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Abstract

We investigate the long-time properties of the two-
dimensional inviscid Boussinesq equations near a stably
stratified Couette flow, for an initial Gevrey perturba-
tion of size €. Under the classical Miles-Howard stability
condition on the Richardson number, we prove that the
system experiences a shear-buoyancy instability: the den-
sity variation and velocity undergo an O(t~%/2) inviscid
damping while the vorticity and density gradient grow as
O(t'/2). The result holds at least until the natural, nonlin-
ear timescale t ~ ¢~2. Notice that the density behaves very
differently from a passive scalar, as can be seen from the
inviscid damping and slower gradient growth. The proof
relies on several ingredients: (A) a suitable symmetrization
that makes the linear terms amenable to energy meth-
ods and takes into account the classical Miles-Howard
spectral stability condition; (B) a variation of the Fourier
time-dependent energy method introduced for the inviscid,
homogeneous Couette flow problem developed on a toy
model adapted to the Boussinesq equations, that is, track-
ing the potential nonlinear echo chains in the symmetrized
variables despite the vorticity growth.
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1 | INTRODUCTION

This article is concerned with the long-time dynamics of a 2D incompressible and non-
homogeneous fluid under the Boussinesq approximation near a stably stratified Couette flow in
the infinite periodic strip T X R. The background density profile is taken to be affine, thus we
study the simple equilibrium

uE=(y70)7 pE=,5_by,

where p > 0is the averaged constant density and b > 0 is a fixed constant. Given a density pertur-
bation p, we define the modified density perturbation 6 = p/b. The 2D Euler-Boussinesq system
for perturbations around the steady state ug, oy reads

iu+ydu+w,0)+ Vp =—6(0,%) — (u- Vu,
(x,y) ETXR, t >0, (1.1)
0,06 +y0,6 =u¥ —u- Vo,

where u = (u*,u”) is the perturbation velocity field, p is the pressure and § = 1/—pg/p, with
g being the gravitational constant. The parameter § is the Brunt-Vdisdld frequency, which is the
characteristic frequency of the oscillations of vertically displaced fluid parcels, and hence provides
a measure of the strength of the buoyancy force [44, 54]. We write the system (1.1) in vorticity-
stream formulation as

8, + yd,w = —20,6 —u - Vo,

0,6 +y0,6 =0, —u-V6, (x,y)eTXR, t>0, 1.2)

u=Viy, AY = w,

with @ = V1 - u, where we denote V+ = (=4,,9,).
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Density stratification is a common feature of geophysical flows; under appropriate averaging,
most of the Earth’s ocean is well-approximated as an incompressible, stably stratified fluid so that
its dynamics are well described by fluctuations around a mean background density profile which
increases with depth (namely pg < 0, usually referred to as stable stratification profile [18, 21, 44]).
The system (1.2) under investigation models a stably stratified fluid with the additional Boussinesq
assumption, according to which density is assumed constant except when it directly causes buoy-
ancy forces [24, 43]. The Boussinesq system gained the interest of the mathematical community
thanks to its wide range of applications, especially in oceanography [21, 44], and many mathe-
matical works have been dedicated to it [1, 15-17, 19, 20, 27, 29, 47, 57]. It also holds mathematical
interest through a connection with the 3D axisymmetric Euler equations for homogeneous fluids
[45], where the term multiplied by 82 in (1.2) plays the role of the vortex stretching.

Perturbations of the equilibrium state in a stably stratified fluid induce two related mechanisms
as consequences of gravity’s restoring effect (Archimedes’ principle) and the shearing transport
of the equilibrium. The first one is a buoyancy force generated by the pressure gradient of the
stable stratification as a response to gravity, which pushes the higher density fluid downwards.
The second one is vorticity production due to the horizontal density gradient, which acts as a
source term in the vorticity equation of (1.2). These two mechanisms are coupled even at the
linear level, in such a way that their interplay may lead to an overall instability of the system
[44]. Note that gravity’s restoring effect also manifests itself as radiation of internal gravity waves,
whose propagation is supported by stably stratified fluids as a remarkable feature: understanding
the dynamics of internal waves is in fact of crucial importance to many geophysical applications
[21, 44, 56]. The non-trivial underlying dynamics have been observed in laboratory experiments
[13, 40] and investigated in the physics literature [14, 31, 34].

In the case of the Couette flow, linear stability is ensured by the so-called Miles-Howard crite-
rion [35, 49], which requires the Richardson number Ri = 32 to be greater than 1/4. Under this
condition, precise quantitative estimates can be extrapolated from the linear dynamics. In 1975,
Hartman [34] observed an enstrophy Lyapunov instability with a growth of O(t'/2), despite the
fact that the velocity field undergoes an O(t~/2) time decay. This phenomenon persists for more
general, stably stratified fluids without the Boussinesq approximation, as showed by Case [14]. A
decay of O(t~1/2) for both the velocity and the density has been proved rigorously for the Couette
flow in [61] and extended to shears near Couette in [11]. In addition, a vorticity and density gradi-
ent growth with rate O(t'/2), which confirms the observation of [34], has been rigorously proved
in [11]. Due to the nature and the origin of such growth, we will refer to it as a shear-buoyancy
instability. It is worth pointing out that the enstrophy growth is in striking contrast with the 2D
homogeneous and inviscid Couette flow, which is Lyapunov stable in the enstrophy norm for
both the linear and nonlinear problem (in fact, the enstrophy of the perturbation is conserved in
both).

The decay of the velocity field of the perturbation, called inviscid damping, is due to the
mixing of vorticity and is a key dynamical property of shear flows and vortices. This was first
noticed by Orr [52] and later studied by Case and Dikii [14, 26] for a 2D homogeneous fluid,
where the velocity field decays as O(t~!). In particular, inviscid damping occurs when the shear
transfers enstrophy to high frequencies. This is a fundamental mechanism of inviscid fluids,
intimately connected with the stability of coherent structures [55, 62] and the theory of 2D
turbulence [12]. Its first mathematically rigorous study in the full 2D homogeneous Euler equa-
tions was carried out in [8] for the Couette flow. It bears remarking that due to transient unmixing
effects, the Couette flow is in fact Lyapunov unstable in the kinetic energy norm (a consequence

of [8]).
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1.1 | The main result

The purpose of this article is to provide the first rigorous study on the long-time dynamics of
the Couette flow for the 2D inviscid Boussinesq system (1.1). We prove that the nonlinear system
undergoes a shear-buoyancy instability and nonetheless the velocity field experiences nonlinear
inviscid damping, confirming that the linear dynamic extends to the nonlinear setting at least on
a natural timescale O(¢~2). Fix s > 1/2 and define the Gevrey norm of class 1/s as

1903 = X, [ O Fyappan, 13)
kez /R
Moreover, set
fo0) =3z [ renan o= f-go 1)

The main result of this article is stated in the next theorem.
Theorem 1. Let 8> 1/2. Forall1/2 <s <1, 1y > A’ > 0 there exist § = 5(f, 4,s) € (0,1) and
g0 = £0(B, Ao, 5) € (0, 8) such that the following holds true: let £ < £, and w'™", 0" be mean-free initial

data satisfying

™ + o™ gz + 1187 g0 <& (.5)

%

Then, if we define the shift ®(t,y) = fol ug(t,y)dr, forall 0 < t < 8%~ we have

w0, +18Dllge S5

llo(t, x + £y + @(6, ), W)l gr + (|6t x + ty + @), M| S€B)2 (16)
As a consequence, the velocity field and the modified density satisfy
€
|z, +le-0ll,. s = 7
(t)2
€
Ol § —- (1.8)
()2
Moreover, there exists K = K(B8,1¢,4’,s) > 0 such that if
in in
Jeiz],,-. + [le]]. = xe.
then
1
||a);é(t)||L2 + ||V67é(t)||L2 ~e(t)2. 1.9

forall0 <t < §%72.
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The above result describes the long-time dynamics of the Boussinesq system (1.2) in the pertur-
bative regime near the linearly stratified Couette flow, and it is the first of its kind describing such
behavior in a fully inviscid coupled system which has both wave propagation and phase mixing.
The works [28, 47, 64] study nonlinear systems with both phase mixing and wave propagation,
but these problems all contain dissipative effects, whereas the works [11, 61] are all linear. The
inviscid damping due to vorticity mixing is encoded in (1.7)—(1.8).

One of the main novelties here is the quantification of the shear-buoyancy instability given by
(1.9). The linearized dynamics of (1.2) predict exactly the decay rates (1.7)-(1.8) and the instability
(1.9) for all times [11, 34, 61], see also Theorem 2 below. Therefore, in a nonlinear perturbative
regime as the one studied here, the time-scale O(¢~2) appears naturally. As another manifesta-
tion of the instability, the rates in (1.6)-(1.8) are (t)'/2 slower compared to the constant density
case studied in [8]. This is due to creation of vorticity in the perturbation by interaction with the
density stratification.

The proof of Theorem 1, described in detail in the next Section 2, truly uses the specific linear
coupling of w and 6 via a suitable symmetrization of the unknowns. Specifically, the scaled density
@ is not simply transported by the Couette flow, as this would imply a growth rate of order (¢) for
V6., rather than the (¢)'/? appearing in (1.9).

The need of an infinite regularity (Gevrey) space is by-now classical in phase mixing prob-
lems, both for Landau damping in plasma physics [9, 25, 30, 33, 50] and for inviscid damping
in fluid mechanics [8, 36-38, 48]. This is strictly connected with loss of derivatives as a price
to pay for the control of transient growths or echoes: further discussions on this aspect can be
found in the course of the paper. The regularity requirement on the initial data (1.5) is the
same as in the constant density case [8, 37, 48], and it is likely to be sharp [22]. This can be
heuristically understood by a toy model that estimates the worst possible growths due to the
nonlinear interactions. Despite predicting the same total loss of regularity as in the constant
density case, the model is tailored specifically to the Boussinesq system and displays crucial dif-
ferences in terms of the regularity imbalance between resonant and non-resonant modes (see
Section 2.3). The picture may change with the addition of thermal diffusivity and/or viscosity.
When viscosity is added in the vorticity equation, the Gevrey index can be relaxed to s = 1/3 as
in [47], while when also diffusivity is present in the density equation one can work in Sobolev
regularity [28, 64].

The restriction of the parameter 5 in Theorem 1 is sharply consistent with the classical Miles-
Howard criterion for linear spectral stability [35, 49] mentioned above. The role of this restriction
is very explicit in the coercivity of the main energy functional used to prove Theorem 1, but also
implicitly appears in many of the constants hidden by the symbol <, which blow up as 8§ — 1/2.
The linear dynamics when 8 < 1/2 was studied in [61]. In this case the vorticity grows with faster
rates (and the density decays with slower rates). Reproducing the results of [61] by means of
an energy method like the one used in [11] could lead to further insight at the nonlinear level
as well.

Finally, we do not expect that the linear dynamics persist to leading order after times O(e~2),
but rather that a secondary instability engages to carry the solution a fully nonlinear regime.
Specifically, after this time, we expect that mixing creates large adverse vertical density gradi-
ents, resulting in an overturning instability. There are some analogies between Theorem 1 and
the work on subcritical transition in 3D Couette [5]: both study a spectrally stable problem with
an algebraic instability and show that the only way to trigger a secondary instability is through the
underlying destabilizing mechanism (at least in Gevrey class). The possible secondary instability,
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the 3D case, and the case of stably stratified fluids without the Boussinesq approximation will be
studied in future work.

1.2 | Organization of the article

Section 2 describes the main ideas needed for the proof of Theorem 1, including the symmetrized
variables, the weighted energy functionals and the fundamental bootstrap Proposition 2.8. In Sec-
tion 3 we prove Theorem 1 assuming Proposition 2.8. The rest of the article is dedicated to the proof
Proposition 2.8. The construction of the time-dependent Gevrey weights is carried out in Section 4,
while Section 5 is dedicated to the proof of the elliptic estimates crucial to control the nonlinear
terms. The heart of the article is contained in Section 6, where we prove the energy estimate on the
symmetric variables. These require direct bounds on the vorticity and the gradient of the density,
which are carried out in Section 7. Finally, Section 8 contains the control of the nonlinear change
of coordinates.

1.3 | Notations and conventions

We use the notation f < g when there exists a constant C > 0, independent of the parameters of
interest, such that f < Cg. Similarly, f ~ g means that here exists C > OsuchthatC~'g < f < Cg.
We will denote by c a generic positive constant smaller than 1.

Given a vector (k,7), we indicate by |k,n| = |k| + || its norm. We will use the symbol (a) =
v/ 1+ |a|? for either scalars or vectors. Given a normed space X, its norm is denoted by || - ||x,
omitting the subscript when X = L?. We recall also that (1.3) and (1.4) are used throughout
the article.

For a Schwartz function f = f(z,v) : T X R — R, we define the Fourier transform as

1

Fu = = / ekz-in f(z, 0)dzdv,  (kin) € Z X R,
27 Jrup

The Littlewood-Paley dyadic decomposition is defined as follows: we take ¢ € C;°(R) be such that
1 3 T
#(7) = 1for [] < 5,¢ = 0 for 5] > > and set §(n) = $() - ¢(/2). Then

1=¢(m+ Y, $M 1y

Me2N

In this way, ¢,,(n) := (M ~17) is supported in % <Inl < % For a function g = g(v) € L*(R),
we define

g=g1+ 3 gu:=¢dDg+ Y, $u(Id.Dg.

2 Me2N Me2N
We also use the notation
8&m =81+ Z 8k> &M = 2 8K»
> KeV:iK<M MeN; 2 ck<om
el
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for some constant C independent of M. The paraproduct decomposition will then be denoted as
follows

f8=UQu +(fQur + (fQunu

= 2 J<mys8m + 2 Fm8<mys + Z v (1.10)

Me2N:M>8 Me2N:M>8 M,M'e2N: M /8<M'<8M

2 | OUTLINE OF THE PROOF

In this section, we outline the proof of Theorem 1. There are a number of different ideas that go
into it, some arising from the inviscid damping result for the homogeneous problem [8], others
arising from the study of the linearized problem [11], and others which are new and specific to
this nonlinear problem.

2.1 | Change of coordinates

Given the incompressibility of the flow, we know u, = (u,0), which implies
u-V=uo,+uy;-V.

