑘, 𝜂| 𝑠2 |𝑘, 𝜉| 𝑠2 , to get
∑
𝑁>8

Θ0
𝑁,Ψ𝜒

𝑆 ≲ 𝑡−𝑠
‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖

‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖‖𝜕𝑣Θ0‖𝜆,𝜎−6 ≲ 𝛿(𝐺𝜆[𝑄] + 𝐺𝜀𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐).
Therefore, also for the term 𝑅

Θ0
𝑁,Ψ we have bounds consistent with (6.17).

∙ Bound on 𝑅Θ
𝑁,𝛿

. We again consider a paraproduct decomposition in the 𝑣-variable and,
similarly to (6.44), we write

𝑅Θ
𝑁,𝛿

= 𝑅Θ
𝛿,𝐿𝐻

+ 𝑅Θ,𝑧
𝛿,𝐻𝐿

+ 𝑅Θ,𝑣
𝛿,𝐻𝐿

+ 𝑅Θ
𝛿,𝐻𝐻

.

Since in the bounds for𝑅Θ𝑁,Ψ wenever used the fact we had |𝜂𝓁 − 𝑘𝜉| instead of |𝓁, 𝜉|1, for 𝑘 ≠ 𝓁
we can repeat the arguments done for Θ

𝑁,Ψ to deal with the case when the coefficients are in

1 In the bounds forΩ,(𝑅,𝑅)
𝑁,Ψ one exploit the presence of |𝜂𝓁 − 𝑘𝜉| when 𝑘 = 𝓁.
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3746 BEDROSSIAN et al.

(relatively) low frequencies, namely 𝑅Θ
𝛿,𝐿𝐻

and 𝑅Θ,𝑧
𝛿,𝐻𝐿

. The same holds true if 𝑘 = 𝓁, where the
bounds are done as the ones for 𝑅Θ0𝑁,Ψ. In particular, one has∑

𝑁,𝑀>8

𝑅Θ
𝛿,𝐿𝐻

+ 𝑅Θ,𝑧
𝛿,𝐻𝐿

≲ 𝛿
∑
𝑁>8

𝑅Θ𝑁,Ψ + 𝑅
Θ0
𝑁,Ψ. (6.60)

We are then left with the high-low case when the coefficients are truly at high frequencies. In
analogy with the notation used in (6.46) we have to control

𝑅Θ,𝑣
𝛿,𝐻𝐿

=
∑
𝑘,𝓁

∫
ℝ3

|𝐴𝑄|𝑘(𝜂)(𝐴𝑝 1

4 )𝑘(𝜂)|𝑘| 12 𝜌𝑁(𝜉)𝓁𝟙|𝓁|≤16|𝜉′||ℎ̂|(𝜉′)𝑀
× |∇̂⟂Ψ≠|𝓁(𝜉 − 𝜉′)<𝑀∕8|∇̂Θ|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉d𝜉′

=
∑
𝑘,𝓁

∫
ℝ2

Θ,𝑣
𝛿,𝐻𝐿

.

For this term we can always move derivatives in 𝑧 onto the stream function. Then, from the
definition of the weight 𝐴𝑣, see (2.33), since 16|𝓁| ≤ |𝜉′| we know that on the support of the
integral 𝐴𝑘(𝜂) ≲ 𝐴𝑣(𝜂) ≲ 𝐴𝑣(𝜉′). Hence, appealing to (4.21) and (4.17) we have

(𝐴𝑝
1

4 )𝑘(𝜂) ≲ 𝑝

1

4

𝑘
(𝜉′)𝐴𝑣(𝜉′)e𝑐𝜆|𝑘−𝓁,𝜉′−𝜉|𝑠+𝑐𝜆|𝜂−𝜉|𝑠 .

Then, notice that

𝑝

1

4

𝑘
(𝜉′) ≲ (𝑡

1

2 𝟙|𝜉′|≤𝑡 + |𝜉′| 12 𝟙|𝜉′|≥𝑡)⟨𝑘⟩ 12 ≲ (𝑡 12 𝟙|𝜉′|≤𝑡 + |𝜉′| 12 𝟙|𝜉′|≥𝑡)⟨𝑘 − 𝓁⟩ 12 ⟨𝓁⟩ 12 .
Since in general we do not have 𝑘 ≠ 𝓁, we can only use the worst bound (6.48). However, com-
bining the two bounds above with the bootstrap hypotheses and Proposition 5.1, when |𝜉′| ≤ 𝑡
we have ∑

𝑁,𝑀>8

∑
𝑘,𝓁

∫
ℝ2

Θ,𝑣
𝛿,𝐻𝐿

𝟙|𝜉′|≤𝑡 ≲ 𝑡 12 ‖𝐴𝑄‖‖𝐴𝑣ℎ‖‖‖Ψ≠‖‖𝜆,𝜎−5‖Θ‖𝜆,𝜎−5 ≲ 𝜀4. (6.61)

If |𝜉′| ≥ 𝑡, since 𝑠 > 1∕2 one has |𝜉|1∕2 = |𝜉′|1∕2−𝑠|𝜉′|𝑠 ≲ 𝑡1∕2−𝑠|𝑘, 𝜂|𝑠∕2|𝜉′|𝑠∕2. This way, from
the bootstrap hypotheses and (6.48) we get∑

𝑁,𝑀>8

∑
𝑘,𝓁

∫
ℝ2

Θ,𝑣
𝛿,𝐻𝐿

𝟙|𝜉′|≥𝑡 ≲ 𝑡 12−𝑠‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖‖‖‖‖|𝜕𝑣| 𝑠2 𝐴𝑣ℎ‖‖‖‖‖‖Ψ≠‖‖𝜆,𝜎−5‖Θ‖𝜆,𝜎−5 (6.62)

≲
𝜀2

𝑡
𝑠+

1

2

‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖‖‖‖‖|𝜕𝑣| 𝑠2 𝐴𝑣ℎ‖‖‖‖ ≲ 𝜀2(𝐺𝜆[𝑄] + 𝐺𝑣𝜆[ℎ]).
For the high-high term, we get∑

𝑁>8

𝑅Θ
𝛿,𝐻𝐻

≲ ‖𝐴𝑄‖‖ℎ‖𝜆,𝜎−4‖‖‖‖𝐴(−Δ𝐿) 14 Ψ≠
‖‖‖‖𝜆,𝜎−4‖Θ‖𝜆,𝜎−4 ≲ 𝜀4,

meaning that 𝑅Θ
𝑁,𝛿

satisfies bounds in agreement with (6.17).
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3747

∙ Bound on 𝑅Θ
𝑁,𝑣̇

. First split this term as

𝑅Θ
𝑁,𝑣̇

=
∑
𝑘,𝓁

∫
ℝ2

Θ
𝑁,𝑣̇
(𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒

𝐼 + (1 − 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒
𝐼)).

Notice that we always have Θ≠ since if 𝑘 = 0 the term above vanishes. This is crucial since we
can always recover some time-decay from (2.42). The treatment of this term will be similar to

𝑅Ω
𝑁,𝑣̇

, however, in view of the 𝑝
1

4 the worst case will be when |𝜂| ≥ 𝑡. In contrast to (6.47), for
𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝑘,𝜉 , appealing to (4.17), Lemma 4.8 and (4.5), we now argue as follows

(𝐴𝑝
1

4 )𝑘(𝜂)𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒
𝐼 ≲ |𝑘| 12 (1 + |𝑡 − 𝜂

𝑘
|) 12 𝐴𝑘(𝜉)
𝐴0(𝜉)

𝐴0(𝜉)e
𝑐𝜆|𝑘,𝜂−𝜉|𝑠 ,

≲

(|𝜂||𝑘|
) 1

2

𝐴0(𝜉)e
𝑐𝜆|𝑘,𝜂−𝜉|𝑠 ≲ 𝑡 12 |𝑘, 𝜂| 𝑠2 |𝜉| 𝑠2 𝐴0(𝜉)⟨𝜂⟩𝑠 e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 ,

where in the last line we used 𝑡 ≈ |𝜂∕𝑘|. Then, using (2.42) and (2.47) we get
∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ
𝑁,𝑣̇
𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒

𝐼 ≲ 𝑡
1

2
‖‖‖‖|∇| 𝑠2AQ‖‖‖‖ ‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0

𝜕𝑣
𝑠 𝑣̇

‖‖‖‖‖ ‖‖Θ≠‖‖𝜆,𝜎−6
≲ 𝜀𝑡−(1+𝑠)𝑡1+𝑠

‖‖‖‖|∇| 𝑠2AQ‖‖‖‖ ‖‖‖‖‖|𝜕𝑣|
𝑠

2
𝐴0

𝜕𝑣
𝑠 𝑣̇

‖‖‖‖‖
≲ 𝛿𝐺𝜆[𝑄] + 𝛿

−1𝜀2

(
𝑡2+2𝑠𝐺𝜆[𝜕𝑣

−𝑠] + 𝜀2

𝑡
5

2
−𝑠

)
. (6.63)

For the remaining term, if 𝑡 ≥ |𝜂| then 𝑝1∕4
𝑘
(𝜂) ≲ 𝑡1∕2⟨𝑘⟩1∕2 but𝐴𝑘(𝜂) ≲ 𝐴0(𝜂)e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 . Hence

we can repeat exactly the same argument above. When |𝜂| ≥ 𝑡 we have 𝑝1∕4
𝑘
(𝜂) ≲ |𝜂|1∕2.

Therefore,

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ
𝑁,𝑣̇
(1 − 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒

𝐼)𝟙|𝜂|≥𝑡 ≲ 𝜀𝑡− 12 ‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖‖‖‖‖‖|𝜕𝑣|
𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠 |𝜕𝑣|

1

2 𝑣̇>𝑡

‖‖‖‖‖.
Arguing as done to prove (2.47), since = 𝑣′𝜕𝑣𝑣̇ and 𝑡 ≥ 1, we deduce‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠 |𝜕𝑣|

1

2 𝑣̇>𝑡

‖‖‖‖‖ ≲
‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠 𝜕𝑣𝑣̇

‖‖‖‖‖ ≲
‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠

‖‖‖‖‖.
Combining the two inequalities above we have

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

Θ
𝑁,𝑣̇
(1 − 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒

𝐼)𝟙|𝜂|≥𝑡 ≲ 𝜀𝑡− 12 ‖‖‖‖|∇| 𝑠2 𝐴𝑄‖‖‖‖‖‖‖‖‖|𝜕𝑣|
𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠

‖‖‖‖‖ (6.64)

≲ 𝛿𝐺𝜆[𝑄] + 𝛿
−1𝜀2𝑡2+2𝑠𝐺𝜆[⟨𝜕𝑣⟩−𝑠].

Thus, for 𝑅Θ
𝑁,𝑣̇

we have bounds required in (6.17).
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3748 BEDROSSIAN et al.