Due to the inviscid damping, we expect the non-zero x-frequencies to decay and hence it is natural
to treat the last term as a perturbation. However, there is no decay mechanism for u; and so this
term could be treated perturbatively on an O(¢~!) time-scale at most. To deal with this difficulty,
[8] introduced a change of coordinates that depends on ug‘ (1), and for the same reason, we use the
same coordinate change. We briefly recall it here; see [8] for more details. Define

t
1
v=y+ n / uy (s, y)ds, z =Xx-—Ut. 2.1)
0

Provided that ug‘ is sufficiently small, this coordinate change can be inverted; we assume this is the
case for now. The corresponding unknowns written in the new variables (writing x = x(¢, z, v),
y = y(t,v)) are given by

Q(t,z,v) = w(t, x,y), o(t,z,v) =6(t,x,y), Y(t,z,v) = P(t, x, ). (2.2)

In this way we obtain (we write the change of variables only for Q but similar relations hold for
the other functions)

0w = 8,Q+ 29,Q + 13,Q, d,w =9,Q, d,w = '(9, — 19,)Q (2.3)
where
1 1 [
Z::dtz:—y—ug, U::atv:?lug‘—?/o uf)‘(s,y)ds],
1 /! 1 [
Vi=du=1+ ?/0 wo(s, y)ds, V' =4, = ?/o dywo(s,y)ds. (24
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The Biot-Savart law also gets transformed as
AY =Q, A, i=0,,+ ()8, —td,)* + V" (8, — td,). (2.5)
In the new coordinates, the original system (1.2) is now expressed as
9,Q=-p%3,06-U-VQ,
0,0=0,9—-U-VO, (2.6)
U =(0,0) +v'Vi¥, AY = Q,

where V =V, ,. Notice that the zero mode in z and in x are the same, and therefore we use the
same symbol as in (1.4) to denote the projection of ¥ off the zero mode in z.
To control the coordinate system itself, as in [8], we introduce the auxiliary variables

t
h(t,v) = v'(ty) =1, H(t,v) = 8,6(t,y) = %(coo(t, y)— % / wols, y)ds).
0

Propagating smallness for h is enough to invert the change of coordinates and it will be crucial
to handle new nonlinear problems appearing in (2.6). For instance, the piece of the velocity field
with v’ V¥, can be splitted into a velocity field in the standard form VW, plus hV-W,,. We treat
this last piece as a “perturbation” of Vl‘P;é by proving h is small in an appropriate sense. The term
H instead arises when deriving the equation satisfied by 4. Indeed, notice that from (2.4) we have

V() -1=7 / s s Ho) = 2(Qu(t,0) = h(t,0).
0
Since from (2.4) one has that 8,(t(v" — 1)) = w,, we have from (2.3) that
(6; + V0,)(th) = Qq = o:h +UV0,h = H. 2.7
Taking the z average of the first equation in (2.6), we similarly derive
OH = —%H — U8,H — UT,(vilp;é VQy), . (2.8)
Finally, we also record the equation satisfied by U in the (¢, v) coordinates, namely

!
8,0 = —%u — U8,V — UT(V“P;& - VU;) U(t,z,0) 1= u(t, X, y). (2.9)

0,
2.2 | Thelinearized dynamics: Symmetric variables
Unlike [8], the linear dynamics are non-trivial. The linearized dynamics associated with (2.6) are

best understood by passing to Fourier variables (z,v) — (k,7). Since at the linear level we have
v =y, the differential operators in these coordinates read

V, :=(0,,0,—13,), A :=0,, + (8, —13,)> (2.10)

85UL0 ! SUOWWIOD BAITeRID) 8ol |dde sy Aq peusenof ae ssjonte YO 8N JO Se|ni Joj Akeiqi aulluQ A8|IAA UO (SUONIPUOD-pUR-SWLBIA0Y A8 |IM Areig 1 jpul |UO//:SdNY) SUONIPUOD PpUe SWB 1 8y 8eS *[7202/2T/TZ] Uo Ariqiaulluo 8|1 elfeleuelyood Aq €212z edo/Z00T 0T/10p/wod A8 1m Aeiq puljuo//sdny wo.j pepeojumod ‘ZT ‘€202 ‘ZTE0L60T
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We denote the symbols associated to —A; as
bt ) =K+ —kt)*,  ,pi(t,n) = =2k(n — kt). 1)

The explicit dependence on ¢ of the above quantities will often be omitted. The linearized equa-
tions are obtained from (2.6) by neglecting all nonlinear terms including the one arising from the
nonlinear change of coordinate (hence A, is formally replaced by A;). On the Fourier side, they
take the form
~ oo A ik ~

0,Q = —ip°ko, 3,06 = —;Q (2.12)
While the decoupling in k is a general feature of stratified flows near shears and general back-
ground density profiles pg(y), the linear nature of the Couette flow and pg ensures the decoupling
in 7 as well. While the zero-mode is clearly conserved, the nonzero modes exhibit an interesting
behavior which has been studied in the applied mathematics literature since the 1950s; we refer to
[34] for a detailed literature review. In [34], the system (2.12) is investigated by a method involving
hypergeometric functions, made mathematically rigorous and precise in [61]. For our purposes,
it is more convenient to recall the energy method used in [11], originally introduced to deal with
the linear stability of the Couette flow in a compressible fluid [3]. The idea is to symmetrize the
system (2.12) via time-dependent Fourier multipliers and use an energy functional for the new
auxiliary variables. Compared to [11], we slightly change the symmetrized variables by modifying
powers of k, defining them here as

1

Z(t.n) = (sz)—z ) G, Quty) = <<p/k2)2zk/3@> Gy @)
k

for which (2.12) takes the particularly amenable form

e}
8,Z = _1owp

27p Z-|klgp 2Q,  4,Q= ——Q +|kIgp~ 2. (214)

Throughout the article, we will often omit the subscript k and the dependence on 7 when no
confusion arises. The presence of the k? factors in (2.13) only modifies the linearized equations by
changing k to |k|, however, the adjustment to the definition of Z, Q will be important to treat the
nonlinear problem later. Define the following energy functional point-wise in frequency

1 1
E@) =5 1Z(O1 + QO + (2.15)
|k|p>
Since, |3,p/(kp'/?)| < 2, the energy functional is coercive for § > 1/2 with
1
5 (1 - —) (121> +1QPP]() < E(®) < 5 (1 + 73) 1217 +1QI7] (), (2.16)
and can be shown to satisfy
%E: #at P_Re ZG). (2.17)
lklp>
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Since
3 P 2
tD k
0; = —20, 7= 3
Jklp> A+C=-0): | a+@-o2p

is positive, from the coercivity of E we arrive at

1 o:p d 1 9:p
- o; E < —E < X
2(1 —-2p) lklp% dt 2(1 —-2p) |k|p%

E’

and hence
E(t) ~ E(0), vt > 0.
The precise linear dynamics can therefore be described by the following theorem.

Theorem 2 ([11, Theorem 1.1]). For any k # 0 and n € R, the solution to the linearized Equation
(2.12) satisfies the uniform bounds

1 1 1 1
P 30O + [piBO) ~ (k2 + 7)1 QO) + (k2 + 21 B0)|%, .18)
for every t > 0, where the constant hidden in (2.18) blowsup as § — 1/2.

The above Theorem 2 implies a (linear) inviscid damping for the velocity and the density
fluctuation of (1.2)

in

g Vvt >0, (2.19)

o<l +|

(o)

Sl |
e Ul T e =T

in

g vt > 0. (2.20)

1 .
y < mn

Hy'H] |
In stark contrast to the homogeneous Couette flow [8], in light of the lower bound in (2.18), the
system undergoes a Lyapunov instability

in

i vt > 0. (2.21)

in
w
#+

o, Ol +198.0,: 2 03| )

This can be considered the reason why the decay rates in (2.19)-(2.20) are slower, by a factor of
1172, compared to those that can be obtained in the constant density case [53, 59, 60, 63].

L3H;? |

Remark 2.1. Note that the requirement for coercivity, § > 1/2, is the same as the Miles-Howard
condition for the spectral stability of stratified shear flows put forward in [35, 49]. This is not
coincidental, as the original spectral stability proof is also an energy-based argument, albeit of a
different type. We further point out that the threshold value 1/4 in the Miles-Howard condition
is known to be sharp, in the sense that there exist stratified shear flows with Richardson number
below 1/4 such that the linearized system around them has an unstable eigenvalue. Nevertheless,
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the Miles-Howard condition is only sufficient as in the constant density case 6 = 1 (the homoge-
neous 2D Euler equations) every shear flow without any inflection point is spectrally stable by
Rayleigh’s criterion for homogeneous fluids (which is a necessary and sufficient condition), see
[44] for further details.

2.3 | The nonlinear growth mechanism

The full nonlinear system corresponding to (2.6) in the (Z, Q) variables (2.13) reads

1

106;p T4
07 =77k e~ () T vy, (222
a 1
Q=1 po+|kI6p 22— BIkIEp (A, — AW) - (&) 'kr@ -vagey, @23

where in (2.23) we have isolated the linear part identical to that in (2.14) and we have used the
identity A;¥ = Q — (A; — Ap)Y.

In inviscid damping around Couette flow, the unmixing of enstrophy causes transient growth
of the velocity, called the Orr mechanism, with analogous transient growth effects in other phase
mixing problems [4, 8, 50, 53]. As discussed in [4, 8, 22, 50, 58], when studying nonlinear phase
mixing problems, a key effect to look for are “echoes”, wherein well-mixed enstrophy, through
nonlinear interactions, transfers back to frequencies which will be un-mixed at a future time and
hence cause growth in the velocity field by the Orr mechanism, possibly repeating the process into
a chain of nonlinear oscillations. Echo chains were captured in experiments for plasmas modeled
by the Vlasov equations [46] and in plasmas modeled by the 2D Euler equations near a vortex
in [62]. This can be considered a kind of “resonance” associated with the linear transient growth
mechanism that appears at the second iterate of linearization (i.e., if one linearizes around the
linear dynamics) [4, 8, 22, 23, 50, 58]. It is the primary reason that proving nonlinear inviscid
damping (or Landau damping) type results is challenging and why such results have generally
required very high regularity; see for example [5, 8, 36-38, 47, 48, 50]. In order to account for
the echo resonances, [8] introduced a time-dependent Fourier multiplier method which builds a
norm carefully designed to match exactly the worst-case estimates of these resonances. In fluid
mechanics, there does not yet exist an alternative to this method for studying nonlinear inviscid
damping problems. In order to adapt these ideas to the system (2.22)-(2.23), we need to derive a
“toy model” that captures the worst possible growth caused by nonlinear interactions. As we will
see, though we proceed in the spirit of [8] and [5], the toy model has significant differences with
previous works.

As Q is the unstable quantity, the worst possible nonlinear term appears in the equation for
Z. As in [8], we derive a formal toy model by a paraproduct decomposition of the nonlinearity,
which can be thought of as a secondary linearization of the evolution of the high frequencies
about the low frequency linear dynamics. To obtain the toy model, we first observe that Z interacts
with Q which could then excite Z through the linear and nonlinear interactions. However, for the
variables Z, Q the linear semigroup is bounded and we therefore ignore linear terms and the fact
that Z and Q are coupled (but the linear growth mechanism will still be seen in the some pieces of
the nonlinearity). Assuming that Az_l can be well-approximated by AZl, we want to write a good
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model for the nonlinear interactions of the scalar equation
1
0,Z ~ (p/k») iF(ViA'Q - VQ).

At this point we want to extract the contribution which is most “dangerous”. Through a standard
paraproduct decomposition of the nonlinearity (see (1.10)), namely

VEATIQ - VO = (VEAL Q)i - (V)0 + (VEAT Q) - (V)i + (VEAT Q)i - (Vs

we (formally) neglect the Hi-Hi term (with enough regularity, it is easily controlled - the third
term in (1.10)), the lo-Hi term (by trading regularity for time-decay of the velocity - the first term
in (1.10)), and the Hi-lo term involving azAle (which is uniformly bounded in k and # - coming
from the second term in (1.10)). Writing down explicitly the only remaining, and most difficult-
looking, term involving (6UAZIQ)Hi(OZQ)lO and using the definition of Z in (2.13), we end up
with

oz~ ¥ | S Bk — ORp(n— E)dE
pr(n) t#07R pe(§)
; k—¢ n—f)i
~ KO e Pt o 6)ude.
pr(m3 (207 R €2 p,(£)3 Ik —¢]|2

Since the variable n — £ is at low frequency, we further approximate the equation above by
considering = &, which give us the infinite system of ODEs

1
k|2 n(k — ) !
8:Zk(m) ¥ ——— X, 5 ZeiPi— (0)* Zg—¢ (0o
pr(m+ 70 |C|2 |k — €]2 pe(n)*

where 7 is to be considered as a fixed parameter. Similarly to [8], the dangerous scenario is when
nk=2 > 1 and there is a high-to-low cascade in which the k mode has a strong effect at time 7/k
that excites the k — 1 mode, which itself has a strong effect at time 7 /(k — 1) that excites the k — 2
mode and so on. This physically corresponds to an echo chain [4, 8, 22, 23, 62]. Therefore, we focus
near one critical time 7/k on a time interval of length roughly 7/k?, so that /(k — 1) is not crit-
ical, and consider the interaction between the mode k and a nearby mode ¢ with ¢ # k. Calling
fr =Z(t,n)and fygr = Zr_1(t,n) the resonant and non-resonant dominant modes, respectively,
keeping only the leading order terms and taking absolute values, we obtain the coupled toy
system

1
Ofr~e l’? §p1(0)4fNR,
P(M)* pr—1(m)+
7 1
Orfng ® e————3P1(0)* fx,
Pi—1(m)4 pr(m)+
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where we also included that Z;(0) ~ ¢, as we are assuming linear dynamics to leading order.
Since 7/(k — 1) is not critical and k? <7, we have that p,_;(n) =~ (/k)?. Therefore, using
1 1

(2.11) and that ep,(0)* =~ et2 S 1 for our purposes, the toy model that we finally consider
is

M=

k? 1
O/ fr = <7> — e (2.24)
A+t —n/k|?)4
e E— (225)

L+ 1t =n/kl?)s

In Section 3 we construct a weight based on this model, that takes into account a regularity
imbalance between the resonant and non-resonant modes. Some remarks are in order.

Remark 2.2 (On the Gevrey-2~ regularity). As in previous works [8], one can deduce that the
maximal possible growth for fz and fyg is of order (5/k?)¢ for some constant 1 < C < 16.
If this growth accumulates for all the frequencies k =1, ..., [\/EJ, Stirling’s formula implies a
growth of order exp(\/ﬁ). This is consistent with the loss of Gevrey-2* regularity in the inviscid,
homogeneous case [8, 22].

Remark 2.3 (Comparison with previous works). The toy model introduced in [8] for the vorticity
of the homogeneous Euler equations reads

7 1 ra

- K2~ ~
0fr= ;fNR’ 0 fnr = 1t _n/klsz~ (2:26)

The key practical difference among the two toy models is that for (fr, fnr) the power 1/2 in
(2.24)-(2.25) is replaced by the power 1. This implies that while both models predict the same reg-
ularity loss (Gevrey-2*) we are going to impose a smaller regularity imbalance between resonant
and non-resonant modes, and hence are going to lose less derivatives when measuring the effect
of non-resonant modes on resonant modes and gain less when measuring the effect of resonant
modes on non-resonant modes.

The toy model used to build the norm in [47] for the Boussinesq equations with viscosity (but
not thermal diffusivity) near Couette flow is more significantly different. However, the derivation
and use of the model depend crucially on the presence of viscosity.

Remark 2.4 (On the time-scale O(¢~2)). In the construction of the toy model (2.24)—(2.25) we have
1

used in a crucial way that et2 < 1 (analogous to the way the lift-up effect time-scale of O(¢~1)
dictated the toy model in [5]). For times ¢ > =2, the t'/2 in (2.24)-(2.25), due to the structure of
the system, would lead to an exponential growth for f and fyr which could not be controlled
in any regularity class. Instead, for the toy model (2.24)—(2.25) we show that the growth is at most
polynomial, see Proposition 4.1 and accumulates only to Gevrey-2* losses.
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2.4 | Weights and energy functionals

Ultimately, the main step in the proof of Theorem 1 is to obtain the following uniform-in-t estimate
fort < §%¢72

sup 12Ol + 1Rl S,
0<t<§2¢—2
for some 1 > 0 and s > 1/2. Using this estimate (and suitable estimates on the change of coordi-
nates), it is not too difficult to complete the proof of Theorem 1; see Section 3. However, we cannot
obtain such an estimate directly, instead, there are several additional ingredients that are required
involving three energy functionals:

* To obtain uniform bounds in the presence of the linear term, we need to estimate Z, Q with an
energy based on the linear analysis of [11]; we will call this energy functional Ej.

* The Z, Q variables break the natural energy structure of the quadratic transport nonlinearities,
hence requiring an energy which estimates Q and V;© directly; this estimate is at the high-
est level of regularity, so it controls the highest frequencies, but due to the linear instability, it
necessarily grows in time. We denote this energy functional E,,.

* Both of these estimates are in turn coupled to an energy that controls the coordinate system
which can be considered to be an estimate on the evolving shear u; this energy is denoted E,,.

The control of these three energies (and associated time-integrated quantities) forms the main
bootstrap argument, detailed below in Section 2.5. This general scheme is common in pertur-
bative quasilinear problems such as scattering in dispersive PDEs (see e.g., [32, 39] and related
references) and in Landau damping in kinetic theory (e.g., [9, 30]). Here there is the additional
complication of requiring estimates on a coordinate system that is coupled to the other unknowns;
this same additional complication arises in certain dispersive PDEs (see e.g., [39, 41, 51]).

The key idea to the Fourier multiplier method of [8] is to introduce time dependent Fourier
multipliers that allow us to capture the possible growth mechanisms by suitably weakening the
norms in a time and frequency dependent way. All three energies, E;, E,,, E,, are based on such
Fourier multiplier norms. As in other methods based on time-dependent norms, weakening the
norm generates artificial damping terms in the equations that can be used to absorb terms in the
energy method. We remark that this method is reminiscent also of Alinhac’s ghost weight method
[2], however (aside from being on the Fourier side), this method necessitates the norm losing
a significant amount of regularity in an anisotropic way, as time proceeds, which significantly
increases the complexity. The main weight is defined as a time-dependent Fourier multiplier A =
A (t,n) of the form

Ai(t,n) = <k,ﬂ)ae’l(‘)lk’”ls(m_lj)k(t,n), 2.27)

where o > 16 is a fixed constant, A(t) is the bulk Gevrey regularity index and m, J are suitable
Fourier multipliers to be defined in the sequel. The function A(t) is assumed to satisfy

63
(£)y*

A =— A+A1), t>1, (2.28)

3 1.,
- — <
Ay =34+ 74, <1,
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where A, 4’ are those of Theorem 1, §; ~ 1, — 4’ is a small parameter to ensure that 24(t) > 1, +
A',and 1/2 < q < 1/4 + s/2is a parameter chosen by the proof. The function A(t) allows a loss of
the radius of regularity, by a finite amount, in a continuous way. As discussed in [8], it suffices to
consider the case s close to 1/2 as higher regularities can be treated by adding an additional factor
exp(y(t)|k,n|P) for any s < p < 1 which would play little role in the energy estimates that follow.

2.41 | The linear weight m
As we have seen in Section 2.2, the error term appearing in (2.17) can be integrated in time at any

fixed frequency (k, ). However, the nonlinear case cannot simply be treated point-wise in (k, ),
and we are forced to introduce the bounded Fourier multiplier

exp (Cg arctan(t —n/k)), fork #0, 1
my(t,n) = Cp = . 2.29
(€, m) {1 fork = 0. #= 281 (2.29)
Notice that
Cs
dimy = ———my. (2.30)
1+ (t—n/k)

Such multiplier creates the artificial damping term (see (2.35) below) that controls the analogous
of the linear error term in (2.17). This multiplier (or similar ones) have been used previously in for
example, [10, 42, 63].

2.42 | The nonlinear weight J

The remaining multiplier to complete the definition of A in (2.27) is given by

1

eMIUIZ

1
+ eklkl2 (2.31)
wk(t’ 77)

Jk(t’ 77) =

where 1 < u < 23. The weight wy, is extremely important and is constructed using the toy model
(2.24)-(2.25) in Section 4. In particular, it is used to distinguish between the resonant and non-
resonant behavior of the system (see Section 4.2 for all the properties of wy,). For the moment we
can think of it as a correction to the main exponential factors of J and A that mimics the behavior
of the toy model (2.24)-(2.25) near the critical times t = 7/¢. Most importantly, it assigns more
regularity to the “resonant” frequencies (¢, n) than to the “non-resonant” frequencies (¢/, 7). It is
analogous to the corresponding weight in [8], however, the w; weight here is different from the
one in [8] due to the different toy model. Finally, for technical reasons it is convenient to define

1
Ti(t,m) = et w A (e, ),
and the corresponding weight

Ai(t,m) = (k, ) O (m=17), (¢, ).
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Notice that

. ow~ J;m
— SA — - .
3,A =At)|k,n)5A ” A A. (2.32)

2.43 | The coordinate system weight A".

It turns out that the energy functional that controls coordinate system needs to use a stronger
(compare to A above) weight of a similar form

1
e/"|7)|2

we(t,n)

AV(t,m) = ()7 rOMP 0@, y),  TU(n) = (2.33)

Here, J¥ plays a similar role as J in (2.31), and is defined in terms of a weight w" below in (4.6).
However, JV is constructed from the toy model for the homogeneous 2D Euler equations (2.26)
used in [8], making it essentially the same as the weight used in [8]. Due to the different toy model
being used here, this implies we will be propagating a relatively large amount of additional regu-

larity on the coordinate system (relative to the z-dependent unknowns). This additional regularity
is crucial to closing the estimates below.

2.4.4 | The linear-type energy functional E;

The energy functional that will permit uniform bounds is designed by taking inspiration from the
linearized energy (2.15). It is defined as

1 1 0
B () = =| I1AZ]? + 14Q)1? + —{ 2247, 4Q )| (2.34)
2 26\ k1p

Notice that, for § > 1/2, we have the same coercivity bounds as in (2.16). Through a careful com-
putation of its time derivative (carried out in Section 6.1) and using the definition of A (see (2.27),
(2.30) and (2.31)) we arrive at an inequality of the type

d 1 i
L+ <1 ) Y (GilZ]+Gj[Q]) S LZQ + NLZQ + £V 4 £h¢, (2.35)

26 JjeiA,w,m}
Here we denote

Gulf) = H\/%w\/A_Zf Gulf] = H\/%'”Af

The terms above are also called Cauchy-Kovalevskaya terms since they come from the weakening
of the norms caused by the Fourier multipliers. Those are good terms since they have a definite sign
and can be used to control the other error terms in the identity (2.35), which we divide as follows:
L?¥ isalinear error term, analogous to that in (2.17) and defined precisely in (6.6), NL%© contains
the main nonlinear errors that come from the transport structure of the equations (see (6.7)), while

2

2 2
) > . (2.36)

Gylf] = —i(t)HWﬁAf
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£V and €% are simpler error terms to treat that arise as a consequence of the nonlinear change
of coordinates (2.1), and are defined in (6.8) and (6.9), respectively.

2.4.5 | The coordinate change energy functional E,

The control on the change of coordinates, described by Equations (2.7)—-(2.8) is achieved via the
energy functionals

2
B, = %(mz“s I Ci1(||A”h<r)||2+<r>‘2s||A“|av|Sh<r)||2)>

and
<t>4 Il U'(t)”él(l),crf6 ) (2.37)

where the weight AV is defined in (2.33) and C; = C1(8,4¢,8) > 1 is a constant chosen in the
proof. In Section 8 we derive the energy inequalities for the two functionals above, where it will
be more convenient to treat each term in E,, separately. Due to the presence of multiplier A" in
the definition of E,,, when computing the time derivative of A’ we get as good terms

2
a9, wv
Gﬁ,[f]=”\/£u—u,jz4“f, Gilf1 =

Remark 2.5. The structure of the energy functionals for the change of coordinates is heavily
inspired by [8], indeed, the coordinate change and the associated Equations (2.7)-(2.9) are exactly
the same. However, the control we have on the quantities under study is significantly different.
First, we need an additional, even higher regularity control on h, namely the last term in E,,. More-
over, while AV is essentially the weight AR used in [8], the norm A is not the same, and so we have
a significantly different regularity gap between the estimate on H and those on k. For this reason,
we cannot rely completely on the proofs given in [8].

2

ZAVF (2.38)

2.4.6 | The nonlinear-type energy functional E,

To control high frequencies we also need a direct control on the vorticity Q and the gradient of
the density V;© that is consistent with the linear prediction. From (2.21), a natural quantity to
control is

B, = 5[40l + g1V, 017, (239)

which satisfies the following inequality (see Section 7.1)

0 ~. —
E + Z (G;1Q] + B*G;[V,0]) < §< tP >+NLQ’®+8d‘V+8At.

je{Aw,m} |k|p§
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Note that the structure is very similar to (2.35), with the good Cauchy-Kovalevskaya terms, a linear
error, a nonlinear error and the errors due to the change of coordinates. Crucially, the linear term
involves precisely Q and a bounded multiplier, thanks to the definition (2.13), and it will be treated
thanks to the energy E; above for Z and Q. All the error terms involved in this energy balance are
analyzed in Section 7.

Remark 2.6 (On the necessity of the symmetric variables). The results stated in Theorem 1 can
also be obtained by E,,(t) < €2t and coordinate system estimates. The reason why it is necessary
to control the symmetric variables Z, Q is the term

g dp 1 1.
%< 23 AQ,AQ> - %<t?pAp2®,Ap2®>, (2.40)
|klp>

since d,p does not have a definite sign and is positive for t > 7/k. The weight w cannot be used
to control this term for all the frequencies, and any other weight on Q and V; ® would have to be
of order p~1/* (at best), hence leading back to the symmetric variables. Instead, Z, Q have a nice
structure at the linear level and, once we have a control on them, the bound on (2.40) is immediate.
Error terms containing J; p/p have been previously handled in the literature for linear inviscid
[11] or viscous problems (e.g., [5-7, 42]).

2.5 | The bootstrap proposition
To control the energy functionals E;, E,,, E,, and (2.37), we rely on a continuity argument. Hence,
we first state the local well-posedness result. We omit the proof since it follows by standard

reasoning for 2D Euler in Gevrey spaces (see [8] for discussion).

Proposition 2.7. Foralls > 1/2, Ay > 0, there exists a constant 06 > 0 with the following property:
foreverye > 0and every ¢’ < c(’)s,

o™ llgro + 6™ |20 < €'

implies that

2
1 1
supE(t)+—<1——> E /G-[Z]+G<[Q]d‘[§2€2,
ost<2 © 2 2B e/ / !

168
28 -1

2,

2
sup E,(t) + Z / G;[Q] + B*G;[V,©]dr <
0

Ost<2 jeAw}

2
sup E()+ Y, / (0)"G[(8,) " H] + Ci(cj[h] + <r>‘ZSG;[|aU|Sh])dr < 32¢%,
0<t<L2 jefdw} 0 1

sup ”U“g/l(t).a—é < 2e.
0<t<2
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Thanks to Proposition 2.7, the rest of the proof will only deal with times ¢ > 1. By a standard
approximation argument, we may work with regularized solutions, for which the quantities on
the left-hand side take values continuously in time (see [8]). We now introduce the time T, as the
supremum of the set of times I within which the following bootstrap hypotheses are assumed to
be satisfied.

Bootstrap hypotheses. For 1 <t < T, the following holds

1 1
E;(t)+ = <1 - —) i[Z] + G;[QldT < 8¢2, (H1)
2 JEiA, w}/
! 1288
. 207, d 2
E”(m,-e%w} /1 G)l0] +£°G,[V101dr < S5==6(1) (H2)

E,0O+ Y / %6149, )_SH]+—<G”[h]+(t)_2SGU[|6 |Sh]>df< 128¢(t), (H3)

je,w}

2.
(O 16l gaoro-s < 16¢, (H4)

where G;[-] are defined in (2.36) and G;?[-] in (2.38).

By the local well-posedness Proposition 2.7 and choosing ¢ sufficiently small, we know that
for t = 1 the bounds (H1)-(H4) hold with all the constants on the right-hand side divided by 4.
Moreover, notice that the set of times I, = [1, T, | with T, > 1 is closed by continuity. If we can
prove that the bootstrap hypotheses are actually satisfied for 1 < ¢t < T/ with T, > T, then the
argument can be re-initialized at T, and the bootstrap is complete. Then, by continuity, our goal
is to prove the following proposition.

Proposition 2.8. There exists ¢y € (0,1/2), Cy > 2 and & € (C;',1/2) depending only on
B,s,4,A", 0 such that g is much smaller than & with the following property. If ¢ < ¢, and the boot-
strap hypotheses (H1)-(H4) hold on [1, 8%¢ 2], then forany T* € (1,5%¢ *]and anyt € [1,T*] we
have

By () + — (1 - i) / 2]+ G;[Qldr < 42, (B1)
Jjeirw}

B0+ Y / Q1+ £2G,[V,0]dr

JjE{A,w}

648
< spo1e (0 (B2)

E0+ Y / %619, )_SH]+—(G”[h]+(f)_2SGU[|6 |5h]>df<64£2(t), (B3)

Jje{A,w}

200 .
<t> “v”g&(t),o—é < 8e. (B4)

In particular, this implies T* = §%¢2.
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Remark 2.9 (On the smallness of the parameters). The factor 1 — 1/(23) appearing in (H1) is
related to the control of linear error terms. This immediately gives the following restriction

5=0(—-1/2).

2.5.1 | Immediate consequences of the bootstrap hypotheses

The bounds in the bootstrap hypotheses imply a control on several other quantities that we need
to prove Proposition 2.8 and Theorem 1. We first show the bounds we have for the unweighted
variables in lower regularity spaces. In fact, we only need the following bounds to prove the main
Theorem 1.

Lemma 2.10. Under the bootstrap hypothesis, the following inequalities holds

1
1Qllgis + IVLOllgro + IRligis + 1= W) gros + [V | gro-s S Et)2,  (241)
€
104l gror S — (2.42)
(£)2
g
”qj#”gw-g b 3 (2.43)
(£)2

The proof of the Lemma above is straightforward from the definition of A and Proposition 5.1,
which shows that by paying Sobolev regularity, decay on ¥ follows as in the case A, = A;; see [8]
for more detail.

From the definition of A, and U, we need to have a control also on 1 — (v)?, v”" and v in the
proper regularity classes. These coefficients are controlled by h and bounds on v are recovered
from H. We collect the estimates in the following.

Lemma 2.11. Under the bootstrap hypothesis, the following inequalities hold

”Av(l (UI)Z)” + “Av(a >—1 //“2

t
+ ) / G;[(l—(u')z)]+G;[<av>‘1u"]drse2t, (2.44)

jedwy1

= (hra -l + fasres ™)

/ (1) 2 (GY18, 1P = WD) + GULI8, %8, v Dde 5 &1, (2.45)

je{/l w}

A
(6v)

Ol / (077G [(6,) " d,uldr S €1, (246)

3,0

Je{/l w}
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A s € A s
HWWUPU < t_2+ WWUPHH, (2.47)
Gul(8y) 0] S Gul(8,) "H]. (2.48)

The proofs of the bounds (2.44)-(2.45) resemble the ones providing the analogous estimates of
[8]; they are sketched briefly in Section 8.