∙ Bound on 𝑅𝑄𝑁,𝑐𝑜𝑚. On the support of the integrand |𝑘 − 𝓁, 𝜂 − 𝜉| ≲ |𝓁, 𝜉|, hence we get
∑
𝑁>8

𝑅
𝑄
𝑁,𝑐𝑜𝑚 ≲ ‖𝐴𝑄‖2‖𝑼‖𝐻𝜎−6 ≲ 𝜀3

𝑡
3

2

.

This concludes the proof of (6.17).

6.5 Remainders

Considering (6.15), we note that on the support of the integrand, |𝓁, 𝜉| ≈ |𝑘 − 𝓁, 𝜂 − 𝜉| and hence
by (4.9) we find

|𝑘, 𝜂|𝑠 ≤ 𝑐|𝑘 − 𝓁, 𝜂, 𝜉|𝑠 + 𝑐|𝓁, 𝜉|𝑠.
Hence, we can always pay regularity to move the multipliers. Arguing as in [8, Section 7], we
deduce that

 ≲ ‖𝑼‖𝜆,𝜎−6(‖𝐴𝑍‖ + ‖𝐴𝑄‖)(‖𝑍‖𝜆,𝜎−1 + ‖𝑄‖𝜆,𝜎−1 + ‖𝜕𝑣Θ0‖𝜆,𝜎−1),
which can be bounded as in (6.18) thanks to the bootstrap assumptions (H1)–(H2) and (6.20).

6.6 Remaining error terms

We estimate the remainder terms (6.6), (6.8) and (6.9), starting from the linear error term 𝐿𝑍,𝑄 in
(6.6). Simply using the definition of the linear weight𝑚 in (2.29), we have

1

4𝛽

|||||||𝜕𝑡
⎛⎜⎜⎝
𝜕𝑡𝑝|𝑘|𝑝 1

2

⎞⎟⎟⎠
||||||| =

1

2𝛽𝐶𝛽

𝐶𝛽|𝑘|3
𝑝
3

2

≤ 1

2𝛽𝐶𝛽

𝐶𝛽|𝑘|2
𝑝

≤ 1

2𝛽𝐶𝛽

𝜕𝑡𝑚

𝑚
,

where 𝐶𝛽 was introduced in (2.29). This readily implies that

𝐿𝑍,𝑄 ≤ 1

2𝛽𝐶𝛽

‖‖‖‖‖‖
√
𝜕𝑡𝑚

𝑚
𝐴𝑍

‖‖‖‖‖‖
‖‖‖‖‖‖
√
𝜕𝑡𝑚

𝑚
𝐴𝑄

‖‖‖‖‖‖ ≤ 1

2

(
1 −

1

2𝛽

)
(𝐺𝑚[𝑍] + 𝐺𝑚[𝑄]).

Next, consider the divergence error term div in (6.8). As |𝜕𝑡𝑝|∕|𝑘|𝑝 1

2 ≤ 2, we apply (H4) to get
div ≲ ‖𝑣̇‖𝐻3‖𝐴𝑍‖‖𝐴𝑄‖ ≲ 𝜀3

𝑡
3

2

.

It remains to estimate Δ𝑡 in (6.9). As |𝜕𝑡𝑝|∕|𝑘|𝑝 1

2 ≤ 2, the two addends of (6.9) reduce to the
control of

Δ𝑡,1 ∶= 𝛽|||||
⟨|𝑘| 32 𝑝− 34 𝐴((Δ𝑡 − Δ𝐿)Ψ), 𝐴𝑄⟩|||||.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3749

We now write ((Δ𝑡 − Δ𝐿)Ψ) explicitly as in (5.7) and separate the part involving 𝑔 and
the one involving 𝑣′′ as Δ𝑡,1 = Δ𝑡,𝑔 + Δ𝑡,𝑣′′ . Similarly to (6.44), we consider the following
decomposition

Δ𝑡,𝑗 = Δ𝑡,𝑗𝐿𝐻 + Δ𝑡,𝑗,𝑧𝐻𝐿 + Δ𝑡,𝑗,𝑣𝐻𝐿 + Δ𝑡,𝑗𝐻𝐻 , 𝑗 ∈ {𝑔, 𝑣′′}. (6.65)

For the first two terms in the right-hand side of (6.65), the most dangerous case is for 𝑗 = 𝑔 since
more derivatives hit Ψ. However, notice that from (4.17) and (4.21) we have

|𝑘| 32 (𝑝− 34 𝐴)𝑘(𝜂) ≲ |𝑘|
(𝑘2 + |𝜉 − 𝑘𝑡|2) 12 |𝑘|

1

2 (𝑝
−
1

4 𝐴)𝑘(𝜉)e
𝑐𝜆|𝜂−𝜉|𝑠 .

Hence, we are in a situation analogous to 𝑅Θ0𝑁,Ψ, see (6.57). Proceeding as done for 𝑅
Θ0
𝑁,Ψ, with the

use of (6.48) replaced by (2.41), we get

∑
𝑗∈{𝑔,𝑣′′}

Δ𝑡,𝑗𝐿𝐻 + Δ𝑡,𝑗,𝑧𝐻𝐿 ≲ 𝛿(𝐺𝑤[𝑄] + 𝐺𝜆[𝑄] + 𝐺
𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

) + 𝑡
−
1

2 𝜀3.

We now consider the remaining high-low term and we only deal with Δ𝑡,𝑣′′,𝑣𝐻𝐿 , for which

Δ𝑡,𝑣′′,𝑣𝐻𝐿 ≲
∑
𝑀>8

∑
𝑘

∫
ℝ2

|𝐴𝑄|𝑘(𝜂)|𝑘| 32 (𝐴𝑝−34 )𝑘(𝜂)𝟙|𝑘|≤16|𝜉||𝑣′′(𝜉)|𝑀|((𝜕𝑣 − 𝑡𝜕𝑧)Ψ)|𝑘(𝜂 − 𝜉)<𝑀∕8.
Using (5.12)–(5.13), (4.21) and absorbing all factors of |𝑘| in the exponential, we have

|𝑘| 32 (𝑝− 34 𝐴)𝑘(𝜂) ≲ 1

1 + | 𝜉
𝑘
− 𝑡| 1

⟨𝜉⟩ 12 𝐴𝑣(𝜉)e𝑐𝜆|𝑘,𝜂−𝜉|
𝑠
.

We need to recover another half derivative to use the bounds available on ⟨𝜕𝑣⟩−1𝑣′′. Observe that,
combining the bound above with (5.15)–(5.16) we have

|𝑘| 32 (𝑝− 34 𝐴)𝑘(𝜂) ≲ 1

1 + | 𝜉
𝑘
− 𝑡|

(
𝑡
1

2 𝟙|𝜉|≤|𝑘𝑡| + 𝑡 12−𝑠|𝜉|𝑠𝟙|𝜉|≥|𝑘𝑡|) 𝐴𝑣(𝜉)⟨𝜉⟩ e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 .

Tomake use of the factor (1 + |𝑡 − 𝜉∕𝑘|)−1, we can consider the same splitting as in (6.58). Hence,
using (5.18), in a similar way as in (5.19), we finally obtain

Δ𝑡,𝑣′′,𝑣𝐻𝐿 ≲
∑

𝑗∈{𝜆,𝑤}

𝛿𝐺𝑗[𝑄] + 𝛿
−1𝜀2

(
𝐺𝑣
𝑗
[⟨𝜕𝑣⟩−1𝑣′′] + ⟨𝑡⟩−2𝑠𝐺𝑣

𝑗
[|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′]),

hence concluding the proof of (6.19).

7 BOUNDS ON THE ENERGY FUNCTIONAL 𝑬𝒏

In this section, we aim at proving bounds on 𝐸𝑛, defined in (2.39).

 10970312, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22123 by C

ochraneItalia, W
iley O

nline L
ibrary on [21/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3750 BEDROSSIAN et al.

7.1 The energy inequality

The time-derivative of 𝐸𝑛 is computed in the following lemma.

Lemma 7.1. For every 𝑡 ≥ 0 we have the energy inequality
d

d𝑡
𝐸𝑛 +

∑
𝑗∈{𝜆,𝑤,𝑚}

(
𝐺𝑗[Ω] + 𝛽

2𝐺𝑗[∇𝐿Θ]
) ≤ 1

2

⟨
𝜕𝑡𝑝|𝑘|𝑝 1

2

𝐴𝑄,𝐴𝑄

⟩
+𝑁𝐿Ω,Θ + ̃div + ̃Δ𝑡 . (7.1)

where the 𝐺𝑗[⋅] are defined in (2.36) and the error terms are given by

𝑁𝐿Ω,Θ = |⟨[𝐴,𝑼] ⋅ ∇Ω,𝐴Ω⟩| + 𝛽2||⟨([𝐴𝑝 1

2 , 𝑼] ⋅ ∇Θ), 𝐴𝑝
1

2 Θ̂

⟩||,
̃div = 1

2
||⟨∇ ⋅ 𝑼, |𝐴Ω|2 + 𝛽2|𝐴∇𝐿Θ|2⟩||,

̃Δ𝑡 = 𝛽2||⟨𝐴𝑘𝑝−12((Δ𝑡 − Δ𝐿)Ψ), 𝐴𝑝 1

2 Θ̂

⟩||.
Remark 7.2. The term in (7.1) involving 𝑄 can be bounded as

1

2

|||||||
⟨

𝜕𝑡𝑝|𝑘|𝑝 1

2

𝐴𝑄,𝐴𝑄

⟩||||||| ≤ ‖𝐴𝑄‖2 ≤ 4𝛽

2𝛽 − 1
𝐸𝐿(𝑡) ≤ 32𝛽

2𝛽 − 1
𝜀2, (7.2)

thanks to the bootstrap hypothesis (H1) and the coercivity properties of 𝐸𝐿, analogous to (2.16).
In particular, the bound of order 𝜀2𝑡 in (B2) cannot be improved in this setting. In addition, the
weight 𝑚 has been introduced to control the term 𝐿𝑍,𝑄 in (6.5), while here we exploit a direct
control in 𝑄. Hence the terms 𝐺𝑚[⋅] are superfluous. However, we decided not to introduce a
further modification of the weight 𝐴, since this would not imply any significant simplifications.

Proof of Lemma 7.1. The computations for the time-derivative of the functional in (2.39) exploit
some cancelations which are similar to those for the energy 𝐸𝐿(𝑡) in Section 6.1. The energy
inequality (7.1) is then obtained using (2.32) and (2.40). □

Now we control 𝑁𝐿Ω,Θ in a similar way as Section 6. Thus, we define the transport
nonlinearities as

𝑇𝑁 = |⟨(
[𝐴,𝑼<𝑁∕8] ⋅ ∇Ω𝑁

)
, 𝐴Ω

⟩| + 𝛽2||⟨([𝐴𝑝 1

2 , 𝑼<𝑁∕8] ⋅ ∇Θ𝑁), 𝐴𝑝
1

2 Θ̂
⟩|| = 𝑇Ω𝑁 + 𝑇Θ𝑁.

The reaction nonlinearities are given by

𝑅𝑁 = |⟨(
[𝐴,𝑼𝑁] ⋅ ∇Ω<𝑁∕8

)
, 𝐴Ω

⟩| + 𝛽2||⟨([𝐴𝑝 1

2 , 𝑼𝑁] ⋅ ∇Θ<𝑁∕8), 𝐴𝑝
1

2 Θ̂
⟩|| = 𝑅Ω𝑁 + 𝑅Θ𝑁.

The remainder is

̃ =
∑
𝑁∈𝑫

∑
𝑁∕8≤𝑁′≤𝑁

|⟨([𝐴,𝑼𝑁] ⋅ ∇Ω𝑁′), 𝐴Ω⟩| + 𝛽2||⟨([𝐴𝑝 1

2 , 𝑼𝑁] ⋅ ∇Θ𝑁′), 𝐴𝑝
1

2 Θ̂
⟩||.

The main result of this section is the following proposition.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3751

Proposition 7.3. Let 𝑡 ≥ 1 and 𝛽 > 1∕2. Under the bootstrap hypotheses,∑
𝑁>8

𝑇𝑁 ≲
∑

𝑗∈{𝜆,𝑤}

𝛿
(
𝐺𝑗[Ω] + 𝐺𝑗[∇𝐿Θ]

)
+
𝜀2

𝑡
3

2

, (7.3)

∑
𝑁>8

𝑅𝑁 ≲
∑

𝑗∈{𝜆,𝑤}

𝜀𝑡
3

2 𝐺𝑗[𝑍] + 𝛿𝐺𝑗[Ω] + 𝛿𝐺𝑗[∇𝐿Θ] + 𝛿𝑡
(
𝐺𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

+ 𝜀2⟨𝑡⟩−2𝑠𝐺𝑣
𝜆
[|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′])

+ 𝛿𝐺𝛿
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

+ 𝛿𝐺𝜆[⟨𝜕𝑣⟩−𝑠] + 𝜀2𝐺𝑣𝜆[ℎ] + 𝛿𝜀2, (7.4)

̃ ≲ 𝛿
𝜀2

𝑡
, (7.5)

̃div ≲ 𝜀3

𝑡
,

̃Δ𝑡 ≲ 𝛿 ∑
𝑗∈{𝜆,𝑤}

(𝐺𝑗[∇𝐿Θ] + 𝐺
𝑣
𝑗
[1 − (𝑣′)2] + 𝐺𝑣

𝑗
[⟨𝜕𝑣⟩−1𝑣′′] + ⟨𝑡⟩−2𝑠𝐺𝑣

𝑗
[|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′])

+ 𝛿𝐺𝛿
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

+ 𝛿𝜀2. (7.6)

Having at hand Proposition 7.3, we first show that (B2) holds true.

Proof of (B2). Observe that from (H1)–(H2), (2.45) and (5.6) one has

∫
𝑡

1

∑
𝑗∈{𝜆,𝑤}

𝜀𝜏
3

2 𝐺𝑗[𝑍] + 𝛿𝜏
(
𝐺𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

+ 𝜀2⟨𝜏⟩−2𝑠𝐺𝑣
𝜆
[|𝜕𝑣|𝑠⟨𝜕𝑣⟩−1𝑣′′])d𝜏 ≲ 𝜀3𝑡 32 + 𝛿𝜀2𝑡 + 𝛿3𝜀2𝑡 ≲ 𝛿𝜀2𝑡.

Also all the remaining terms on the right-hand side of (7.3)–(7.6) are at most of size 𝛿𝜀2𝑡 when
integrated on [1, 𝑡]. Hence, combining (7.1) with (7.2), Proposition 7.3 and the local well-posedness
Proposition 2.7, choosing 𝛿 sufficiently small the bound (B2) is proved. □

In the following subsections we show the proof of (7.3)–(7.4). For some term we can directly
deduce the bounds from the one given in Section 6. In these cases, we will only highlight the
arguments that need to be used. Moreover, (7.5)–(7.6) are analogous to those in Section 6.6 and
therefore omitted.

7.2 Transport nonlinearities

To handle these terms, we have to exploit the commutation properties of the weights involved.
Most of the bounds that we need are already done in Sections 6.3.1–6.3.2.

7.2.1 Bound on 𝑇Ω𝑁

In view of (6.21), we rewrite this term as

𝑇Ω𝑁 ≤ ||⟨𝑚−1
(
[𝑚𝐴,𝑼<𝑁∕8] ⋅ ∇Ω𝑁

)
, 𝐴Ω

⟩|| + ||⟨(
[𝑚−1,𝑼<𝑁∕8] ⋅ ∇(𝑚𝐴Ω)𝑁

)
, 𝐴Ω

⟩||
= 𝑇Ω,𝐴𝑁 + 𝑇Ω,𝑚𝑁 .

 10970312, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22123 by C

ochraneItalia, W
iley O

nline L
ibrary on [21/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3752 BEDROSSIAN et al.

The term 𝑇Ω,𝑚𝑁 can be controlled exactly as done in Section 6.3.1 to get

∑
𝑁>8

𝑇Ω,𝑚𝑁 ≲ 𝛿(𝐺𝑤[Ω] + 𝐺𝜆[Ω]).

Regarding the bound on 𝑇Ω,𝐴𝑁 , we do not have the factor (𝑝𝑘(𝜂)∕𝑝𝓁(𝜉))1∕4 as for 𝑇
Ω,𝐴
𝑁 in Sec-

tion 6.3.1, meaning that we never lose a power 𝑡
1

2 . One can split this term as done in (6.30) and
proceed in the same way. The only difference is for the term ̃ 𝐽𝑁𝟙𝐷 , defined as in (6.31)–(6.32),
where we need to use (4.16) instead of (4.15). In particular, the following inequality holds

∑
𝑁>8

𝑇Ω,𝐴𝑁 ≲ 𝛿𝐺𝑤[Ω] + 𝜀𝐺𝜆[Ω] +
𝜀2

𝑡
3

2

.

Thus, the two bounds above are consistent with (7.3).

7.2.2 Bound on 𝑇Θ𝑁

Similarly to what was done in Section 6.3.2, we rewrite 𝑇Θ𝑁 as

𝑇Θ𝑁 ≲
||⟨(𝑚−1𝑝

1

2 [𝑚𝐴,𝑼<𝑁∕8] ⋅ ∇Θ𝑁), 𝐴𝑝
1

2 Θ̂
⟩|| + ||⟨(𝑚−1[𝑝

1

2 , 𝑼<𝑁∕8] ⋅ ∇(𝑚𝐴Θ)𝑁), 𝐴𝑝
1

2 Θ̂
⟩||

+ ||⟨([𝑚−1,𝑼<𝑁∕8] ⋅ ∇(𝑚𝐴𝑝
1

2 Θ)𝑁), 𝐴𝑝
1

2 Θ̂
⟩||

= 𝑇Θ,𝐴𝑁 + 𝑇
Θ,𝑝
𝑁 + 𝑇Θ,𝑚𝑁 .

Also in this case the bounds on 𝑇Θ,𝐴𝑁 and 𝑇Θ,𝑚𝑁 can be done in the same way as 𝑇Θ,𝐴𝑁 and 𝑇Θ,𝑚𝑁 and
one obtain

∑
𝑁>8

𝑇Θ,𝑚𝑁 + 𝑇Θ,𝐴𝑁 ≲ 𝛿𝐺𝑤[∇𝐿Θ] + 𝜀𝐺𝜆[∇𝐿Θ] +
𝜀2

𝑡
3

2

.

It thus remain to control 𝑇Θ,𝑝𝑁 .

∙ Bound on 𝑇Θ,𝑝𝑁 . For the control of 𝑇Θ,𝑝𝑁 we need to present some technical differences in more
detail. In analogy to what was done for the term 𝑇

Ω,𝑝
𝑁 , we have 𝑇Θ,𝑝𝑁 ≲

∑
𝑘,𝓁

∫
ℝ2

̃ 𝑝,1𝑁 + ̃ 𝑝,2𝑁 ,
where we define

̃ 𝑝,1𝑁 =
|𝑝𝑘(𝜉) 12 − 𝑝𝓁(𝜉) 12 |

𝑝𝓁(𝜉)
1

2

|𝓁, 𝜉||𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|𝐴𝑝 1

2 Θ̂|𝓁(𝜉)𝑁|𝐴𝑝 1

2 Θ̂|𝑘(𝜂),
̃ 𝑝,2𝑁 =

|𝑝𝑘(𝜂) 12 − 𝑝𝑘(𝜉) 12 |
𝑝𝓁(𝜉)

1

2

|𝓁, 𝜉||𝑼̂|𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|𝐴𝑝 1

2 Θ̂|𝓁(𝜉)𝑁|𝐴𝑝 1

2 Θ̂|𝑘(𝜂).
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3753

To control ̃ 𝑝,1𝑁 , notice that

|𝑝𝑘(𝜉) 12 − 𝑝𝓁(𝜉) 12 | = 𝑡|𝑘 − 𝓁| |(𝑘 + (𝑘𝑡 − 𝜉)) + (𝓁 + (𝓁𝑡 − 𝜉))|
𝑝𝑘(𝜉)

1

2 + 𝑝𝓁(𝜉)
1

2

≲ 𝑡|𝑘 − 𝓁| 1|𝑘|(1 + |𝑡 − 𝜉

𝑘
|)𝑝

1

2

𝑘
(𝜉).

Therefore, the analogous of (6.23) become

|𝑝𝑘(𝜉) 12 − 𝑝𝓁(𝜉) 12 |
𝑝𝓁(𝜉)

1

2

|𝓁, 𝜉| ≲ 𝑡𝟙𝑘≠𝓁⟨𝜂 − 𝜉, 𝑘 − 𝓁⟩2 |𝜉||𝑘| 1

(1 + | 𝜉
𝑘
− 𝑡|) .

As in Section 6.3.1, also in this case the term ̃ 𝑝,2𝑁 is simpler and therefore omitted. To control
̃ 𝑝,1𝑁 , for intermediate and long times we can argue as done for 𝑇𝑝,1𝑁 . Instead, for the short times,
if 𝑡 ∈ 𝐼𝑘,𝜉 we use |𝜉∕𝑘| ≲ 𝑡1−2𝑠|𝑘, 𝜂|𝑠∕2|𝓁, 𝜉|𝑠∕2. When 𝑡 ∈ 𝐼𝑐

𝑘,𝜉
we argue as in (6.27). Therefore,

appealing to (H2), we conclude that∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

̃ 𝑝,1𝑁 ≲ 𝛿(𝐺𝑤[∇𝐿Θ] + 𝐺𝜆[∇𝐿Θ]).