3 | PROOF OF THE MAIN THEOREM

In this section we prove Theorem 1, under the assumption that Proposition 2.8 holds. We need
the bounds of Lemma 2.10 (which follow directly from the bootstrap hypothesis (H1)-(H4)). We
remark again that the main part of this paper is the proof of Proposition 2.8.

The first step of the proof of Theorem 1 is undoing the nonlinear coordinate transform. Instead
of the change of coordinates (2.1)-(2.2), we want to use y as the second spatial coordinate and
define

Q*(t,z,y) = w(t, x,y), 0*(t,z,y) =6(t,x,y), W (t,z,y) = P(t, x,y),

where z is still given by (2.1). Define 1., = 1(5%¢~2). By following the arguments in [8, Section 2.3]
using Lemma 2.10, we see that we may solve for y in terms of v and vice-versa and by a Gevrey
composition lemma (see e.g., [8, Lemma A.4]), we have from Lemma 2.10 forall 1 < t < §%¢2

-1/ <||Q*(l‘)“g/1f,o +[ave5 (t)Hgago ) + tl/zHG);(t)”gﬂge + t3/2||q:;(t)”g%o <. (1)
forsome 0 < A/, < 1. The estimates on w, 6, and u., stated in Theorem 1 now follow immediately.

Taking the x-average of the momentum Equations (1.1) in the y coordinates we have (using that
uf; = 0 by incompressibility)

0ais(t.3) = =3, [ wltx i xy)dx = 0, [ Uz 2y
T T

where we denote U*(t, z,y) = u(t, x, y). Using (3.1), it then follows that

(CORTO

<e.
!
Ghoo

This takes care of the uniform estimates on u; stated in Theorem 1. The bound on §,
follows similarly.

Next, we are interested in proving the instability result, which requires a more detailed analysis
of the dynamics. First, we observe that (2.6) in the new Fourier variables becomes

3,0* = —ip2k®* — F(VA@Y - vaX),
8,0* = ik®* — F(VLP} - VoY),

AW* = O,
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where
N =0, +(0,— v'td,)>.

As before, it is convenient also to define
Ap =0, + (ay - taz)za pe(6, ) = k* + (S kt)z:

namely, the analogues of (2.10)-(2.11) in the (z, ¥) coordinates (with ¢ the y-Fourier variable), and
the new auxiliary variables (as in (2.13))

1

25 = ((p/kZ)‘Z ) L) Q) i= ((p/k2)1ikﬁ©> )
k

Similarly to (2.22)-(2.23), we have
1
a.z% = —L9P — |k|B zQ* <_>_4;~(va* - VQ*) (3.2)
t - 4 p p k2 # ) .

16[p * * 2 -2 *
Q +|klBp ZZ 5IkI2p iF((A = ATP™)

6,Q* =

1
D\, 1
_ 5(5) ikF(8,50,07 + VW3 . Vo). (33)
Let us view the system as the vector ODE pointwise-in-frequency
3,X = L()X + F(t,X), (3.4)

where X = (Z*,Q*) and the linear part L(t) is given by the time-dependent matrix

Ry —|klgp 2
L(t) - 1 1 atp
|k|Bp ip

Calling @, (t, 7) the associated solution operator, we may re-write (3.4) as

t
X(t) = ,(,0)X(0) + / @, (¢, T)F(z,X(0))dr. (3.5)
0

A direct consequence of the linear estimate (2.18) is that, point-wise in (¢, k, {), we have
|PL(£,0)X£(0)] 2 1X(0)], [P (¢, DF (7, X(7))2| S |F(7,X(0))4], (3.6)
for every t >t >0. Using the elementary inequality {(a — b){a) > (b), since pi/ 2(t,g’) =

IKI(¢ /k — t) we have p/*(£,¢) 2 [k|(t)/(¢ /k). Thus

2 2 1
ol + Vo0l ~ oz + ”(—AL)Z@;

2
pk( $) )
~ X d
N 2/ e Pds

k#0

20, [ HEEoPL.

k0 Y R
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In light of (3.5)-(3.6), we therefore have that there exists K’ > 0 such that

2 2 [
o0l + V80 2 () [

2 , t 2
it K /0||F(T,X(z))¢||L;ydr Y,

The rest of this section is devoted to providing a suitable upper bound for the nonlinear term
above. Precisely, we prove the following bound:

Lemma 3.1. Assuming Proposition 2.8, there holds

82 52
|FE&. X)), S —» Vi<, (3.8)
Zy L €
(t)2
where ¢, 8 are as in Theorem 1. In fact, there holds for all A, < AL,
2 52
IF@ Xl gy, $ = Vi< (3.9)
(1)2

Assuming now Lemma 3.1, there exists some K > 1 such that (3.7) becomes

losOllz, + 1960l 2 ()

in
%

2
_1 —K§%2|,
LZH,*

- Ks“<t>] 2 ()

2 in
X
L2H ” #

for every t < §%¢~2, which completes the proof of Theorem 1. It now suffices to prove Lemma 3.1

Proof of Lemma 3.1. We will simply prove (3.8) as (3.9) is a straightforward extension and is not
required for the statement of Theorem 1. From (3.2)-(3.3) and the fact that H ;y is an algebra, we
find that

+
2
L,y

IF@ Xkl < ||(p/R2) FFVAWE - VQ¥) (p/K?) PN = ALPE)

2
LZ Y

1
+ || (p/k?)*kF(3,%16,0) + VIW: - V)

£°y%0

2
LZ,y

< 1

~ 1

1
Lyx *
viwr.var| o+ —

(t)2 ”

(A= AP

3
H; 2y

()3

azlp;ay®g|

)3

Lygx | *
H} v qj* V®¢”H§y

1

>*
||

H;,Q)

o (101, + ez, + oz

T
(t)>

3
HZ,J’

3SUS01T SUOWILIOD) BAIIERID 3|qedl|dde ays Aq pausenob ake sajonte YO ‘88N JoSajni 1oy ARld 1T auluQ 43|\ UO (SUOIIPUOD-pUR-SWLLIB)I0D AB | IM"Areiq 1 BU|UO//SANY) SUO I IPUOD pUe SWB | U} 89S *[7202/2T/Tz] Uo Ariqi]auluo A8 el eueIu0D Aq £2T2z edd/200T OT/I0p/Wod A3 1M ARelg Ul juo//sdny Wwouy papeojumoq ‘2T ‘€202 ‘ZTE0L60T



3708 | BEDROSSIAN ET AL.

In view of (3.1), which includes the estimates on the change of coordinates, it follows that

ey,

A, — AT
“( t L) # H;y

and together with the rest of the estimates of (3.1), Lemma 3.1 follows. O

This concludes the proof of Theorem 1.

4 | THE MAIN WEIGHTS AND THEIR PROPERTIES

This section is dedicated to the construction of the Fourier multipliers which will play the role of
weights in our energy functional. As anticipated in Section 2.4, the Fourier modes with horizontal
frequency k # 0 need two different weights. We call the first one the linear weight, as it allows to
control linear terms, and has already been defined in (2.29). We also introduced the nonlinear
weight Ay (t,n) in (2.27), which encodes the dynamics of the nonlinear toy model derived in the
previous sections. Here we provide a construction of the multiplier wy(t, ) in (2.31). Finally, the
treatment of the zero mode k = 0 requires a slightly different nonlinear weight, introduced in
(2.33), which we define now.

4.1 | Construction of the weight

As the nonlinear weight wy (¢, ) in (2.31) actually encodes the dynamics of the toy model, we start
with a more detailed description of its growths.

Proposition 4.1. We denote T =t —n/k and assume t € [-1n/k?,n/k*]: Let fr(-n/k*) =
fnr(=1/k?) = 1 be the initial data associated with system (2.24)-(2.25). Assume also thatn /k* > 1.
Then, there exists y € (1,2) such that

>r A+1z)7, tel-n/k? 0],

< 1
Je0) % ( A+1c)"2, Tt efon/k?,

Tl=

D\ AT e o/l
< -
fNR(T)N(kZ) A+,  telon/k]

The proof can be obtained through a simple ODE argument. Based on this, we are ready to
construct the weight wy (¢, n) in (2.31). We first define the critical intervals. Fora > 0, let [a] €N
be the integer part.

Definition 4.2. Foranyn € R, 1 < |k| < [v/|n]]| and nk > 0, set

P Ui 7] __Inl 7] o, = 20|
Wb = Tkl 7 21k|(Ik[+ 1) Tkl +1° 2k[(k]+1)° %7 '
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The critical intervals are then defined as

oo S e 2 U Bty itk > 0and 1 <1kl < Vil
I, =1t VIR =
> ) k.n )

We also introduce the resonant intervals as

Iy 1 29/In] < L,
I, = { 7 el (4.2)

(4.1)
otherwise.

@ otherwise.

We now follow the construction of [8], using (2.24)-(2.25) as the reference toy model. In
particular, for ¢ € I} ,, we choose (wyg, wg) such that

k% 2 1
0 wg z(—) —— T Wn» (4.3)
_n2
A+ =22
; 1
73
0, Wnr z(ﬁ 2—3 wg. (4.4)
A+1e=2D2

We assume wg(t, 1) = wyg(t,n) = 1 for t > 2n and we construct the weight backward in time, by
gluing all the growths of Proposition 4.1. For simplicity, we assume k,# > 0, but the construction
below easily applies to the case k,7n < 0 (when they have different signs we take wy(t,7) = 1). We
start our construction with the non-resonant part of the weight. Let wyy be such that wyg(¢, %) =
1 for ¢ > 2n or |n| < 2. Assume that wyg(¢x|-1,,7) is known. Motivated by Proposition 4.1, for
any 1 <k < |4/n], we define

2

k 71\
wnr(L, 1) =<7 (1 + by |t = ED) wnr(tg-1,7), fort e Illf,n

-5V
7 2 7 L
t—E‘> wNR<E,77>, fortelk,n,

wyr(E,7) =<1 + ay,

where IR _,IL have been introduced in (4.1), while by, and a;,, satisfy

L%/
k> 7 k> 7
7<1-|-ka7 tk—l,n_ED =1, 7(14—(1](,77 tk’n—E‘ =1.
In particular, we have
2(k—-1) k?
T(l—; , fork >2, 2(k+1) k2
bk,nz 1 ak’”zT 1-—.

1- e fork =1, n

Thanks to this choice, notice that

1
7 k2 4 n -+2y
wNR(Eﬂ?) =<7> WNR(Ek—1,5M)s WNR(E—1,95M) = (p)z wyr(Eky M)
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where q; , by, are chosen to ensure the last identity. For ¢ € [0, t Vil ,n] we define wyg(t,n) =
w(t| VAl 7). We then define wy as suggested by Proposition 4.1, namely

2

k
wg(t,m) =<7 (1 + by,

1
n 2
t—ﬂ)) wyg(t, 1), forteI}f’n,

1

2 7 2 .
t— ED) wyr(t,n), forte Ik,n.

k
wR(t’ 77) =<7 <1 + ak,r;

By the expressions of Aie» bk’n, we also have that

n k2 n
wr(tkn 1) = WNr(Eky 1), wR<Ea77> = 7wNR(E,77>~
The main weight wy(t, n) is finally given by
Wt i M L <L 1
t,n), te|t ,2 I,
wi(t, ) = wnr(t,7) [ VIR 71\ Ik 45)
wR(t’ 77)’ t E Ik,na
1 t> 2.

Remark 4.3. Since ay,, by, = 0 as k — |/n], we also have that d,w ~ 0 for k ~ [/9]. This
means that estimates (4.3)-(4.4) are only useful provided that k < i\/ﬁ ort > 2\/5 (equivalent).

The weights A and J are defined in terms of w in (2.27) and (2.31), respectively. Notice that for
k = 0 the weight w is always non-resonant and the linear multiplier is m = 1. Therefore, Ay(t, )
always encodes non-resonant regularity.

The change of coordinates requires a stronger weight. More precisely, we need to propagate
the same regularity of the homogeneous case treated in [8], where the weight of the coordinate
system assigns always the resonant regularity given by the toy model (2.26). Hence, we define

2

k [/ R
wi(t,m) :7 (1 + byt — EDwNR(t,n), fort e Ik,n’

k

k2 7
wp(t,n) =? (1 +ap |t — —’)wNR(t,n), fort e Iﬁ,n.

The weight wV(¢,n) is given by

-1
W)™ M <t
w(t,m) = (Wit ), e [t 50 20), 46)
1 t>2m,

and AV is defined in (2.33).
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Remark 4.4. 1t is immediate to check that w"(t, ) encodes more regularity than w(t, 7). Notice
that

P, (€ mwr) () S <:—|> W)™z, ),

and if t > 2\/5 then

Py (L)) () s <:":) @) ) s 5

Finally, we underline the following useful inequalities:

Ag<A®, Ag<A<A, Ag<TpgnASASAY. (4.7)

4.2 | Properties of the weights

Here we present technical results which will be used to deal with the weights, throughout the
paper. First, we recall the trichotomy lemma due to [8, Lemma 3.2].

Lemma 4.5 (Lemma 3.2, [8]). Let £, 1) be such that there exists some C > 1with C~'|&| < |n| < C|€|
andletk, ¢ besuchthatt € Iy, andt € I, ¢, hencek ~ €. Then at least one of the following holds:

(a) k = ¢ (almost the same interval),
) |t— 2| > (10C)_1m and |t — %l > (10C)_1L%| (far from resonance),

(© |n—¢&| 2c ma X{:Z: :i:} (well-separated).

We state here some useful inequalities, whose proofs can be found in [8].
Lemma4.6. LetO<s<1landa,b>0.
* If|la—b| £ b/C forsome C > 2, then
a® - b’ - bls. 4.8
| < == )1 ~la - b| (4.8)

* If|la — b| < Cb for some C > 0, then

1-s
a® < <L> (la = b|® + b%). 4.9

4.2.1 | Properties of the main weight w

We collect the properties of the main weight wy(¢,7), which in most cases will be analogous to
[8], while the substantial differences will be carefully highlighted. First, we note that the maximal
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3712 | BEDROSSIAN ET AL.

growth of the weight w dictates the Gevrey-2~ regularity requirements. The proof is essentially
the same as in [8] and is hence omitted here.

Lemma 4.7. Let = 4(1/2 + 2y). For |n| > 1 we have

NG

-1 — =1
wk (0777) - wk (t[\/ly)_l],n’ 7)) ~ €

s
8

7]

The weight we constructed is not tracking the Gevrey regularity losses in an optimal way. In
particular, for times ¢t < \/m we have no decay on w;l, whereas in principle for these short times
before the resonances we could gain something. This refinement was implemented by Ionescu-
Jia in [36] to obtain the results in Gevrey-2 instead of 2~ as we do here. We believe such an
improvement is possible also in our case but we do not consider this issue in this paper.

Our weights also have the analogous property of [8, Lemma 3.3]; the proof is similar and is
hence omitted.