This is consistent with (7.3).

7.3 Reaction nonlinearities

We now turn our attention to the control of 𝑅𝑁 in (7.4).

7.3.1 Bound on 𝑅Ω𝑁

We rewrite this term as follows

|𝑅Ω𝑁| ≤ ||||
⟨
𝐴
( 𝑝
𝑘2

) 1

4(∇⟂(Ψ≠)𝑁 ⋅ ∇Ω<𝑁∕8), 𝐴𝑍
⟩|||| + ||||

⟨
𝐴
( 𝑝
𝑘2

) 1

4(𝑣̇𝑁(𝜕𝑣Ω)<𝑁∕8), 𝐴𝑍
⟩||||

+
||||
⟨
𝐴
( 𝑝
𝑘2

) 1

4((1 − 𝑣′)∇⟂(Ψ≠)𝑁 ⋅ ∇Ω<𝑁∕8), 𝐴𝑍
⟩|||| + ||||⟨(

𝑼𝑁 ⋅ ∇𝐴Ω<𝑁∕8
)
, 𝐴Ω

⟩||||
+

||||⟨𝐴0(
𝑼𝑁 ⋅ ∇Ω<𝑁∕8

)
, (𝐴Ω)0

⟩||||
= 𝑅Ω𝑁,Ψ + 𝑅

Ω
𝑁,𝑣̇

+ 𝑅Ω
𝑁,𝛿

+ 𝑅Ω𝑁,𝑐𝑜𝑚 + 𝑅
Ω
𝑁,0.

Notice that, besides the term 𝑅Ω𝑁,0 and the factor 𝑘 in the first three terms, 𝑅
Ω
𝑁 has the same struc-

ture of 𝑅Θ,1𝑁 studied in Section 6.4.2. Hence, we will be able to directly recover most of the bounds
from the ones in Section 6.4.2 with the change

(𝑖𝛽Θ)<𝑁∕8 → Ω<𝑁∕8, 𝐴𝑄 → 𝐴𝑍. (7.7)
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3754 BEDROSSIAN et al.

∙ Bound on 𝑅Ω𝑁,Ψ. In view of (7.7), proceeding as done to obtain (6.49), (6.50), (6.51), (6.53), (6.54),
(6.55) and (6.56), one has∑

𝑁>8

∑
𝑘,𝓁

∫
ℝ2
𝑅Ω𝑁,Ψ ≲ 𝜀𝑡

3

2 (𝐺𝑤[𝑍] + 𝐺𝜆[𝑍] + 𝐺
𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

∙ Bound on the remaining terms. Proceeding as done for the term 𝑅Θ
𝑁,𝛿

with the change (7.7),
thanks to (6.60), (6.61) and (6.62) we have∑

𝑁>8

𝑅Ω
𝑁,𝛿

≲ 𝛿
∑
𝑁>8

𝑅Ω𝑁,Ψ + 𝑡
1

2 ‖𝐴𝑍‖‖𝐴𝑣ℎ‖‖‖Ψ≠‖‖𝜆,𝜎−5‖Ω‖𝜆,𝜎−5
+ 𝑡

1

2
−𝑠‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖‖‖‖‖|𝜕𝑣| 𝑠2 𝐴𝑣ℎ‖‖‖‖‖‖Ψ≠‖‖𝜆,𝜎−5‖Ω‖𝜆,𝜎−5

≲ 𝜀𝑡
3

2 𝛿(𝐺𝑤[𝑍] + 𝐺𝜆[𝑍] + 𝐺
𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

) + 𝜀4 + 𝜀2(𝐺𝜆[𝑍] + 𝐺
𝑣
𝜆
[ℎ]).

For 𝑅Ω
𝑁,𝑣̇

, similarly to (6.63) and (6.64) we obtain

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2
𝑅Ω
𝑁,𝑣̇

≲

(
𝑡
1

2

‖‖‖‖‖|𝜕𝑣|
𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠 𝑣̇

‖‖‖‖‖ +
‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠

‖‖‖‖‖
)‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖‖Ω‖𝜆,𝜎−4

≲ 𝛿𝑡
−(𝑠+

1

2
)
𝑡1+𝑠

‖‖‖‖|∇| 𝑠2 𝐴𝑍‖‖‖‖
(‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠

‖‖‖‖‖ + 𝜀

𝑡2

)

≲ 𝛿(𝐺𝜆[𝑍] + 𝐺𝜆[⟨𝜕𝑣⟩−𝑠]) + 𝛿 𝜀2
𝑡
3

2

.

Moreover, ∑
𝑁>8

𝑅Ω𝑁,𝑐𝑜𝑚 ≲ ‖𝐴Ω‖2‖𝑼‖𝐻𝜎−6 ≲ 𝛿 𝜀2𝑡 .
For the last term 𝑅Ω𝑁,0, being 𝐴0 always non-resonant, it is not difficult to show that we have a
bound consistent with (7.4). The proof of the bounds for 𝑅Ω𝑁,Ψ is over.

7.3.2 Bound on 𝑅Θ𝑁

For this term we cannot directly reduce ourselves to one which we have already controlled.
Therefore we need to present some more details. We rewrite this term as

𝑅Θ𝑁 = 𝑅
Θ
𝑁,Ψ + 𝑅

Θ0
𝑁,Ψ + 𝑅

Θ
𝑁,𝛿

+ 𝑅Θ
𝑁,𝑣̇

+ 𝑅Θ𝑁,𝑐𝑜𝑚,

where we define

𝑅Θ𝑁,Ψ =
|||||
⟨
𝐴𝑝

1

2(∇⟂(Ψ≠)𝑁 ⋅ ∇(Θ≠)<𝑁∕8), 𝐴𝑝
1

2 Θ̂

⟩|||||,
𝑅
Θ0
𝑁,Ψ =

|||||
⟨
𝐴𝑝

1

2(𝜕𝑧(Ψ≠)𝑁𝜕𝑣(Θ0)<𝑁∕8), 𝐴𝑝
1

2 Θ̂

⟩|||||,
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3755

𝑅Θ
𝑁,𝛿

=
|||||
⟨
𝐴𝑝

1

2((1 − 𝑣′)∇⟂(Ψ≠)𝑁 ⋅ ∇Θ<𝑁∕8), 𝐴𝑝
1

2 Θ̂

⟩|||||,
𝑅Θ
𝑁,𝑣̇

=
|||||
⟨
𝐴𝑝

1

2(𝑣̇𝑁𝜕𝑣Θ)<𝑁∕8), 𝐴𝑝
1

2 Θ̂

⟩|||||,
𝑅Θ𝑁,𝑐𝑜𝑚 =

|||||
⟨

(
𝑼𝑁 ⋅ ∇(𝐴𝑝

1

2 Θ)<𝑁∕8

)
, 𝐴𝑝

1

2 Θ̂

⟩|||||.
We will proceed in a similar way to what was done for the term 𝑅Θ𝑁,Ψ but now we have the factor

𝑝
1

2 instead of 𝑝
1

4 . The bounds will be presented with fewer details with respect to Section 6.4.2.

∙ Bound on 𝑅Θ𝑁,Ψ. With the notation introduced in (6.36), we split the term as

𝑅Θ𝑁,Ψ =
∑
𝑘,𝓁

∫
ℝ2

̃Θ,(𝑅,𝑅)
𝑁,Ψ + ̃Θ,(𝑁𝑅,𝑅)

𝑁,Ψ + ̃Θ,(𝑅,𝑁𝑅)
𝑁,Ψ + ̃Θ,(𝑁𝑅,𝑁𝑅)

𝑁,Ψ + ̃Θ,𝑆
𝑁,Ψ + ̃Θ,𝐿

𝑁,Ψ.

We now control each term separately.

⋄ Bound on ̃Θ,(𝑅,𝑁𝑅)
𝑁,Ψ . From (4.14) and the fact that |𝑡 − 𝜂∕𝑘| ≲ |𝜂∕𝑘2|, we get

(𝐴𝑝
1

2 )𝑘(𝜂)|𝜂𝓁 − 𝑘𝜉|𝟙𝑡∈𝑰𝑘,𝜂∩𝑰𝑐𝓁,𝜉 𝜒𝐼 ≲ |𝓁, 𝜉| |𝜂| 12|𝑘|(1 + |𝑡 − 𝜂

𝑘
|) 12 |𝑘|(1 + |𝑡 − 𝜂

𝑘
|)𝐴𝓁(𝜉)e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 𝟙𝑡∈𝑰𝑐

𝓁,𝜉

≲ 𝑡|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉|1− 𝑠

2 𝑝−1
𝓁
(𝜉)(𝑝𝐴)𝓁(𝜉)e

𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 𝟙𝑡∈𝑰𝑐
𝓁,𝜉
.

This way, appealing to (4.22), the elliptic estimate (5.3) and (2.42), we obtain

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

|̃Θ,(𝑅,𝑁𝑅)
𝑁,Ψ | ≲ 𝑡1−𝑠‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖

‖‖‖‖‖‖
⟨
𝜕𝑣
𝑡𝜕𝑧

⟩−1 |∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿)Ψ≠
‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4

≲ 𝛿(𝐺𝑤[∇𝐿Θ] + 𝐺
𝛿
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

),

in agreement with (7.4).
⋄ Bound on ̃Θ,(𝑁𝑅,𝑅)

𝑁,Ψ . This is themost dangerous term. Since 4|𝓁| ≤ |𝜉|, appealing to (4.18), (4.19)
(with the role of (𝑘, 𝜂) and (𝓁, 𝜉) switched) and the fact that 𝑝−1∕4

𝑘
(𝜂) ≲ ⟨𝜂∕𝑘⟩−1∕2, we get

(𝐴𝑝
1

2 )𝑘(𝜂)|𝜂𝓁 − 𝑘𝜉|𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝓁,𝜉

𝜒𝐼 = 𝑝
−
1

4

𝑘
(𝜂)(𝐴𝑝

3

4 )𝑘(𝜂)|𝜂𝓁 − 𝑘𝜉|𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝓁,𝜉

𝜒𝐼

≲ |𝑘, 𝜂|𝑝−14
𝑘
(𝜂)

|𝓁|(1 + |𝑡 − 𝜉

𝓁
|) 12

|𝜉| 12
|𝜉| 32

|𝓁|3(1 + |𝑡 − 𝜉

𝓁
|) 32 (𝐴𝑝

3

4 )𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲ 𝑡
3

2
𝜕𝑡𝑤𝓁(𝜉)

𝑤𝓁(𝜉)
|𝓁| 12 (𝐴𝑝 3

4 )𝓁(𝜉)e
𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .
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3756 BEDROSSIAN et al.