Lemma 4.8. Fort € Iy, and t > 2\/5, we have

dwnr(t,n) 1 . Giwg(t,m)

~ ~ . (4.10)

We now state two crucial results, which allow us to exchange frequency when dealing with w.
This is completely analogous to [8, Lemma 3.4] and the proof is hence omitted.

Lemma 4.9. Fort > 1andk,?,n, £ such that 2max(+/|&],v/|n|) < t < 2min(|€], |5]), we have

Swi(t,m) we(t,§)

o) s NS (4.11)

Forallt > 1andk,¢,n, £ such that for some C > 1, C71|€| < |n| < C|€| one has

d,we(t, §) o, wi(t,n) |77|%
\/%SC WJF [ =) (4.12)

Lemma 4.10. Forallt,n, & we have

1
wrg(t, §) < k=517 (4.13)
wyg(E,7)

4.2.2 | Properties of J,J"

We show how to exchange frequencies when dealing with the weights J,J". The proof is again
analogous to that of [8]*Lemma 3.6, with a different regularity imbalance and is omitted.
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Lemma 4.11. In general we have

2
T ] Sull—t.n-¢17 (4.14)
Te® "l + 1= 1))

1

b 1
‘]k(n) s |77|2 atwk(tyn)e23ﬂ|k_f,y)_§|§’ (415)
Je(§) ™ 1kl | wi(t,m)

Ifl’ (S Ik,r) ﬂIk,g, k # € then

]k(n) < m atwk(t’ 77) atwf(t’ g)e23ulk—ﬂn—§|% (4 16)
Je(§) 7 k2| wi(t,m) | we(t, )
If any of the following holds: (t € I,in) or(k="¢)or(In| = |§landt € I, nI; g) we have
1 1
M < elOulk=t.=£12 ‘M < elouln=§12 (4.17)
Je(§) Jo(é)
Ift e Ilin NIy ¢ and |n| = |§]| then
1
2a+e-pY :
Jk(’?) < 14 e11‘u|k_€’77—§|2. (418)

Je(§) ™ 51

Remark 4.12. Lemma 4.11 is analogous to [8, Lemma 3.6]. However, estimate (4.15) is due to the
specific structure of our weight. This is a consequence of the fact that our weight is slightly weaker
than the one used in [8].

When ¢ is small enough, J, JV attain their maximal growth and behave like exponential Fourier

multipliers, so allowing us to gain half derivative from a commutator term. This is the content of
the next result, which is the analogue of [8, Lemma 3.7].

Lemma 4.13. Lett < %min{\/ml, V1€l}. Then

J°(m) _ 1’ < (n— g) e11/£|n_§|%.

G N ey

3

L) _ 1‘ kb= pernees
Je(8) VIl + &+ k[ + €]

4.2.3 | Propertiesof p

We also need to exchange frequencies in the multiplier p.
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Lemma 4.14. Letk,?,n, & be given. We have the following:

7l . .
— | iftel,nI,,
K2+ 12 = 1)) ek
B < tk= =24 1P+ 12 -1 (419)
: c
Pk T, lft Elk,n ﬂ[g’g,
1, in all the other cases.
In general
PEC) < e~ t,n— 870 (420)
()
Ifk = ¢, we have
PAE) gy, (4.21)
Pe(m)
Lett #0,t >1and1/2 < s < 1. Then
s AL
168D O e <%> L 358 (4.22)
()
1 e AL
— — 4.23
3 —S f
1 - =2 t,&|2
L6 E i, O 5<£> LZH (424)
1 ¢ e tt 2s
(t)2 ()
Proof. First, notice that
oo [1e1a+1E - L+ |5 — 1
S 7 Sk—-0) ———|
() kI + 15 = D) 1+ |2 —t

Ifte Ifm NI g, then (4.19) follows from |% —t = l:—zl Now consider t € I;, N Ig,g It holds that

¢
142 —1
¢ 1 ('5 17' ‘n n’) 1 < 7l >
<1+ oD ) ik ——— (- g+ -k —¢]
1+ |71 L+ [T —o\Ie el 1e kK 1+ —t| 7= ez

(4.25)

Then, if |£|/2 < |k| < 2|¢] or |k| > 2|¢|, we have

Il Il
k€] ~ 112
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If |k| <|€|/2,then |k — €| > || /2, so that

ol 1l e 0l
k€|~ |kl€]1> ~ |€]?

Since |n/k| ~ t > 1 in this interval, combining the two bounds above with (4.25) implies

1+|——t| Il

—_— 4.26
K121+ 13 = 1]) 0

R A ¢ < (k- — £)2
1+|__ | teIk,,}nIuN(k ¢.n—§)

Inthecaset € I]C”7 N I; ¢ We use (4.26) and I% -t 2 |I:]_2| We are left with ¢ € I}, NI, . We need

to use the trichotomy Lemma 4.5. If (a) holds, then the conclusion follows by (4.25). If (b) holds,
then we apply the reasoning for t € I Ii y N I ; Iz If (¢) holds, by (4.25) we deduce that

4
1+ |2 —t]
S PR <|§—v|+§ M- f|>S<k—f,n—§>2,

n_ n_ k|
1+ 1+ |
|k tl |k tl

which gives (4.19)-(4.21). Estimates (4.22) is proved in [8, Lemma 6.1], (6.11a) and we omit the
proof. To prove (4.23), by Young’s inequality, we get

a?=2p% < (1 — s)a? + sb?,

so that for |€¢t]|/2 < |€| < 2|£t|, we have

1 |€|1—st1—s 1 |€|1—st1—s £ =S 1
Lo ei=p, @)h,e ——15——<<—> .
t) ¢ Ty et~ (L) e2 + (§/f)2)§ (t) 1AL s<§/5) Ct <t>2s

(

When [£] < |£€t]/2, recalling that1/2 < s < 1,

spo3 Lt o 1 [ENT
t>|€ gll P, (g) teI <t> |€t| 5 <[>1+s S’<E> <t>25.

(

For |&| > 2|¢t], the factor (§/€t)~S plays a role.We then argue as follows

s "3 1|§|H(|§| |m|> 1 (e <£>;
wleee, Ot S e \ied @ <<t>1+s<|§|> =\et/)

where s < 1. The remaining (4.24) can be proved as above using that

4 2 _
ag(l—s)b§(1+2s) < 2 2sa2 + 1+ 2s

b?.
3 3

The proof is over. Cl
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5 | ELLIPTIC ESTIMATES

This section is devoted to some elliptic estimates that play a crucial role for the nonlinear bounds.
The first inequality is a lossy elliptic estimate, as it allows to gain time decay at the price of
regularity.

Proposition 5.1. Under the bootstrap hypotheses, for § small enough,

120l gro-s

(t)2 (5.1)

122l gre—s

Thanks to this result, we can treat A, as a perturbation of A; in a lower regularity class. Its proof
is identical to [8, Lemma 4.1]: we summarize it below for convenience of the reader.

Proof of Proposition 5.1. To write A, as a perturbation of A; we introduce the notation
g=1-(")>
By definition of A, in (2.5), we get

ALY = Q+ g8, —t3,)*¥ — v (3, — t3,)¥. (5.2)

1
By the algebra properties of Gevrey spaces and the bound (2.44), since et < § we deduce

1ALl gro-t S Q1 gao-1 + gl gac—1 |Gy = 820 ®| roms + V"] gro-a 1By = 10D ¥l gro-1

S 11Qllgro + SIAL Y| gro-1-

As 6 is small, we can absorb the last term on the left-hand side. Since p;l(n) S ((n)/{kt))?, we
have

12 groms
(t)?

hence proving the proposition. O

||‘P¢||gl,a—3 = ||P_1(P{I}¢)”

s

1
Gho-3 S W”(_AL)‘P#HQA,U—I P

We now provide a more precise elliptic control, which plays a central role in the rest of the
paper. In fact, if one knows a priori that ) = 0 then A, = A; and the following proposition would
not be needed.

Proposition 5.2. Under the bootstrap hypotheses, for § small enough,

s 2
W\ [V ERT
(ONCRREIE

s ) Gj[sz]+52(G;[1-(u')2]+G;[av‘1v"])=: G (5.3)
Jjeitw}
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where q is given in (2.28) and G| -] are defined in (2.36), while G;[-] are in (2.38). In addition

2
S Y GilZl+e(GiN - @)1+ 6@, ")

JEld.w}

)( AL) 19, |ZIIJ

IVI 5t
(t>q w

+e2(1) 1 GUL18,15(3,) " v"]

_. €
_' Gelliptic' 54)

Also the following inequality holds true

2

< g2 (5.5)

2

5\
+ (6" <#> A((-AL)Y) 4

Remark 5.3. Proposition 5.2 plays the role of [8, Proposition 2.4], from which the main ideas of
the following proof come from. The bound (5.3) is the same as in [8] but its validity for this prob-
lem lies within our underlying time-scale O(¢~2). On the other hand, the inequalities (5.4)—(5.5)
are specific to our problem. The proof of (5.4)-(5.5) crucially relies on the control of the coeffi-
cients with the stronger norm generated by A", see (2.33). Observe also that we do not need the
term (d,/td,)~! since, for the bounds (5.4)(5.5), we are able to exploit the control we have on
18,15(8,) 10", see (2.45). In fact, also in (5.3) it would be enough to only have (3, /t3,)~1~9, but
this is not necessary for our purposes.

3 1
HA(—AL)Z 16,12

Remark 5.4. Integrating in time the right-hand sides of (5.3) and (5.4), using the bootstrap
hypotheses (H1), (H2), (2.44) and (2.45), we get

¢ ¢
2 2
/ elllpth(T)dT Se, / elllptlc(T)dT Se(t) S6°. (5.6)

Proof. The proof of (5.3) is exactly the same as the one of [8, Proposition 2.4], up to a replacement
of ¢ with § (and the use of ATy, < A" when needed), so it is omitted. In turn, we present the
detailed proof of (5.4) which, although being heavily inspired by [8, Proposition 2.4], it shows some
substantial differences. Taking the Fourier transform of (5.2), we have

—p¥ =0 + 7 (306, — 18,)°¥) = F (v" (3, — 19,)¥). .7)

1 1

Multiplying by p # k|2, we obtain

1
2

—p% |k|§® =7+ p_% k|2 (F(g(d, — t3,)°¥®) — F(v" (3, — t3,)¥)) (5.8)

1 1
= Z+p‘2|k|5(Tg+Tv”).
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3718 | BEDROSSIAN ET AL.

Now, define the following multipliers

ke, nl2 . [owy - |

——Ay(t,n), ifk#0, A |6, ), ifk #0,
Mty ={ ~pya A TEE O g gy = J Y T

0, ifk =0, 0. ifk = 0.

Hence, from (5.8) we have

)

1€{q,w}

2

< Y Glzl+ )

jeiw} tefq,w}

2

3 1 1 1
M(=A1)416,12® MU(=A) 410, 12(TE+ T,  (5.9)

where the last inequality relies on the fact that A < A. To prove (5.4), we need to control T¢ and
T, Taking into account the decoupling with respect to the z frequencies, we make a paraproduct
decomposition of T8 and Tv" only in the v variable as

—T78 g g
TS =T}, +T/;+T >

HH’

with the notation introduced in (1.10). We start with the low-high interactions.

* Bounds on TﬁH and Tf; Among the high-low terms, we only write down the computations

g
for Ty

M, TS, = M p () Y / 80— ) js(€ — KOPIK B (O)ydE.  (510)
N>8

On the support of the integral |n| ~ |£|. From the paraproduct decomposition in (1.10), | — | <
3/16|¢|, so that Lemma 6.3 applies and e!k71I° < edlkEP+e2ln=¢1° for some ¢ € (0, 1). In addition,
since every term of (5.10) has the same horizontal frequency k, we can appeal to (4.21), (4.17),
so obtaining that

1 1

PN S =P (E), i) S LT (6

Altogether, since m in (2.29) is bounded, this implies that

MIp, () S (=€) eA=EE MUE)p, * ().

Turning to M,’(n), we use the same frequency exchanges as before, together with (4.12), to get

MEp, () S (0 = E*e A1 (MEE) + MIE)P, * (©).

1 3
Since (£ — kt)? p, “(§) < p; (§), by Young’s convolution inequality and (2.44), we have for t €
{q, w} that

2

=Y

! e{q,w}

, 31
M (=Ap)+10,]2W

’

1 1
HML(—AL)‘MazﬁTfH

85UL0 ! SUOWWIOD BAITeRID) 8ol |dde sy Aq peusenof ae ssjonte YO 8N JO Se|ni Joj Akeiqi aulluQ A8|IAA UO (SUONIPUOD-pUR-SWLBIA0Y A8 |IM Areig 1 jpul |UO//:SdNY) SUONIPUOD PpUe SWB 1 8y 8eS *[7202/2T/TZ] Uo Ariqiaulluo 8|1 elfeleuelyood Aq €212z edo/Z00T 0T/10p/wod A8 1m Aeiq puljuo//sdny wo.j pepeojumod ‘ZT ‘€202 ‘ZTE0L60T



INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ | 3719

1
where in the last line we used that etz < §. Hence, we can absorb this term on the left-hand

side of (5.9) for & is sufficiently small. The bound for the term with TV is analogous and we
omit it.

* Bounds on T§IL and TﬁIHL Exchanging the role of 7 — £ and £ in (5.10), on the support of the
integrand we have |n| ~ |£|. Notice that the ¥ could be at high frequencies in k, therefore we
further split these terms as follows

Tl = Thy sttt + Treikizi) = Thgy + T
where f € {g,v"”"}. When 16|k| > ||, we claim that there is some ¢ € (0, 1) such that
Ik, nl* < |k, §1° +cln — &I°. (5.11)

This can be proved thanks to (4.8), by considering separately the cases %|n| < |k| < 16]n|

and |k| > 16|n|. First, for %|77| < |k| £ 16|, we have that |k, & —n| < |k| + | —n| < 16|n| +
24|&|, where |n| < 25|&|. Thus, we can use (4.9) which gives (5.11) and argue as in the low-high
case before. Indeed, by (5.11) we can pay regularity on g, v”” and conclude by applying Young’s
convolution inequality. This way,

) 31 P
M (=Ap)+10,|2 W

2
DY

_1 1 "
HM‘(—AL) 410, 12(T5, + Ty ”
! efq,w}

which can be absorbed in the left-hand side of (5.9).

We now turn our attention to the terms where 16|k| < |n|. Here, being the coefficients at high
frequencies, we cannot absorb these terms on the left-hand side but we can exploit the integrability
properties of ¥. The most dlfflcult term is T Y since, in view of the bounds (2.44)-(2.45), we need
to recover some derivatives for v”’. This term is explicitly given by

1

Mp,  IkIZTEY = M, (n)pk“(n)lkl > / Tiejk <l 0 (ONF (@, — 13)W)( — ) sl

N>8

On the support of the integrand | — &| < %|§ |. Since 16|k| < |n|, we have that

kel = 1§11 < lk,n—§] < I77I+|77 §l < |77I+ I§I_32|§I

~ 16
In addition, from 16|k| < || we also get A < A. It is now crucial to exploit the definition of the
weight A" given in (2.33). In particular, if t € Ij ¢, by (4.19), from Remark 4.4 and Lemma 4.6, we
deduce that

(b AN e % b A - e 5 (1]

H > E"‘”(e)ed'”—f P (512)

for some ¢ € (0,1). On the other hand, ift € Il‘é o then

L1 :
pk (§) el <| §|> (5.13)

85UL0 ! SUOWWIOD BAITeRID) 8ol |dde sy Aq peusenof ae ssjonte YO 8N JO Se|ni Joj Akeiqi aulluQ A8|IAA UO (SUONIPUOD-pUR-SWLBIA0Y A8 |IM Areig 1 jpul |UO//:SdNY) SUONIPUOD PpUe SWB 1 8y 8eS *[7202/2T/TZ] Uo Ariqiaulluo 8|1 elfeleuelyood Aq €212z edo/Z00T 0T/10p/wod A8 1m Aeiq puljuo//sdny wo.j pepeojumod ‘ZT ‘€202 ‘ZTE0L60T



3720 | BEDROSSIAN ET AL.

and A < AY when 16]k| < |7|. Therefore, appealing again to (4.12)-(4.17), in general we have

N

_1 atﬂ(h%’)+% ifi=w
ML(p, () § ——Av@)ectlkn-€r ] | Wk (t) (5.14)
z e )
€] W ift=gq

where we have absorbed all the low-frequency Sobolev regularity in the exponential term. As
remarked, we need to bound (3,)~'v”’, while up to now we only recovered half derivative. If || <
|kt|, observe that

15 <kt>§<§>_5ﬂ|§|s|kt|~ (5.15)

When |€| > |kt]|, since s > 1/2, we argue as follows

1 Ifls tz |§|s
<§> |§|>|kt| =7s <§> |§|>|kt|

(5.16)

T

1
Combining the bounds (5.15)-(5.16) with (5.14) and since 7((d,, — t9,)¥) < p2 ¥, we have that

2
1 1 "
”Mf(—m $18,12 T8

2
s Y (G810 1+ 076810, v1) H( AW, (517)
jErw} Ghos
Then, using Proposition 5.1 and (2.41) we get
! 12l gro €
[cavre] sl s =5 s (518)
gA,a—S (t> <[>5

Hence, from (5.17) and (5.18) we obtain

HM‘(—AL)_;*IGZI%T,”{NL’" se 3 (G167 1+OIGN816) ). G19)

JjE{A,w}

The control of T' lng when 16|k| < |n| follows by a similar argument. The only difference is the

caset €1 f{ & Indeed, we do not have to recover derivatives for g but extra time decay is necessary

1
because one has to deal with the analogous of (5.18) with p2 W replaced with pW. To overcome this
problem, it is enough to split the relative size of £ with respect to kt. When |&| < |kt|/2, we have
that

Pt (E) 3 (Ke) 5.

When |kt|/2 < |€] < 2|kt| or |€| > 2|kt|, we can exchange the factor |£|~'/2 in (5.14) with (t)~1/2.
Therefore, we always recover a factor t~/2 which is necessary to close the estimate. In particular,
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one has
- Ly ? 1 ) 2 2 N2
t 3 ST v v
HM o s ¥ on-@Rla. . s Y -
JEidw} NISYRL)

* Bounds on ng{H and Tg;{ For these terms it is easy to show

2
" ’ 3 1.
5l + 1T S 8% ) |IMY(=A1)318,|2@
! efq,w}

Finally, to prove (5.5), for the first term we can follow the arguments done to prove (5.4), since
no specific properties of |V[$/2/(t)4 or ,w/w have been used. Analogously, the proof for the
second term is obtained from the arguments for (5.3). The bound then follows by the bootstrap
hypotheses (H1)-(H3).

O

6 | BOUND ON THE ENERGY FUNCTIONAL E;

In this section, we aim at proving the first part (B1) of the bootstrap Proposition 2.8. In general, we
have to estimate nonlinear terms of the type (u - Vf, g). To do so, we use a paraproduct decom-
position, see (1.10), where we decompose the nonlinear term in transport, reaction and remainder
contributions (with terminology from [8, 50])

(w-Vf,gy= Y (ucn-Vin.g) + ), (un-Vieysg)+ D, (uy-Vin,g) (61)

N>8 N>8 N,N’
N/8<N’<8N
=: ) Ty+ D Ry +R.
N>8 N>8

Note that if we write for example,
Tv =3 | BT O Buol = e scnde,
kt /R
it is important to note that on the support of the integral we have

3 13 19
IIk,nl—I€,§IIslk—t’,n—flsl—()lf,ﬁl, 1—6I€,§|Slk,n|51—6lf,§|- (6.2)

In particular, if (6.2) holds, thanks to Lemma 4.6 we have

ellntt < HOEI+ G Ale=tan=¢1° 63)
In what follows, ¢ = ¢(s, ¢, o) € (0,1) will denote a generic constant, independent of &, e. It will
be mainly used in terms of the form e*k=¢1—¢I" to absorb Sobolev or exponential weights as the

one in (6.3).
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We also need to distinguish between short (S), intermediate (I) and long (L) times via the cut-
offs

S _ I_ L _
X = ﬂtSZmaX{\/m_l,\/TH}’ X = ﬂ2max{\/m_|,\/|_§|}§t§2min{|r)|,|§|}’ X" = VizaminginL el (6.4)

6.1 | The energy inequality
Recalling the definition of E; given in (2.34), we obtain the following result.

Lemma 6.1. Foreveryt > 0 we have the energy inequality

d 1 .
ot <1 - %> Z (G;[Z]1+ G;[Q]) < L?R 4+ NL?Q + £V ¢ &4, (6.5)

JEA,w,m}

where the G,[-] are defined in (2.36) and the error terms are given by

12Q — % <at afp] AZ,AQ> (6.6)
|k|p>

NIZQ = |{ F A( )_Z,U va).az+ L 0P 40
% |kips

1 0:p
*i5 < U -VAZ,AQ>

Tl

|k|p>
p i . 1 O;p
n <7—’<[A<E) k,U] -V(lﬁ@)),AQ+£ lAZ> , 6.7)
|k|p2
dgiv _ 1 2 2 1 9,p
£ =§|(F(V-U), |AZ|* + |AQ| >|+E F(V-U) -AZ,AQ )|, (6.8)
|k|p>
A 33 1 op
b = B|( Ik|>p *AF((A; — AW). AQ + 7 ——7AZ )|. (6.9)
|k|p>

Proof. The proof follows from the cancelations observed in [11] together with the definition of
A. Commutators have been introduced to better handle the transport structure. We recall briefly
1

from [11] that the Miles-Howard condition arises from using |3, p| < 2|k|p2, to obtain

LRe< 5th atTAAZ,AQ>§i > (621 +61Q)).
2Bje{/l,w,m}
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6.2 | Enumerating nonlinear terms

We decompose the nonlinear term NL#< in (6.7) as in (6.1), where the transport nonlinearity is
further split as Ty = Zizzl Tﬁ’l + TI(?]’I +T5/", where

1
1=

A(%>_4,U<N/8- -VQN>,AZ>,

_ X .
P\~ 9;p
() ] vy 20|
4B\k|p>

ol
ol
15 = |(#{[a(2) k] .v<iﬁ@>N),AQ>|,
ol
(]

— 1 -

. o}
A(Z) K Uass -V<lﬁ®>N>,f—p1Az>,
4Bk|p>

o:p
T;]” =

— U.yss |- VAZy ,AQ> .
|k|p>

1

Since |8, p| < 4B|k|p2 for § > 1/2, it is enough to show how to deal with Tﬁ’l and TJ(?]’I, as Tﬁ’z
and TG’2 are completely analogous (ry" Will be dealt with separately). Similarly, the reaction

nonlinearity is given by Ry = El 1 R;’,l + R '+ R, where

<P<lA(%>_Z,UN] -VQ<N/8>,AZ> ,
<F<lA kﬂ , N] .VQ<N/8>, a[plAQ>, (6.11)
4Bkp>

ROL

a1 (6.10)

<T‘<lA kﬂ ‘L, UN] -V(iﬁ®)<N/g>,AQ>|, (6.12)
< <lA<% Zk UN] -V(i,BG))<N/8>,at—p1AZ> , (6.13)
4B|k|p>
RYT = <F a,p Uy |- VAZy s ,AQ> (6.14)
Iklp2
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Finally, the remainder reads as
; 3
_ P\ 4 tP
r=Y Y <F<lA<ﬁ> ,UN] -VQN,>,AZ+ lAQ>
NeD N/8<N'<N 4ﬁkpz
; 3
+ <r( lA(%) ‘K, UN] : V(iﬁ@)N,),AQ + 2P AZ>
4Bkp>
0
+ <r[ Py |- vazy ,AQ> . (6.15)
lklp>
In this section we prove the following.
Proposition 6.2. Under the bootstrap hypothesis one has
2
YTy Y 8GZ1+GQD + 57 (G)[Q] + G,[V.0]) + 65 (6.16)
N>8 jeiw} t2

D Ry S8Gy, .+ D, 8(G[Z1+GilQD + 2GS Al + 612G [(9,) "H] (617)

N>8 jefAw
e .
+et+ — - A5,
t2
E2
R S8, (6.18)
t2
LZ'Q<11—i G,[Z]1+G
< 501 = 35XGnlZ] + G, [QD,
3
div « &
EW S 2
3
A E
EY S 6G et T (6.19)
t2

+ Y 6GiQ1+ 871 (GUL — (P14 GUG,) o T+ (0P GUIA N3, v ).
JEdw}

Using the above bounds in the energy inequality (6.5), the proof of (B1) follows from an
integration of (6.5) on (1, t), the use of the bootstrap hypothesis (H1)-(H3), (5.6), and ett/2 < 8.
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INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3725

6.3 | Transport nonlinearities

In this section, we control the transport nonlinearities, defined in Section 6.2, to prove (6.16). First,
by the bootstrap hypothesis (H2), Proposition 5.1 and (H4) we get

IWWOllgio-s < |V +[nV20] , +0lges s = (620)
(t)2

. Q.1 16,1 err
As mentioned already, we present only the proof for the terms T, T and T}".

6.3.1 | BoundonTy"
For any Fourier multiplier m;, m, and any function f one has
[mymy, f1=my[my, f1+ [my, fim,. (6.21)

Since p~'/*A = m~! p~'/4(mA), using (6.21) we rewrite Tﬁ’l < Tﬁ’A + Tﬁ’p + T with

N

>

Tﬁ,A _ <7:'(m—1(%>_z([m14, U<N/8] : VQN))’AZ>

bl

Tﬁ’p = <r(m_1 l(%>_z’ U<N/8] : V(mAQ)N)’AZ>

'(F([m‘l, Uonsl- V(mAZ)N),AZ)|.

Recall that on the support of the integral we always have (6.2).

* BoundonT f\),’p . Writing down this term and using that |m| ~ 1, we have

Q,p p.1 p.2
9 < Y / TP 4 TP,
k.t JR2

where we define

£2)i _ TR
ror o /%) (p"fg)/ )'|f,§||U|k_f(n—§><N/8|AZ|5(£)N|AZ|k<n),

N —_—
(px(M)/k?)4
W) — (/)
T§'2='(pk”/ ) (p"f/ )'|f,£||U|H<n—§)<N/8|AZ|K(§)N|AZ|k(n>.

(pc(m)/k?)+
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We claim that 7, If; Tand T, I\‘; 2 are bounded in a way that is consistent with (6.16). To control 7, 15 ’1,
by the elementary identity

ai — b}t = a-b
(ai + b}t)(a% + bé)
we deduce
1 1 3 & & ¢
<pf(§)>4 B <pk(5>>4 _ G -0+G -0l Ik
2 2 1 1 1 1
¢ k (P (©)/€2)7 + (p(®)/ID)D) (pe(E)/€2)7 + (pu(E)/K2)7)
&1 <pk<f)>i
Slk=7| . (6.22)
K @2\ *

For T, ]\I; 2, by the mean value theorem, there is &’ between 7 and £ such that

(pz;(zn)>4 B <P1;{(2§)>4 <ln—¢l 151 <pkk(2§ )>4‘
[kl + 1= = ¢1)

Therefore, the most dangerous term will appear in 7,7 !, since there is a loss of order IE1/12].

Hence, we only deal with 7, ]\1; 1 By means of (6.22) and (4.21), we have

pf@))i (m(&))i <pk(n)>‘§ JER 1
_ 8 S Ttn—Ek—ey B 1 (o3
(% 2 2 o K (14 15— 0

We now have to consider different cases, depending on intermediate, short and long times.

¢ Intermediate times. If t € I;, N I} ¢, combining (6.23) with Lemma 4.8 and (4.11), we get

1 1
<P€(§)>Z _ (Pk(E))Z
- i <tk by — YT \/atwk(m \/a[wf@)
1 ) tEI, ﬁ[k‘g ~ * — U, )
(o ” wm \ w @
B
(6.24)

where in the last line we used t ~ |£/k|. Applying (5.1) we obtain

/6, w
—AZ
w

We now have to consider t & Ij, N I ¢. In this case, either [§/k —t]| 2 |E/k?| or In/k —t| 2
|n/k?|. Hence, upon paying Sobolev regularity for the low frequencies, we can always recover

2

1
<et3G,[Z] S 8G,[Z].  (6.25)

Z Z ,/Rz TI‘I’)’lﬂtEIk.nﬁfk,gxl S [2||U¢||g/l,a—6
N>8 k.t
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a derivative in v in (6.23). More precisely, from (6.23), using (4.21) if necessary, notice that
1
pe®\4 _ (p®
¢2 2

Pe(m) \ 4
k2

Since 2max{1/|n], V/|€|} < t, then |&| < 2725|€|° < t2725|¢, &|2 |k, n|2. Thus, again from (5.1)
we get

1
4

5
|€a§|ﬂzeliynuli,§xl S Tizelk = €,m = E)[E]

| =

s 2
IVI2AZ| $6G;[Z],

z z /Rz Tl\?’lﬂteﬁ,nwé,gxl S tz_ZS”U#”gLa_e
N>8 k¢

which is consistent with (6.16). ‘ ‘
o Shorttimes.Fort € I ¢,since | /k|* ~ t* < t27 %k, 9|2 |¢, £|2 from (6.23) and (5.1) we deduce

s 2
IVI2AZ| < 68G;[Z]. (6.26)

Z z /2 Tj\f,l‘“tefké‘)(s S t2_2S||U#=||gﬂ,o—6
N>8 k,t

When ¢ € I,i Iz the gain of one derivative in (6.23) is not enough. Thus we crucially use the
bounds on Q. First, we notice that

¢
e b=t

Bl < +1]
LB T (1] SR
k k

Then, using the inequality above in (6.23), we get
1
Ty ]]tellc{,g)(s S “k#ﬂtez;g)(s(ll +12),

where we define

1! = %+|Azlf(§)NlAzlk(U)<k — 0= &) 100—e( = sy
11412
I = Ilill ;ﬂflﬁlf@)NIAZlk(n)(k — .= 60l = E)anys.
(1+I —t):?