Since𝐴𝑘(𝜂) ≲ 𝐴𝑘(𝜂), see (6.42), combining the inequality above with (4.11), (2.42) and (5.4) we
infer

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

|̃Θ,(𝑁𝑅,𝑅)
𝑁,Ψ | ≲ 𝑡 32 ‖‖‖‖‖‖

√
𝜕𝑡𝑤

𝑤
𝐴∇𝐿Θ

‖‖‖‖‖‖
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4
≲ 𝛿𝐺𝑤[∇𝐿Θ] + 𝛿𝑡𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

,

that is consistent with (7.4).
⋄ Bound on ̃Θ,(𝑁𝑅,𝑁𝑅)

𝑁,Ψ . We have to treat separately the case |𝜉| ≤ |𝓁𝑡| and |𝜉| > |𝓁𝑡|. In the
former, from (4.17), (4.19) and (4.23) we have

(𝐴𝑝
1

2 )𝑘(𝜂)|𝜂𝓁 − 𝑘𝜉|𝟙𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝑐
𝓁,𝜉
𝟙|𝜉|≤|𝓁𝑡|𝜒𝐼

≲ 𝟙{𝑡∈𝑰𝑐
𝓁,𝜉
}∩{|𝜉|≤|𝓁𝑡|}|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉|1− 𝑠

2 𝑝
−
1

2

𝓁
(𝜉)(𝑝𝐴)𝓁(𝜉)e

𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲ 𝟙|𝜉|≤|𝓁𝑡|𝑡1−2𝑠|𝑘, 𝜂| 𝑠2⟨ 𝜉

𝓁𝑡

⟩1−𝑠⟨
𝜉

𝓁𝑡

⟩−1|𝓁, 𝜉| 𝑠2 (𝑝𝐴)𝓁(𝜉)e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .
Since |𝜉| ≤ |𝓁𝑡|, using (5.3) and (2.42) we deduce
∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

|̃Θ,(𝑁𝑅,𝑁𝑅)
𝑁,Ψ |𝟙|𝜉|≤|𝓁𝑡| ≲ 𝑡1−𝑠‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖

‖‖‖‖‖‖
⟨
𝜕𝑣
𝑡𝜕𝑧

⟩−1 |∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿)Ψ≠
‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4

≲ 𝛿(𝐺𝜆[∇𝐿Θ] + 𝐺
𝛿
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

If |𝜉| ≥ |𝓁𝑡| we know |𝓁, 𝜉|1∕2 ≲ 𝑡1∕2−𝑠|𝓁, 𝜉|𝑠. Hence, since ⟨𝜉∕𝓁⟩1∕2𝑝−1∕4
𝓁

(𝜉) ≲ 1 for 𝑡 ∈ 𝑰𝑐
𝓁,𝜉
,

from (4.17) and (4.19) we have

(𝐴𝑝
1

2 )𝑘(𝜂)|𝜂𝓁 − 𝑘𝜉|𝟙{𝑡∈𝑰𝑐
𝑘,𝜂
∩𝑰𝑐
𝓁,𝜉
}∩{|𝜉|≥|𝓁𝑡|}𝜒𝐼

≲ 𝑡
1

2
−𝑠
𝟙𝑡∈𝑰𝑐

𝓁,𝜉
|𝓁, 𝜉|𝑠 |𝓁, 𝜉| 12|𝓁| 12 𝑝

−
1

4

𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲ 𝑡
1

2
−𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 |𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 . (7.8)

From (7.8), (5.4) and (2.42) we get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

|̃Θ,(𝑁𝑅,𝑁𝑅)
𝑁,Ψ |𝟙|𝜉|≥|𝓁𝑡| ≲ 𝑡 12 ‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖

‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4
≲ 𝜀𝑡

−
3

2
‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖

2

+ 𝜀𝑡
3

2

‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖
2

≲ 𝜀𝐺𝜆[∇𝐿Θ] + 𝛿𝑡𝐺
𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3757

⋄ Bound on ̃Θ,(𝑅,𝑅)
𝑁,Ψ Since 𝑘 ≠ 𝓁, we know that we can only have cases (𝑏) or (𝑐) in Lemma 4.5.

The case (𝑐) is straightforward. In case (𝑏), we know that we can apply (4.17), so that from (4.19)
we get

(𝐴𝑝
1

2 )𝑘(𝜂)|𝜂𝓁 − 𝑘𝜉|𝟙𝑰𝑘,𝜂∩𝑰𝓁,𝜉 ≲ |𝜉||𝓁| 1

1 + | 𝜉
𝓁
− 𝑡| (𝐴𝑝)𝓁(𝜉)e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

Combining the inequality above with (6.52), (2.42) and (5.4) we conclude that

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

|̃Θ,(𝑅,𝑅)
𝑁,Ψ | ≲ 𝑡‖‖‖‖‖‖

√
𝜕𝑡𝑤

𝑤
𝐴∇𝐿Θ

‖‖‖‖‖‖
‖‖‖‖‖‖
⟨
𝜕𝑣
𝑡𝜕𝑧

⟩−1√
𝜕𝑡𝑤

𝑤
𝐴(−Δ𝐿)Ψ≠

‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4
≲ 𝛿(𝐺𝑤[∇𝐿Θ] + 𝐺

𝛿
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

⋄ Bound on ̃Θ,𝑆
𝑁,Ψ. Applying (4.17) and (4.19) we have

(𝐴𝑝
1

2 )𝑘(𝜂)|𝜂𝓁 − 𝑘𝜉|𝜒𝑆 ≲ |𝓁, 𝜉|
|𝓁| 12 𝑝

−
1

4

𝓁
(𝜉)|𝓁| 12 (𝑝 3

4 𝐴)𝓁(𝜉)e
𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

Then, since 𝑡 ≤ 2max{√|𝜂|,√|𝜉|}, if 𝑡 ∈ 𝑰𝑐
𝓁,𝜉

and |𝓁| ≤ |𝜉|, we have
|𝓁, 𝜉|
|𝓁| 12 𝑝

−
1

4

𝓁
(𝜉)𝟙{𝑡∈𝑰𝑐

𝓁,𝜉
}∩{|𝓁|≤|𝜉|} ≲ |𝜉||𝓁| 1

1 + |𝜉| 12 ∕|𝓁| ≲ |𝜉| 12 ≲ 𝑡1−2𝑠|𝓁, 𝜉| 𝑠2 |𝑘, 𝜂| 𝑠2 .
If |𝜉| ≤ |𝓁|we simply use that 1 ≤ 𝑡−2𝑠|𝓁, 𝜉| 𝑠2 |𝑘, 𝜂| 𝑠2 . When 𝑡 ∈ 𝐼𝓁,𝜉 then |𝓁, 𝜉||𝓁|−1∕2𝑝−14

𝓁
(𝜉) ≲|𝜉∕𝓁| ≲ 𝑡1−2𝑠|𝜉|𝑠. Therefore, using (5.4) and (2.42) we obtain

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

̃Θ,𝑆
𝑁,Ψ ≲ 𝑡

1−𝑠
‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖

‖‖‖‖‖‖
|∇| 𝑠2⟨𝑡⟩𝑠 𝐴(−Δ𝐿) 34 |𝜕𝑧| 12 Ψ

‖‖‖‖‖‖‖‖Θ≠‖‖𝜆,𝜎−4
≲ 𝛿(𝐺𝜆[∇𝐿Θ] + 𝐺

𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

⋄ Bound on ̃Θ,𝐿
𝑁,Ψ. As observed in (6.43), using (4.19) we can always recover factor of times from

negative powers of 𝑝. In particular, we have

(𝐴𝑝
1

2 )𝑘(𝜂)|𝜂𝓁 − 𝑘𝜉|𝜒𝐿 ≲ |𝓁, 𝜉| 1|𝓁|(1 + | 𝜉
𝓁
− 𝑡|) (𝑝𝐴)𝓁(𝜉)e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲ 𝑡−𝑠|𝑘, 𝜂| 𝑠2 |𝓁, 𝜉| 𝑠2 (𝑝𝐴)𝓁(𝜉)e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .
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3758 BEDROSSIAN et al.

Since in this case we know |𝜉| ≤ |𝓁𝑡|, appealing to (2.42) and (5.3) we get
∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

|̃Θ,𝐿
Ψ |𝟙𝑡∈𝐼𝓁,𝜉 ≲ 𝛿

𝑡

‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖
‖‖‖‖‖‖
⟨
𝜕𝑣
𝑡𝜕𝑧

⟩−1 |∇| 𝑠2⟨𝑡⟩𝑠 (−Δ𝐿)𝐴Ψ≠
‖‖‖‖‖‖

≲ 𝛿(𝐺𝜆[∇𝐿Θ] + 𝐺
𝛿
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

).

∙ Bound on 𝑅Θ0𝑁,Ψ. Here we can argue as for the termΘ0
𝑁,Ψ. In particular, (6.57) is replaced by

(𝐴𝑝
1

2 )𝑘(𝜂)|𝑘| ≲ 1

1 + | 𝜉
𝑘
− 𝑡| (𝐴𝑝)𝑘(𝜉)e𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .

Notice that in (6.59) we recover the factor ⟨𝜉∕𝑘𝑡⟩−1, which is important to apply (5.5).
Therefore, ∑

𝑁>8

𝑅
Θ0
𝑁,Ψ ≲ 𝛿(𝐺𝑤[∇𝐿Θ] + 𝐺𝜆[∇𝐿Θ] + 𝐺

𝛿
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

) + 𝛿𝜀2.

∙ Bound on 𝑅Θ
𝑁,𝛿

. Reasoning as in Section 6.4, rewrite this term as

𝑅Θ
𝑁,𝛿

= 𝑅Θ
𝛿,𝐿𝐻

+ 𝑅Θ,𝑧
𝛿,𝐻𝐿

+ 𝑅Θ,𝑣
𝛿,𝐻𝐿

+ 𝑅Θ
𝛿,𝐻𝐻

.

With the same arguments done for the term 𝑅Θ
𝑁,𝛿

, one can prove∑
𝑁,𝑀>8

𝑅Θ
𝛿,𝐿𝐻

+ 𝑅Θ,𝑧
𝛿,𝐻𝐿

≲ 𝛿
∑
𝑁>8

𝑅Θ𝑁,Ψ + 𝑅
Θ0
𝑁,Ψ.