Notice that to write Z2 we have used the definition of Z. To control Z! we observe that

:?§:||1+|t§_t|]]l€1 4 :ﬁlm el :gll ||§|| XS0k =)kl 1,6
k
(6.27)
In this way,
s 2
¥y / e lierg 15 S C U g | IV17AZ|) 556,121

N>8 k,t
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Similarly, to control I%,if t € I ¢ then [£/¢| St S t17%k, 77| ¢, §|2 Ifrel;
as in (6.27). Therefore, using (5.1), we have

£, W€ can argue

D Z/ Pligeliere 15 S 072U gros |V|§AQH H|V|§AZ”
N>8 k¢ 7 R? o

< 8G;[Z] + 671G, [Q],

which agrees with (6.16).
o Longtimes. In this case, if |§| < |n| we know that |€ /k — t]| > t. If || > |n|, using (4.21) we have

1 1 1
—— S8 ——3sm-5~. (6.28)
I T

Therefore, we always gain factor of times from the denominator in (6.23). This implies

1€ 1

2.9_ 3 s
kP (1412 |))(Ls<’7_§> LR LA
1+ —t
k

Thus, using the bound above in (6.23) we get

2 2

IV|2AZ <eGi[Z]. (629

) ST A

<—H|V|2AZ

N >8 k,t
This shows that 7, 15 . produces the bound (6.16). As a consequence, the bound on Tf,’p is proven.

* Bound on Tf\‘,. Turning to T4, we write the commutator in each of its components as

[A, Uy sl = [M1, Uy s 1T + P[0T, Uy s lT + ()T, Uy 5]

and bound

TRl 5 Z/ T2+ Ty, (6.30)

where

ﬁ
-
Il
VR
S
<
N
%)
p—
N——
I
=
SR

eAlknP=IEL1) — 1’ 1€, ENTk_e (1 — E)ln/s|AZe(E)INIAZK ()],

1
2 s NI N
Akl =1EE | 20 gl 1o 810, (g — )l <51 AZe (E)INIAZL ()],

<

[\S]

|

VR
=

S
N
Uy
N
N~
B
=

’

1

7= <pf(§)>"‘ k|2 Alnl—legn K J"(”)_1‘|5,§|
It’l

pi(m) § Te(§)

X|U_e(n = E)ln/slAZe(E)INIAZ ().
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That TA} and TI\? satisfy bounds that comply with (61.16) follows from an argument analogous to

[8, Section 5], thanks to (4.20) and the fact that er2 < §. We therefore only focus on the more
problematic term T]\g. It is convenient to split 7, ]\{ as

I _ 7l T
Ty = TN“[g% min{y/[71,v/1€1} + Ty(Tep + Tiepe), (6.31)

where the difficult domain is defined as

1 .
D = Iy N e Nk # €30 {t 2 5 mingy/nl, VIED: (6.32)
Using Lemma 4.13, the bounds (4.20) and (6.20), as in [8, Section 5] we get
1 N 2
/ Wit minty i S © 10lgies|IVIEAZ]| 566,12
N>8 k.t

which is consistent with (6.16). We now turn our attention to the terms where ¢ >

2 min{y/Il, VIER:

The term with ¢t € D is the most delicate one. In this case, we cannot gain anything from
the commutator. Notice that in this interval we may have a loss in the bound (4.19) and (4.15).
Combining (4.19) with (4.15) and Lemma 4.8 we get

pf(&))i l(|kn|V_|f§|)<k 77) Jk(n) —1lie 1
(pk(n) E @, 6 17:9) ’l SlTie
1 3 s
, - (k—-¢t,n- cAlk—€ n—=¢|
S lk 77I|k|2 I _t|< n—§)e

R

where in the last line we have used that ¢ =~ |1/k|. Then, using (4.7) and (5.1) we have

[0;w ~
—AZ
w

which works well with (6.16). For the remaining terms we need to consider two subcases, namely
|€] > 100|&| and |£]| < 100|&]|. In the first scenario, using (4.7) and (4.20), we can repeat the
argument in [8, Section 5] and obtain

2

/ TJI][ED t ||U#||Q/15r 6 S aGw[Z]’

/ v Vienengelsi00ie; S 6GalZ].

When |£| < 100|£|, we can again ignore any gain from the commutator. Indeed, for the terms

we are considering we can always apply (4.17). Then, if ¢t € I}, nI; & by (4.19) and since
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1£,€] S 1€] < Inl, we have

1 1
pe(©)\* k|2 eem e | Tk®)
(5t e Y 2@ = 1 et oo
4E ’

1

2 et 11 [n]2
Sk—-¢ r)-%’)zeCMk (/A3 A R A S
~ ’ k| 7 2
a1+ |; —t])2

We can now apply the same reasoning done for the terms 7,2 1 c , see for example, (6.24).
y g N Ct€liynly p
Namely, as in (6.25), (6.26) and (6.29) we get

X3 | Tt uevnteeis <oy S SGalZ] + G2,
N>8 k,t /R '

For the remaining terms, since we always have ¢ € Il‘én Uly: we do not lose anything from

pe(8)/pr(n). Therefore, we simply exploit the fact that |£] < £, to get |£, £| < 22|k, 5|2 |¢, £|2,
which implies

2
S 6GZ].

11 s
Z Z Talienenrc jniie1>1000E] S et2—||V|[2AZ
N>8 k¢ JR2 o =

As a consequence, Tf\‘, is bounded as in (6.16), as we wanted.

* Bound on T};. Writing this term explicitly and using that |m| ~ 1 we find

where
T = M@ = m &)1 810 1o () = Oyl AZ1(©)y1AZ1 ),

T30 = |t = m ©1€, €110 1o (0 = §)anjs| AZ1 (EINIAZ k().

Again, we want to show that these terms satisfy (6.16). We are going to proceed in analogy to
what was done for the term Tﬁ’p .Recalling the definition of m (2.29), by the mean value theorem
we have that there is £’ between 7 and & such that

e o) = m (O] £ Iy - fl——————.
‘ c) el + (- £52)

Thus, for 7, A’," 2 we can repeat the arguments done to handle Tﬁ’p . For what concerns 7, If,”’l, since
le¥ — 1] < |x|e*, notice that

i (& 1) - wn (5

3
Sle-0)

1+G -0 -1

= |arctan

m () - m;'(©)| s
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where the last equality follows by trigonometric identities. Now we claim that

I 1 1
k] *

|mic (&) = m7'©)| s Ik - ¢ (633)

141521 1415 —g

k ¢
To prove the inequality above, if |1 + (§/k — £)(§/¢ —t)| > 16|&/(k€)||k — €| and |§/k —t| >
16, |£/¢ —t| > 16, then (6.33) follows by Taylor’s expansion of the arctan. If |1+ (§/k —
HE/C —1)| <16|E/(kE)||k —¢]| and |E/k —t]| > 16, |£/€ —t| > 16, then it is enough to use
the uniform boundedness of the arctan and multiply and divide by 1 + |£/k — t|. When | /k —

t| <16 or |£/¢ —t] < 16, (6.33) follows by | arctan(x) — arctan(y)| < |x — y|. From (6.33), we
can now obtain an estimate as in (6.23) and argue as done to control 7, ]\1; " to get

>y /[R T £ 8(GulZ1+ 612D,

N>8 k,t

6.3.2 | Boundon Tﬁ’l
Using (6.21), we rewrite TI(:)]’I = TI(:)]’A + Tﬁ’p + T](?]’m + T](;),’Z where

1

Tyt = <F(m‘1<%>4k([mA, Uanysl V(iﬁG)),AQ>‘,

190 _ <r<m—1k[(§>

Ty" = [(F(m™, Uayss] - V(mAQIN). AQ) .
<r(m—1[k, Uonsl- V(imA,B(%)ZGN)),AQ>|.

The terms TI(?,’A and T](;),’m can be bounded with exactly the same arguments used for Tg’A and
Tﬁ’m. The term Tg’p is equivalent to Tﬁ’p with the role of (k,#) and (¢, ) switched. Just notice

1
4

) U<N/8] - V(IimABO)y), AQ> ‘,

0,z
TN

that the extra factor of k out of the commutator can be easily moved onto the high-frequency part

by paying Sobolev regularity on U. In addition, we need to replace the bounds on Q with the ones

for V; ©. We do not detail more the bounds for these three terms. On the other hand, we present

the bounds for TI(?]’Z . Here, we again need to use the bounds available for V; 0.

* Bound on TZC:)]’Z. Writing explicitly this term in the Fourier space and using that m ~ 1 we have

TS’Z < Z TNO,Z = Z / lk—7¢| |ﬁ|k7€(77 - §)<N/8|€’ &l <p{(§) > ' |A©|f(§)zv |AQI, (n)dnd€.

2
ke JR? kt /R ¢

85UL0 ! SUOWWIOD BAITeRID) 8ol |dde sy Aq peusenof ae ssjonte YO 8N JO Se|ni Joj Akeiqi aulluQ A8|IAA UO (SUONIPUOD-pUR-SWLBIA0Y A8 |IM Areig 1 jpul |UO//:SdNY) SUONIPUOD PpUe SWB 1 8y 8eS *[7202/2T/TZ] Uo Ariqiaulluo 8|1 elfeleuelyood Aq €212z edo/Z00T 0T/10p/wod A8 1m Aeiq puljuo//sdny wo.j pepeojumod ‘ZT ‘€202 ‘ZTE0L60T
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Observe that

4(5) 1+ =12

Again, our goal is to bound the above term as in (6.16).

¢ Intermediate times. When ¢ € I, » we need to use Lemma 4.8. In addition, observe that in this

interval (£/€) < 73k, 7n|2. Thus, combining (5.1) with the previous inequality we have

1-3 oW ~
ZZ/ TS Ve, X' St UL groms \/ == AVL ”|V|2AQ”
N>8 k,¢ 7 R?
< 8G,[Q] +671€%G, [V, 0].
Then, if |§] > |£| and t € Ifg,we know that
§ 1 <18l Ifl - : :
<g Tﬂtelc x |€| Skl |E, €,
(1+15 — 1)) 3

where in the last inequality we used 2max{y/|9|, \/ }<t When |&| < |£] one simply

observes that since ¢t < 2min{||, |£|} then 1 < t7%|k, nl |Z, §’| 2. In this way, since s < 1 from
(6.34) and (5.1) we have

|V|ZAV,0

ID N T A |ivisaq|.
N>8 k¢ ’

< 8G,[Q] + 671€2G,[ V0], (6.35)

as needed for (6.16).

o Short times. If t € I ¢ then (§/€) ~t <t!7%|k,n|2|¢, £|2 so that we can repeat the argument

done to obtain (6.35). Whent € T f P then

(5)—— e smaxty, 511
A+ 15— HE

where we also used s > 1/2. Hence

s s
21, &z,

3, | e 2 S 1019154710

H‘m zAQH < 8G,[Q] + 67162G, [V, 0],
N>8 k,t

consistent with (6.16).
o Long times. Since t > 2min{|n|, |£|}, arguing as in (6.28) we get

§ 1 Lyl < et 1e. g1
) —1)( St 2<§>X St2 | 77)|2| ’§|2'
(1+]

-3
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This implies

1

XDV RS a A P

N>8 k,t

IV|2AV,©

‘”lVlEAQH S 5G§[Q] + 672Gy [V, 0].
implying (6.16) for this term as well.

6.3.3 | BoundonTy"

We split this term as

where

Terr,l — atpk(g) _ atpf(g)

; |16 €10 ke () = 5| AZ1 e (AR (),
IkIpg(§)  1€1p7 (€)

9:p(n) _ 9;px($)

1

; T (165 81T le-e O = <51 AZ1 ()N 1AQLK().
lklp;(m)  Iklp;(§)

err,2 __
Ty =

To control T¢™*!

N s We first notice that

St Ly
opk(§)  aipe(®) | _ k ¢

kipZ(©)  1eip®] |A+G =022 a+E -

Then, using the bound

a b :(a—b)(1+b2)§—b((1+a2)§—(1+b2)§)<|a_b| 1
(1+a2)% (1+b2)§ (1+a2)§(1+b2)§ (1+a2)%
we get
0,pk(§)  dipe(®) 5|k—f||£—|;,
; ; kCT 1415
lklpg(§)  1€1p;(§) k

. 1 2 .
which means we can repeat the arguments done for Tf] . For Tle\]rr , since

0
74 —5 1 .

a 1
klpz) kA +17 =12

7
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we can again apply the mean value theorem. Overall, we obtain

T4 58 ) (G121 +G,[Q).
JEid,w}

Therefore, the proof of (6.16) is completed.

6.4 | Reaction nonlinearities

We will decompose a function F = F(t, k,¢,n, &) as
F = FRR) 4 pNRR) 4 p(RNR) | p(NRNR) 4 S 4 FL, (636)
where, recalling the definition of I}, ;) in (4.2), we denote

FRR) — FXI'HIEI](J]ﬂIg,g’ FINRR) _ F)(I“rel,gnmg,g’ FRNR) _ F)(I“relk,,,mgg:

F(NR,NR) - F)(Iﬂteli)nrﬂ;g, FS - FXS’ FL = FXL

This decomposition will be used in essentially all the reaction terms appearing in (6.10)-(6.14).
Besides the distinction between intermediate, short and long times, among the intermediate times
we need to separate the resonant (R) versus the non-resonant (NR) interactions. As we shall see,
the hardest terms to treat are those of the form Rf,” in (6.10)—(6.11), on which the toy model has

been constructed. The terms RI(:),’i in (6.12)—(6.13) will be simpler to handle.
The goal of this section is to prove that the reaction term satisfies the bound (6.17). Recall that
throughout this section, on the support of the integral we have (6.2).

641 | Boundon Ry

1
The bounds for Rﬁ’l and Rﬁ’z are analogous since |8;p|/(|k|p2) < 2. We will then consider just

the first one. We split this term as

Q1 Q Q Q Q
RN < RN,\P + RN,U‘ + RN,S + RN,com’

where we use that U = v’ Vlll’# + (0, v) and we define

Ra=2 /. AZI AP DI 15 — KENT | (Ol (7 — £)ony/slnd
L) /R AZIGAD IR IFRY AL ©)x VDl (7 = Daxjsdnds (637)

Ra=X /R AZLGAD DIk DIONIEDNG — Davjstnde (639)

Reon = 3 /R IAZIODIU L ©ONIAVZ Iy — s,
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The main contribution will be the one given by R]i), y and the term RJ% 5 can be considered, roughly

speaking, as a perturbation of it. The term Rﬁ com COmes from the commutator which we had to
introduce to deal with the transport nonlinearities. When the velocity is at high frequencies, we
do not need to gain anything from the commutator and we can deal with this term separately.

* Bound on Rﬁ - In view of the notation introduced in (6.36), we split the term as

/ RQ (RR) | 0O SIIJ\IR,R) + RQ (RNR) RQ (NRNR) RJ%\SI, + Rf\)]‘Ly ’

and bound each term in a way that is consistent with (6.17).

¢ Bound on RQ R.NE) . First of all, observe that on the support of the integral, we have

1 ~
kI <zl A S A, Int = k€l < Tknllk =€, =&l S Inllk = ¢, =&l
(6.39)
Then, since t > 2max{+/|n|, v/|¢|}, from (4.10) we have

_1 1 3. w
- tWk
p k|2 Ver,, X' S ‘/ o .