We are then left with the term

𝑅Θ,𝑣
𝛿,𝐻𝐿

≲
∑
𝑘,𝓁

∫
ℝ3

|𝐴𝑝 1

2 Θ̂|𝑘(𝜂)|𝐴𝑝 1

2 |𝑘(𝜂)𝜌𝑁(𝜉)𝓁𝟙|𝓁|≤16|𝜉′||ℎ̂(𝜉′)|𝑀
× |∇̂⟂Ψ≠|𝓁(𝜉 − 𝜉′)<𝑀∕8|∇̂Θ𝑘−𝓁(𝜂 − 𝜉)<𝑁∕8|d𝜂d𝜉d𝜉′

=
∑
𝑘,𝓁

∫
ℝ2

̃Θ,𝑣
𝛿,𝐻𝐿

,

where 𝜌𝑁 is the cut-off of the paraproduct decomposition. Here, we have to be careful since
𝑝1∕2 can be a full derivative in ℎ. Indeed, in this term we have to crucially exploit the bounds
available on |𝜕𝑣|𝑠ℎ. In particular, from (4.7) and (4.19) we have

(𝐴𝑝
1

2 )𝑘(𝜂) ≲ 𝑝

1

2

𝑘
(𝜉′)𝐴𝑣(𝜉′)e𝑐|𝓁,𝜉′−𝜉|𝑠+𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠

≲ (𝑡𝟙|𝜉′|≤𝑡 + |𝜉′|𝟙|𝜉′|≥𝑡)⟨𝓁⟩⟨𝑘 − 𝓁⟩𝐴𝑣(𝜉′)e𝑐|𝓁,𝜉′−𝜉|𝑠+𝑐𝜆|𝑘−𝓁,𝜂−𝜉|𝑠 .
When |𝜉′| ≤ 𝑡, appealing to (2.42), (6.48) and (2.43) we get∑

𝑁>8

∑
𝑘,𝓁

∫
ℝ2

̃Θ,𝑣
𝛿,𝐻𝐿

𝟙|𝜉′|≤𝑡 ≲ 𝑡‖𝐴∇𝐿Θ‖‖𝐴𝑣ℎ‖‖‖Ψ≠‖‖𝜆,𝜎−4‖Θ‖𝜆,𝜎−4 ≲ 𝜀4𝑡 ≲ 𝛿2𝜀2.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3759

If |𝜉′| ≥ 𝑡, since 𝑠 > 1∕2 then |𝜉′| = |𝜉′|1−𝑠|𝜉′|𝑠 ≤ |𝜉′|𝑠|𝜉′|𝑠∕2|𝑘, 𝜂|𝑠∕2, so that∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

̃Θ,𝑣
𝛿,𝐻𝐿

𝟙|𝜉′|≥𝑡 ≲ ‖‖‖‖𝐴|∇| 𝑠2 ∇𝐿Θ‖‖‖‖‖‖‖‖𝐴𝑣|𝜕𝑣| 𝑠2 (|𝜕𝑣|𝑠ℎ)‖‖‖‖‖‖Ψ≠‖‖𝜆,𝜎−4‖Θ‖𝜆,𝜎−4
≲

𝛿2

𝑡2−3𝑠
𝑡−𝑠

‖‖‖‖𝐴|∇| 𝑠2 ∇𝐿Θ‖‖‖‖𝑡−2𝑠‖‖‖‖𝐴𝑣|𝜕𝑣| 𝑠2 (|𝜕𝑣|𝑠ℎ)‖‖‖‖
≲ 𝛿2𝐺𝜆[∇𝐿Θ] + 𝛿

2𝑡−2𝑠𝐺𝑣
𝜆
[|𝜕𝑣|𝑠ℎ],

where in the last bound we used 𝑠 ≤ 2∕3. This is not restrictive, as explained after (2.28).
∙ Bound on 𝑅Θ

𝑁,𝑣̇
. The treatment of this term is similar to 𝑅Θ

𝑁,𝑣̇
. We split this term as

𝑅Θ
𝑁,𝑣̇

≲
∑
𝑘,𝓁

∫
ℝ2

|𝐴𝑝 1

2 Θ̂|𝑘(𝜂)(𝐴𝑝 1

2 )𝑘(𝜂)|ˆ̇𝑣|(𝜉)𝑁|𝜕𝑣Θ|𝑘(𝜂 − 𝜉)<𝑁∕8d𝜂d𝜉
=

∑
𝑘,𝓁

∫
ℝ2

̃Θ
𝑁,𝑣̇
(𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉 + 1 − 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉 )𝜒

𝐼.

Here we do not always have Θ≠ as in Section 6.4.2, but this is insignificant for the bound
we need.
For 𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝑘,𝜉 and 2max{

√|𝜂|,√|𝜉|} ≤ 𝑡 ≤ 2min{|𝜂|, |𝜉|}, appealing to (4.17) and, since
𝐴0 is always non-resonant, using the definition of 𝑤 (4.5) and (4.13) we get

(𝐴𝑝
1

2 )𝑘(𝜂)𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒
𝐼 ≲ |𝑘|(1 + |𝑡 − 𝜂

𝑘
|)𝐴𝑘(𝜉)
𝐴0(𝜉)

𝐴0(𝜉)𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒
𝐼

≲ |𝑘|(1 + |𝑡 − 𝜂

𝑘
|) |𝜉| 12
|𝑘|(1 + |𝑡 − 𝜉

𝑘
|) 12 𝐴0(𝜉)e𝑐𝜆|𝑘,𝜂−𝜉|

𝑠

≲
|𝜂||𝑘|𝐴0(𝜉)e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 ≲ 𝑡|𝑘, 𝜂| 𝑠2 |𝜉| 𝑠2 𝐴0(𝜉)⟨𝜂⟩𝑠 e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 . (7.9)

Notice that for 𝑡 ∈ 𝐼𝑘,𝜂 ∩ 𝐼𝑘,𝜉 we have 𝑘 ≠ 0. Hence, given 𝑞 as in (2.28), using (2.47) we get
∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

̃Θ
𝑁,𝑣̇
𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉𝜒

𝐼 ≲ 𝑡
‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖ ‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0

𝜕𝑣
𝑠 𝑣̇

‖‖‖‖‖ ‖‖Θ≠‖‖𝜆,𝜎−6
≲ 𝛿

(
𝑡−2𝑞

‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖
2

+
1

𝑡2+2(𝑠−𝑞)
𝑡2+2𝑠

‖‖‖‖‖|𝜕𝑣|
𝑠

2
𝐴0

𝜕𝑣
𝑠 𝑣̇

‖‖‖‖‖
2)

≲ 𝛿𝐺𝜆[∇𝐿Θ] + 𝛿

(
𝑡2+2𝑠𝐺𝜆[𝜕𝑣

−𝑠] + 𝜀2

𝑡
3

2

)
, (7.10)

where in the last line we used 2 + 2(𝑠 − 𝑞) ≥ 2𝑞. For the remaining term, we need to distinguish
whether 𝑘 = 0 or not. If 𝑘 = 0, observe that

(𝐴𝑝
1

2 )0(𝜂) ≲ |𝜉||𝑘, 𝜂| 𝑠2 |𝜉| 𝑠2 𝐴0(𝜉)⟨𝜂⟩𝑠 .
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3760 BEDROSSIAN et al.

Thus, appealing to (2.46) and (2.41) we get

∑
𝑁>8

∑
𝑘,𝓁

∫
ℝ2

̃Θ
𝑁,𝑣̇
(1 − 𝟙𝑡∈𝐼𝑘,𝜂∩𝐼𝑘,𝜉 )𝜒

𝐼𝟙𝑘=0 ≲
‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖ ‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0

𝜕𝑣
𝑠 𝜕𝑣𝑣̇

‖‖‖‖‖ ‖𝜕𝑣Θ0‖𝜆,𝜎−6
≲

𝛿

𝑡1+𝑠

(‖‖‖‖|∇| 𝑠2 𝐴∇𝐿Θ‖‖‖‖
2

+ 𝑡2+2𝑠
‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0

𝜕𝑣
𝑠 𝜕𝑣𝑣̇

‖‖‖‖‖
2)

≲ 𝛿𝐺𝜆[∇𝐿Θ] + 𝛿𝑡
2+2𝑠𝐺𝜆[𝜕𝑣

−𝑠
𝜕𝑣𝑣̇]. (7.11)

When 𝑘 ≠ 0, if 𝑡 ≥ |𝜂| then 𝑝1∕2
𝑘
(𝜂) ≲ 𝑡⟨𝑘⟩ and 𝐴𝑘(𝜂) ≲ 𝐴0(𝜂)e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 . Hence, we have the

same inequality as in (7.9) and we obtain the same bound in (7.10). When |𝜂| ≥ 𝑡 we have
𝑝
1∕2

𝑘
(𝜂) ≲ |𝜂| and𝐴𝑘(𝜂) ≲ 𝐴0(𝜂)e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 , meaning that we can argue similarly to what is done

to obtain (7.11).
∙ Bound on ̃Θ

𝑁,𝑐𝑜𝑚. On the support of the integrand |𝑘 − 𝓁, 𝜂 − 𝜉| ≲ |𝓁, 𝜉|. From Cauchy-
Schwarz and Young’s convolution inequality we get∑

𝑁>8

̃Θ
𝑁,𝑐𝑜𝑚 ≲ ‖𝐴∇𝐿Θ‖2‖𝑼‖𝐻𝜎−6 ≲ 𝜀3

𝑡
1

2

.

This concludes the proof of (7.4).

8 BOUND ON THE ENERGY FUNCTION 𝑬𝒗

In this section, we first prove Lemma 2.11 and next we provide the coordinate system controls (B3)
and (B4) which are stated in (part of) Proposition 2.8. The proof consists of four main steps.

8.1 Proof of Lemma 2.11

First, notice that

1 − (𝑣′)2 = (𝑣′ − 1)2 − 2(𝑣′ − 1) = ℎ2 − 2ℎ,

𝑣′′ = 𝑣′𝜕𝑣𝑣
′ = 𝜕𝑣(𝑣

′ − 1) + (𝑣′ − 1)(𝜕𝑣(𝑣
′ − 1)) = 𝜕𝑣ℎ + ℎ𝜕𝑣ℎ.

This way, (2.44) and (2.45) follow from the algebra property of𝐴𝑣 and the norms in the 𝐺𝑣
𝑗
(see [8,

Lemma 3.8]). To prove (2.46)–(2.48), first observe that

𝜕𝑣𝑣̇ =
1

𝑣′
𝑣′𝜕𝑣𝑣̇ =  +

(
1

𝑣′
− 1

)
. (8.1)

Then, from the bootstrap hypothesis and using that 𝐴 ≤ 𝐴𝑣 when 𝑘 = 0, we have
‖‖‖‖‖𝐴

(
1

𝑣′
− 1

)‖‖‖‖‖ =
‖‖‖‖‖
∞∑
𝑛=1

𝐴(ℎ𝑛)
‖‖‖‖‖ ≤

∞∑
𝑛=1

‖𝐴𝑣ℎ‖𝑛 ≲ 𝜀𝑡 12 . (8.2)

Combining (8.1) with the bound above and (H3), we obtain (2.46).
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3761

To prove (2.47)–(2.48), we cannot directly rely on the low-frequency estimates of, but we can
use the decay properties of 𝑣̇ in a lower regularity class (the bootstrap hypothesis (H4)). To this
end, let us denote 𝑓≤1(𝜂) = 𝑓(𝜂)𝟙|𝜂|≤1 and 𝑓>1 = 𝑓 − 𝑓≤1. Notice that 𝐴0(𝑡, 𝜂)<1 ≲ 1 and, using
(H4), that ‖‖‖‖‖ 𝐴0⟨𝜕𝑣⟩𝑠 |𝜕𝑣|

𝑠

2 𝑣̇
‖‖‖‖‖ ≲ ‖𝑣̇<1‖𝐿2 + ‖‖‖‖‖|𝜕𝑣|

𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠 𝜕𝑣𝑣̇>1

‖‖‖‖‖ ≲ 𝜀

𝑡2
+

‖‖‖‖‖|𝜕𝑣|
𝑠

2
𝐴0⟨𝜕𝑣⟩𝑠 𝜕𝑣𝑣̇

‖‖‖‖‖.
This way (2.47) follows from the above estimate, (8.1) and (8.2). The proof of (2.48) is analogous:
just notice that there is no need of a low frequency analysis as 𝜕𝑡𝑤 = 0 if |𝜂| ≤ 1∕2. The lemma
is proved.

8.2 Control of 𝒉

To obtain (B3) we need the following two energy inequalities:

1

2

d

d𝑡
‖𝐴𝑣ℎ‖2 + ∑

𝑗∈{𝜆,𝑤}

𝐺𝑣
𝑗
[ℎ] ≤ −⟨𝐴𝑣ℎ,𝐴𝑣𝑣̇𝜕𝑣ℎ⟩ + 1𝑡 ⟨𝐴𝑣ℎ,𝐴𝑣Ω0⟩, (8.3)

and

1

2

d

d𝑡

(
𝑡−2𝑠‖𝐴𝑣|𝜕𝑣|𝑠ℎ‖2) + 𝑡−2𝑠 ∑

𝑗∈{𝜆,𝑤}

𝐺𝑣
𝑗
[|𝜕𝑣|𝑠ℎ]

≤ −𝑡−2𝑠𝐴𝑣|𝜕𝑣|𝑠ℎ, 𝐴𝑣|𝜕𝑣|𝑠(𝑣̇𝜕𝑣ℎ) + 1𝑡 𝑡−2𝑠𝐴𝑣|𝜕𝑣|𝑠ℎ, 𝐴𝑣|𝜕𝑣|𝑠Ω0, (8.4)

which are directly derived using (2.7), the definition of , and 𝐺𝑣
𝑗
[⋅] in (2.38). We only deal with

the right-hand side of (8.4), as (8.3) is very similar, and in fact slightly simpler. For the first term,
notice that

−⟨𝐴𝑣|𝜕𝑣|𝑠ℎ, 𝐴𝑣|𝜕𝑣|𝑠(𝑣̇𝜕𝑣ℎ)⟩ = 1

2

⟨
𝜕𝑣𝑣̇, |𝐴𝑣|𝜕𝑣|𝑠ℎ|2⟩ − ⟨𝐴𝑣|𝜕𝑣|𝑠ℎ, [𝐴𝑣|𝜕𝑣|𝑠, 𝑣̇]𝜕𝑣ℎ⟩.

For the first piece, we simply use Sobolev embeddings and the bootstrap assumptions (H3)–(H4)
to obtain

1

2

⟨
𝜕𝑣𝑣̇, |𝐴𝑣|𝜕𝑣|𝑠ℎ|2⟩ ≲ 𝜀⟨𝑡⟩2 ‖𝐴𝑣|𝜕𝑣|𝑠ℎ‖2 ≲ 𝛿 𝜀2⟨𝑡⟩3∕2 .

The treatment of the second piece is similar to what was done in Section 6. Namely, we write

⟨𝐴𝑣|𝜕𝑣|𝑠ℎ, [𝐴𝑣|𝜕𝑣|𝑠, 𝑣̇]𝜕𝑣ℎ⟩ = ∑
𝑀>8

𝑇ℎ𝑀 +
∑
𝑀>8

𝑅ℎ𝑀 +ℎ

where

𝑇ℎ𝑀 =
⟨
𝐴𝑣|𝜕𝑣|𝑠ℎ, [𝐴𝑣|𝜕𝑣|𝑠, 𝑣̇<𝑀∕8]𝜕𝑣ℎ𝑀⟩

, 𝑅ℎ𝑀 =
⟨
𝐴𝑣|𝜕𝑣|𝑠ℎ, [𝐴𝑣|𝜕𝑣|𝑠, 𝑣̇𝑀]𝜕𝑣ℎ<𝑀∕8⟩,

ℎ =
∑
𝑀∈𝑫

∑
𝑀∕8≤𝑀′≤𝑀

𝐴𝑣|𝜕𝑣|𝑠ℎ, [𝐴𝑣|𝜕𝑣|𝑠, 𝑣̇𝑀]𝜕𝑣ℎ𝑀′ .
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3762 BEDROSSIAN et al.

The transport nonlinearity 𝑇ℎ𝑀 can be treated as in Section 6.3.1, with the simplification that the
𝑧-frequency is always the same. The reaction and remainder terms are analogous to those in [8,
Section 8], since the weight 𝐴𝑣 has the same properties as 𝐴𝑅 in [8]. The different assumptions
(H3)–(H4) give

|⟨𝐴𝑣|𝜕𝑣|𝑠ℎ, 𝐴𝑣|𝜕𝑣|𝑠(𝑣̇𝜕𝑣ℎ)⟩| ≲ 𝛿( ∑
𝑗∈{𝜆,𝑤}

𝐺𝑣
𝑗
[|𝜕𝑣|𝑠ℎ] + ⟨𝑡⟩2+2𝑠𝐺𝑗[⟨𝜕𝑣⟩−𝑠]

+
𝜀2⟨𝑡⟩3∕2

)
. (8.5)

We now turn to the second term in (8.4). For this, we write

|⟨𝐴𝑣|𝜕𝑣|𝑠ℎ, 𝐴𝑣|𝜕𝑣|𝑠Ω0⟩| ≤ 𝐿ℎ1 + 𝐿ℎ2 ,
with

𝐿ℎ1 =
∑
𝑘≠0∫ℝ2 𝐴

𝑣(𝜂)|𝜂|𝑠|ℎ̂(𝜂)|𝐴𝑣(𝜂)|𝜂|𝑠|Ω̂0(𝜂)|𝟙𝑡∈𝐼𝑘,𝜂𝜒𝐼,
𝐿ℎ2 =

∑
𝑘≠0∫ℝ2 𝐴

𝑣(𝜂)|𝜂|𝑠|ℎ̂(𝜂)|𝐴𝑣(𝜂)|𝜂|𝑠|Ω̂0(𝜂)|(1 − 𝟙𝑡∈𝐼𝑘,𝜂𝜒𝐼).
For 𝐿ℎ1 , we use the definition of 𝐴

𝑣 in (2.33) and 𝑤𝑣 in (4.6) to get

𝐴𝑣(𝜂) ≲
|𝜂|
𝑘2
𝜕𝑡𝑤𝑘(𝜂)

𝑤𝑘(𝜂)
𝐴0(𝜂).

Then

𝐿ℎ1 ≲ ⟨𝑡⟩1+𝑠‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴𝑣|𝜕𝑣|𝑠ℎ‖‖‖‖‖‖

‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴Ω

‖‖‖‖‖‖ ≤ 𝑡

4
𝐺𝑣𝑤[|𝜕𝑣|𝑠ℎ] + 𝐶14 ⟨𝑡⟩1+2𝑠𝐺𝑤[Ω],

where 𝐶1 ≥ 1 is independent of 𝜀, 𝛿. Turning to 𝐿ℎ2 , as 𝐴𝑣 ≲ 𝐴0 in the support of the integral, we
have

𝐿ℎ2 ≲
‖‖‖‖𝐴𝑣|𝜕𝑣|𝑠+ 𝑠

2 ℎ
‖‖‖‖‖‖‖‖𝐴|𝜕𝑣| 𝑠2 Ω‖‖‖‖ ≤ 𝑡

4
𝐺𝑣
𝜆
[|𝜕𝑣|𝑠ℎ] + 𝐶14 ⟨𝑡⟩1+2𝑠𝐺𝜆[Ω].

As a consequence, we have from (8.4) that

1

𝑡
⟨𝑡⟩−2𝑠|⟨𝐴𝑣|𝜕𝑣|𝑠ℎ, 𝐴𝑣|𝜕𝑣|𝑠Ω0⟩| ≤ 1

4
⟨𝑡⟩−2𝑠 ∑

𝑗∈{𝜆,𝑤}

𝐺𝑣
𝑗
[|𝜕𝑣|𝑠ℎ] + 𝐶14 ∑

𝑗∈{𝜆,𝑤}

𝐺𝑗[Ω]. (8.6)

Collecting (8.5), (8.6) and the analogous bounds for (8.3), we end the proof of the estimates on ℎ
in (B3).
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3763

8.3 Control of

To complete the proof of (B3), we start from the energy inequality

1

2

d

d𝑡

(⟨𝑡⟩2+2𝑠‖‖‖‖ 𝐴⟨𝜕𝑣⟩𝑠‖‖‖‖
2
)
+ ⟨𝑡⟩2+2𝑠 ∑

𝑗∈{𝜆,𝑤}

𝐺𝑗
[⟨𝜕𝑣⟩−𝑠] ≤ 𝑇 + 𝐹,

where 𝐺𝑗[⋅] is defined in (2.36) and the transport and forcing terms are given respectively by

𝑇 = −⟨𝑡⟩2+2𝑠⟨ 𝐴⟨𝜕𝑣⟩𝑠, 𝐴⟨𝜕𝑣⟩𝑠 𝑣̇𝜕𝑣
⟩
, (8.7)

𝐹 = −
⟨𝑡⟩2+2𝑠
𝑡

⟨
𝐴⟨𝜕𝑣⟩𝑠, 𝐴⟨𝜕𝑣⟩𝑠 (𝑣′∇⟂Ψ≠ ⋅ ∇Ω≠

)
0

⟩
. (8.8)

In this case 𝑇 in (8.7) is similar to the transport terms of Section 6; 𝐹 in (8.8) describes the non-
linear feedback of the non-zero frequencies onto the zero one. Bounds on 𝑇 are obtained as for
(8.5), giving

𝑇 ≲ 𝛿

(⟨𝑡⟩2+2𝑠 ∑
𝑗∈{𝜆,𝑤}

𝐺𝑗
[⟨𝜕𝑣⟩−𝑠]

+
𝜀2⟨𝑡⟩3∕2

)
. (8.9)

We focus on the forcing term, which contains 𝑣′ = 1 + (𝑣′ − 1), so that we can write 𝐹 = 𝐹0 + 𝐹𝛿,
where

𝐹0 = −
⟨𝑡⟩2+2𝑠
𝑡

⟨
𝐴⟨𝜕𝑣⟩𝑠, 𝐴⟨𝜕𝑣⟩𝑠 (∇⟂Ψ≠ ⋅ ∇Ω≠

)
0

⟩
,

𝐹𝛿 = −
⟨𝑡⟩2+2𝑠
𝑡

⟨
𝐴⟨𝜕𝑣⟩𝑠, 𝐴⟨𝜕𝑣⟩𝑠 ((𝑣′ − 1)∇⟂Ψ≠ ⋅ ∇Ω≠

)
0

⟩
.

As argued in [8, Section 8], it is enough to consider 𝐹0, treating in a separate way low-high, high-
low and remainder interactions, namely 𝐹0 = 𝐹0𝐿𝐻 + 𝐹

0
𝐻𝐿 + 𝐹

0, with

𝐹0𝐿𝐻 = −
⟨𝑡⟩2+2𝑠
𝑡

∑
𝑀>8

∑
𝑘≠0

⟨
𝐴⟨𝜕𝑣⟩𝑠, 𝐴⟨𝜕𝑣⟩𝑠 (∇⟂Ψ𝑘)<𝑀∕8 ⋅ (∇Ω−𝑘)𝑀

⟩
,

𝐹0𝐻𝐿 = −
⟨𝑡⟩2+2𝑠
𝑡

∑
𝑀>8

∑
𝑘≠0

⟨
𝐴⟨𝜕𝑣⟩𝑠, 𝐴⟨𝜕𝑣⟩𝑠 (∇⟂Ψ𝑘)𝑀 ⋅ (∇Ω−𝑘)<𝑀∕8

⟩
,

𝐹0 = −
⟨𝑡⟩2+2𝑠
𝑡

∑
𝑀∈𝑫

∑
𝑀∕8≤𝑀′≤𝑀

∑
𝑘≠0

⟨
𝐴⟨𝜕𝑣⟩𝑠, 𝐴⟨𝜕𝑣⟩𝑠 (∇⟂Ψ𝑘)𝑀′ ⋅ (∇Ω−𝑘)𝑀

⟩
.

There are various similarities with [8, Section 8] in the treatment of all the non-resonant con-
tributions, as the weight 𝐴 in our case is comparable to that in [8]. In particular, as in [8],
appealing to (4.22) and the usual arguments for short and long times, taking the case of 𝐹0𝐻𝐿
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3764 BEDROSSIAN et al.

one has

|𝐹0,𝑁𝑅𝐻𝐿 | = ||||||
⟨𝑡⟩2+2𝑠
𝑡

∑
𝑀>8

∑
𝑘≠0

⟨
(1 − 𝟙𝑡∈𝐼𝑘,𝜉𝜒

𝐼)
𝐴⟨𝜕𝑣⟩𝑠, 𝐴⟨𝜕𝑣⟩𝑠 (∇⟂Ψ𝑘)𝑀 ⋅ (∇Ω−𝑘)<𝑀∕8

⟩||||||
≲ 𝛿⟨𝑡⟩2+2𝑠𝐺𝜆[⟨𝜕𝑣⟩−𝑠]

+ 𝛿⟨𝑡⟩8𝑠−2𝐺𝜆[⟨𝜕𝑣⟩−𝑠]
+ 𝛿𝐺𝛿

𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

≲ 𝛿⟨𝑡⟩2+2𝑠𝐺𝜆[⟨𝜕𝑣⟩−𝑠]
+ 𝛿𝐺𝛿

𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐
, (8.10)

provided 𝑠 ≤ 2∕3. For 𝑡 ∈ 𝐼𝑘,𝜉 , our weight and the one in [8] are different, so that a careful
treatment is needed in the following.

|𝐹0,𝑅𝐻𝐿| ≲ ⟨𝑡⟩1+2𝑠 ∑
𝑀>8

∑
𝑘≠0∫ℝ2 𝟙𝑡∈𝐼𝑘,𝜉𝜒

𝐼 𝐴0(𝜂)⟨𝜂⟩𝑠 |̂(𝜂)|𝐴0(𝜂)⟨𝜂⟩𝑠 |𝑘, 𝜉||Ψ̂𝑘(𝜉)𝑀||∇̂Ω−𝑘(𝜂 − 𝜉)<𝑀∕8|.
As 𝑡 ∈ 𝐼𝑘,𝜉 , we now exchange𝐴0(𝜂)with𝐴𝑘(𝜉), by means of (4.18); using that |𝜂| ≈ |𝜉| ≈ |𝑘𝑡|, we
get

𝐴0(𝜂)⟨𝜂⟩𝑠 |𝑘, 𝜉| ≲ ⟨𝑡⟩ 12−𝑠 𝜕𝑡𝑤𝑘(𝜉)
𝑤𝑘(𝜉)

e𝑐𝜆|𝜂−𝜉|𝑠𝑝 3

4

𝑘
(𝜉)|𝑘| 12 𝐴𝑘(𝜉).

This implies that (see (4.12)) we have

|𝐹0,𝑅𝐻𝐿| ≲ 𝛿⟨𝑡⟩ 32+𝑠⎛⎜⎜⎝
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤

𝐴0⟨𝜕𝑣⟩𝑠
‖‖‖‖‖‖ +

‖‖‖‖‖‖
|𝜕𝑣| 𝑠2⟨𝑡⟩𝑠 𝐴0⟨𝜕𝑣⟩𝑠

‖‖‖‖‖‖
⎞⎟⎟⎠
‖‖‖‖‖‖
√
𝜕𝑡𝑤

𝑤
𝐴(−Δ𝐿)

3

4 |𝜕𝑧| 12 Ψ‖‖‖‖‖‖
≲ 𝛿⟨𝑡⟩2+2𝑠 ∑

𝑗∈{𝜆,𝑤}

𝐺𝑗
[⟨𝜕𝑣⟩−𝑠]

+ 𝛿⟨𝑡⟩𝐺𝜀
𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐

. (8.11)

We now turn our attention to 𝐹0𝐿𝐻 where the regularity gap between andΩ is crucial to control
∇−𝑘Ω𝑀 at high frequencies. Since 𝐴0(𝜂) ≲ e𝑐𝜆|𝜂−𝜉|𝑠𝐴𝑘(𝜂) and 1 − 𝑠 ≤ 𝑠 notice that

𝐴0(𝜂)⟨𝜂⟩𝑠 |𝑘, 𝜉| ≲ |𝑘, 𝜉|1−𝑠𝐴𝑘(𝜉)⟨𝑘⟩e𝑐𝜆|𝜂−𝜉|𝑠 ≲ |𝜂| 𝑠2 |𝑘, 𝜉| 𝑠2 𝐴𝑘(𝜉)e𝑐𝜆|𝑘,𝜂−𝜉|𝑠 .
This way, we have

|𝐹0𝐿𝐻| ≲ ⟨𝑡⟩1+2𝑠‖‖‖‖‖ 𝐴⟨𝜕𝑣⟩𝑠 |𝜕𝑣|
𝑠

2‖‖‖‖‖‖‖‖‖|∇| 𝑠2 𝐴Ω‖‖‖‖‖Ψ‖𝜆,𝜎−4 ≲ 𝛿⟨𝑡⟩2𝑠−1‖‖‖‖‖ 𝐴⟨𝜕𝑣⟩𝑠 |𝜕𝑣|
𝑠

2‖‖‖‖‖‖‖‖‖|∇| 𝑠2 𝐴Ω‖‖‖‖
≲ 𝛿

(⟨𝑡⟩2+2𝑠𝐺𝜆[⟨𝜕𝑣⟩−𝑠] + ⟨𝑡⟩4𝑠−4‖|∇| 𝑠2 𝐴Ω‖2)
≲ 𝛿

(⟨𝑡⟩2+2𝑠𝐺𝜆[⟨𝜕𝑣⟩−𝑠] + 𝐺𝜆[Ω]), (8.12)
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3765

where the last inequality holds for 𝑠 ≤ 2∕3. It remains to treat 𝐹0. Arguing as in [8], we get

|𝐹0| ≲ ⟨𝑡⟩1+2𝑠‖‖‖‖‖ 𝐴⟨𝜕𝑣⟩𝑠
‖‖‖‖‖‖Ω‖𝜆,𝜎−1‖‖Ψ≠‖‖𝜆,𝜎−4 ≲ 𝛿 𝜀2⟨𝑡⟩1−𝑠 . (8.13)

From (8.9), (8.10), (8.11), (8.12), (8.13), and integrating on (1, 𝑡) we get precisely (B3).

8.4 Control of 𝒗̇

To prove (B4), we begin from the identity

1

2

d

d𝑡

(⟨𝑡⟩4‖𝑣̇‖2𝜆(𝑡),𝜎−6) = 2⟨𝑡⟩2𝑡‖𝑣̇‖2𝜆(𝑡),𝜎−6 + ⟨𝑡⟩4(𝜆̇(𝑡)‖‖‖‖|𝜕𝑣| 𝑠2 𝑣̇‖‖‖‖
2

𝜆(𝑡),𝜎−6
+ ⟨𝑣̇, 𝜕𝑡𝑣̇⟩𝜆(𝑡),𝜎−6

)
.

Using (2.9), we notice that

⟨𝑣̇, 𝜕𝑡𝑣̇⟩𝜆(𝑡),𝜎−6 = −2𝑡 ‖𝑣̇‖2𝜆(𝑡),𝜎−6 − ⟨𝑣̇, 𝑣̇𝜕𝑣𝑣̇⟩𝜆(𝑡),𝜎−6 − 1𝑡
⟨
𝑣̇, 𝑣′

(
∇⟂Ψ≠ ⋅ ∇𝑈𝑥≠

)
0

⟩
𝜆(𝑡),𝜎−6

.

A simple computation leads to

1

2

d

d𝑡

(⟨𝑡⟩4‖𝑣̇‖2𝜆(𝑡),𝜎−6) ≤ 1 + 2, (8.14)

with

1 = −⟨𝑡⟩4⟨𝑣̇, 𝑣̇𝜕𝑣𝑣̇⟩𝜆(𝑡),𝜎−6 , 2 = − ⟨𝑡⟩4
𝑡

⟨
𝑣̇, 𝑣′

(
∇⟂Ψ≠ ⋅ ∇𝑈𝑥≠

)
0

⟩
𝜆(𝑡),𝜎−6

.

To control 1, using (8.1), the algebra property and (8.2), it easy to see that
1 ≲ 𝜀⟨𝑡⟩ 72−𝑠‖𝑣̇‖2𝜆(𝑡),𝜎−6 . (8.15)

Turning to 2, we first notice that by (2.41)–(2.43) we have that
2 ≲ 𝜀2⟨𝑡⟩‖𝑣̇‖𝜆(𝑡),𝜎−6 ≲ 𝜀⟨𝑡⟩ 72−𝑠‖𝑣̇‖2𝜆(𝑡),𝜎−6 + 𝜀3⟨𝑡⟩−32+𝑠. (8.16)

Putting together (8.15) and (8.16) back into (8.14) and integrating on (1, 𝑡) gives precisely (B4).
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