Using this and appealing to (4.14), (6.39) we deduce

0, wi(n) In]2
wi(m)

1 1 - s
(Ap™ Ik In¢ = kéer, e X' S = Ap(§)ectl=tn=S]
| [KI(L+ |6 = 21)2
3
< Inl? dw(m)

p, H(©IE12(pi A)p(§)eHk—r=EP,
(6.40)

Since t € I¢ ., we observe that

0.
] ~ 7] :
<|k|> (5) ‘<l <|k|>

Combining (4.11), (6.40) , (6.41), (5.4) and the bootstrap hypothesis (H2) we get

3 1
\/a’wAz \/atwA(—AL)Z AR

<5> CSk—tm-8). (6.41)

Y 2 Q(R NB) 1AQ[gro-s
N>8 k,t
S 5(G [Z] + Gellzptlc)
as required by (6.17).
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o Bound on RQ (NRR) "Eor this term we know that 4|¢|? < |€|. Hence, from (6.2) we deduce

K< 161+ 1680 < 180 < 220kl +nh = [kl < 2. (6.4

- 64 ~ 624

Hence we always have A S A. We now have to exploit the fact that when exchangmg

(Ap 4 )k(n) with (Ap™ 4 )€(§) we gain derivatives in v, namely 1/2 from A and 1/2 from p™ 4.
More precisely, since ¢ € I, y 0 I, ¢, by (4.19) and (4.18) we get

: |f|2(1+|t—§|)

1€

Appealing to Lemma 4.8 and the fact that |n¢ — k§| S |6, ¢&llk—¢,n—=§&| S5 éllk—¢,n—&|,
we have

1 1 )
Viere nr, (AP~ 4)k(77)|k| 1€12(Ap~ 3)p(£)ecHr—tn—El,

17|
JHG)
5z Wy

1 1 13 s
Vierg a1, (AP Ik2 Inf = k€] S €12 (Ap)p(§)eHk=0 =<l

(§)|€| (Ap4)g(§)edlk En-&1°

Combining the inequality above with (4.11), using the bootstrap hypothesis (H2) and the elliptic

estimate (5.4) we get
ow ~ o,w 3
\/[TWAZ Y e S A(-apile, Y
whence proving (6.17).

RONRR
XY [ R s 1Q0lgeos < 8(GulZ] +G
o Bound on RQ INRNB) Bor this term, since t € I ¢ 0N I ¢ . from (4.17) and (4.19) we deduce

elllptzc)’

N>8 k,t
23

_1 1 5 1-2 s
ﬂte]i‘nm;g(Ap DeMIkI2 It —kEI S [k,yl2 |6, 6] 2p H(E)IE]2 (p4A)f(§)ec’”" =P,
Appealing to (4.22), the bootstrap hypothesis (H2) and (5.4), from the inequality above we then

deduce that

Q (NR,NR) < 1
22/ Su
N>8 k,t
as needed for (6.17).

o Bound on RQ BB When t € Ii, NI, ¢ we necessarily have 4|k| < [n| and 4[¢| < |€| Indeed,
iy = |77| 1mplies that |k| < 4/|n|/2. Since |k| > 1, we have 4/|n| > 2 so that |k| < |n|/4.
Hence, |k,77| ~ |n|and |£,&| ~ |€|. Then, on the support of the integrand |k, 7| ~ |¢, &]| so that
[n| ~ |£]. Therefore we can apply the trichotomy Lemma 4.5. If case (b) holds, then we repeat

the same argument done for RQ NRNR) and we omit the details.
If we are in the case (a), namely k = ¢, then appealing to (4.21) and (4.17) we get

N
V|2 1
V1 e

IR0l gro-s S 8(G[Z] + G5y 500

1 1 1 3 )
(Ap k|2 Int — k& Ver, a1, nk=e3 S 1€117 = Elp, ()12 (Ap3)p(§)etn==l,

3SUS01T SUOWILIOD) BAIIERID 3|qedl|dde ays Aq pausenob ake sajonte YO ‘88N JoSajni 1oy ARld 1T auluQ 43|\ UO (SUOIIPUOD-pUR-SWLLIB)I0D AB | IM"Areiq 1 BU|UO//SANY) SUO I IPUOD pUe SWB | U} 89S *[7202/2T/Tz] Uo Ariqi]auluo A8 el eueIu0D Aq £2T2z edd/200T OT/I0p/Wod A3 1M ARelg Ul juo//sdny Wwouy papeojumoq ‘2T ‘€202 ‘ZTE0L60T



INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3737

Now observe that since t > 2 max{+/|7|, v/|£|}, (4.10) implies
d,wy

1
1P Ex Vier,, S ——————xTier, S SO,
' CUela = EpyT T e

We also have A (1) S A, (n) and A, (§) < Ay(&). Using (4.11) and (H2) we deduce

3w ~ 3
\/tTwAZ \/ ’wA( CAI (0,3

S 5(Gw [Z] + Glelptzc)

Q(R R)
Ryw M= S
N>8 k,¢ 7 R?

120l groms

In case (c) of Lemma 4.5 one has

€]

Int — k& < 1€1ln =&l + 1§k =€ = |Clln = &l + = K|

Skllk = €] S 161 — &k =€),

Therefore we can repeat the same argument as above.

Q.S .
Bound on RN,W' When t < 2max{v/|nl, VI§}, if t € Iy, then |k| 2 +/In|. Hence, from (4.19)
we have

3 _1

P xS S k=t —£)2p, (&)

Q (NR NR) ¢

Analogously, we can always apply (4.17). Then, if t € I}, , we argue as done for R

§
obtain

T3 [ R, $50I21+ Gy
>8 k,0

Ift € Ip r and t < 2max{+/In], V/|¢[}, then |¢| < |€|. Therefore [n¢ — k&| S |€)2 |k — €,n — &,
hence

1 3
Ry lier, . S UAZDIEIP 1 EIE12(APT@)p (©)ne 177510 _p (7 — E)anss-

Since |¢]*p, () <1 5 t7]k,7|2|¢, &|2, appealing to (H2) we find

Z Z ]]telfg S 8(GalZ] + Gelllptlc)’
N>8 k,t

as required for (6 17).
Bound on R - In this case, from (4.21) we know that

1/4 1/2

m+p O s Sm-9
t2

(6.43)

Whent € I; & in view of (4.17) we find

1 1 s
(Ap~Ikl>Int = kX Viere, S Veere, Ik nl31e, §|1_5pf"(§)|f| (' A)(§)etit=sr,
: x

3SUS01T SUOWILIOD) BAIIERID 3|qedl|dde ays Aq pausenob ake sajonte YO ‘88N JoSajni 1oy ARld 1T auluQ 43|\ UO (SUOIIPUOD-pUR-SWLLIB)I0D AB | IM"Areiq 1 BU|UO//SANY) SUO I IPUOD pUe SWB | U} 89S *[7202/2T/Tz] Uo Ariqi]auluo A8 el eueIu0D Aq £2T2z edd/200T OT/I0p/Wod A3 1M ARelg Ul juo//sdny Wwouy papeojumoq ‘2T ‘€202 ‘ZTE0L60T



3738 | BEDROSSIAN ET AL.

whence, using (4.24) we get

/ RN \p“tele 5 6(Galz] + Gglliptic)'
N>8 k.t

Ift €I, then |€,§] < |§] so that from (6.43) we have

1 1
(Ap™ Ik e — kElx er,, S —1I§|p€“(§)|€| 3 (ps A)y (€)ecAIk—ta—51
t2
1 1-s s s 1 3 .
< WL I 2 131, €13 1615 (ps Ay (et =51

t2

Since 2min{|z|, |§]} < t we have t 2| min{|§|, [[}|"™* < t7'7%, so that

Ryplier, S 0(GIZ1+ Gy 0,

elliptic””
N>8 k,¢ 7 R?

as we wanted.

Bound on Rﬁ 5- First observe that
hVA® = VL(hW) + (¥, A, 0).

Hence, by the definition (6.37) we have

Ry s < ; /[R AZIGAP™ Ikl ¢ = KENF DI 1l () = §)nsdnd§

+ Z |AZ|k(77)(AP_‘_1‘)k(77)|k|§ [P (%0, 1)l (E)n10, Q¢ (1 — §)nysdndé
k¢ 7 R2

_pl 2
=Ry s+ Ry s

One would like to directly treat these terms as a §-perturbation of RN‘P’ however, this is not
true in general. More precisely, as done in the proof of Proposition 5.2, we first consider the
following paraproduct decomposition in the v-variable (since v’ does not depend on z):

h¥ = hy; %, + hoYhi + hgi i, Yo, h = ¥,(8,W)pi + Yri(8uh)ip + WHi(Buh)p;i-
and we define
i _ pi i,z i
Rys=RsimtRspy + R5 ar T Rs g (6.44)

where the term R%*  denote the part of RL _ with the cut-off % = Ti¢|>16/¢7|- Analogously,

§,HL §,HL
5 HL has the cut-off " = 1|¢<16e|- With a slight abuse of notation we omitted the subscript
N.

Coefficients in (relatively) low frequencies. In the proof of Proposition 5.2 we have seen that we
can treat in the same way the low-high case or high-low with |k| > 16|»]|. This because we can
always pay derivatives on the coefficients. Therefore, the most problematic term will be Rzlv 5
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since more derivatives are hitting ¥. However, the case under consideration can be treated by
reasoning as done for the term Rﬁ - More precisely, we first claim that the following inequality
holds true

2
3/4 |V| atw 5
= ( <t>q A+ V w A= AL) 10,12 (hlolPHl +x hHLlPlo));e <6 Gzllzpzlc (6.45)

whelre X1, M) = Vjk|>16)y)- Indeed, first observe that since v does not depend on z, the factor

|d,|> is always on the stream function. To prove (6.45), one can always use (4.21), (4.17) to move
the multipliers onto ¥ by paying regularity on h. We omit the details of this argument since it
has been done in the proof of Proposition 5.2. Hence, from Young’s convolution inequality, the
bootstrap hypothesis (H3) and Proposition 5.2 we infer

s 2
3/4 2 V]2 atw 2
17" S |l gro-s <—<t>qA+\/ A= AH1EI W), 56 Glliptic’

where in the last inequality we used (5.3). Having at hand (6.45), we can repeat exactly the same
argument done for Rﬁ  to conclude that

Z 5LH Z ZR5LH 5HLN52R

N,M>8 N,M>8 i= N>8

Using the bounds done for R%
(6.17).

Coefficients (truly) at high-frequencies. We now have to deal with the high-low case when |k| <
16|7|. In this case, as evident from Rzzv, 5 We need to recover some derivative for the term J,h.

Ny We see that also in this case we get a bound consistent with

We will treat only R12v 5 since the term Rzlv 5 1s analogous in this high-low regime. Writing down
the term explicitly one has

R, < DY /R AZIAP™ DIk on (e Tieizielen 1€ TRE D

N,M>8 k¢
X [0 (€ — £ pr/s10,Qli—e () — &)y jgdndEde’, (6.46)

where py is the cut-off of the paraproduct decomposition as defined in (1.10). We now have to
exploit the fact that we control the coefficients with a stronger norm. More precisely, by the
definition of A", see (2.33), reasoning as in (5.12)—(5.13) we have

1

(Ap 4)k(77)|§,| < |§/ < > AU(%‘) CA|E,E —ES+eAn—=E| < Igl ZAU(g )ec/1|f & —E8 A |k—C - §|3

&

where we also used the fact that A < A when |¢| < 16|¢’|. Hence, since s > 1 /2, appealing to
Proposition 5.1 and the bootstrap hypotheses (H2), we infer

ARl oo QI g s S S(GIZ] + G2 [R]),

% i s wiazf e
N,M>8

as needed for (6.17).
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o The high-high term. Applying the same reasoning of [8], we have

3 3 Ry 525

N>8 i=1 t2

* Bound on RQ N5 . To control this term, we are going to exploit the consequences of the bootstrap
hypotheses (2. 46) (2.48). Indeed, we recall that to we control ¥ via (H4) and bounds on H.
Notice that we need to recover s-derivatives but this will be balanced by the extra decay in time
available for H (or d,0). From (6.38) we have

RS, 2 Y [ 1AZAR eIk BN I - Dy
k¢ /R?

= Z 5 R](\Zf’v(ﬂ telkynﬁlk,g)(l + (1 - ’Htelkﬂﬂ]k’gxl))'
kit /R

Since Q is at low frequencies we can always move all the factors |k| to this term. Here, the
most dangerous case is when ¢ € Ij, N I} ¢. Indeed, we know that v always has non-resonant
regularity since does not depend on z, whereas the weight A is at resonant regularity. Due
to the regularity gap between wy and wyg, we will lose 1/2 derivatives in v. In particular,
when ¢ € I}, NI}z and Zmax{\/m_l, \/m} <t < 2min{|n|, |&|}, from (4.15), Lemma 4.8 and
the definition of the weight w, see (4.5), we have

- 713" 8we(n) Ao(®) s
(AP e iery yon 1! S =5 —— L =—reetlkn =il

o o © (6.47)

Since ¢ €Iy, (and s <1) we know that |5|'/%*$/|k|*/2 < '/2+5. Hence, combining the

inequality above with (4.11) and (2.48) we get
1 0w ~ Jw A
RQ 1 XI <t2 t A7z t 0
PRI R Va7V 55

< 8G,[Z] + 671256, [(8,) M),

+s

/{1901 gr—s

as required by (6.17). For the remaining term, thanks to (4.17) we and (4.13) we know that we
never lose derivatives from Ay (n)/Ay(£). In particular, we have

(Ap~ 4)k(77)(1_ﬂtelc x)< |k, n|2|§| 0(5) RALE R

This way, we conclude that

1 s s Ay
ZZ 1= Tyep,nn X S et2 |V|2AZH [0y|2 —=U
N>8 k¢ (Ov)
s 2 2 5 A
<6 IVI2AZ| +67 ——p2+2|l13,]2 —2 v
t2+ t2 $ <av>
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Since s > 1/2, appealing to (2.47) we get

> / RR (= Lienon X1 S 8GZ]+ 671226, [(6,) ]
N>8 k¢ “R

S 8GIZ] + 67 12(1) T GA[(8,) T H] = A(e2 B,

that is in agreement with (6.17) since s < 1.

* Bound on R% . This is the easiest term to control since we have room to pay regularity on U

in order to get integrability. In particular, since on the support of the integrand |k — €,7 — £| <
|£, £], by Cauchy-Schwarz and Young’s convolution inequality we get

Q 2 < E3
Y RE < MAZIP Ul gos S =

N,com —

3 9
N>8 t2

as needed in (6.17).

6.4.2 | Boundon Rg’i

As done in Section 6.4.1, we will consider just the bound for Rf,’l and we split this term as

0,1 e) Op o} 0 Q
RN S’ RN,‘P + RN,‘IJ + RN,5 + RN,U + RN,com'

where we define

K= 3 /R LAQUAP LIEI: e = KENT41 (E 1Bl — e scndE

R=3 /R TAQUAP LI [P (18,8417 — ) s
L) /R HAQUAP IEL [P Wl (O 1TOL_ = E)onschndé
Ru=2 /[R LAQU(AP KL BI(E) 15,8107 — ) scn

R = 2 /R 1AQOID1 N IATQli (7 — )y stndE

Throughout this section, we will make use of the bound (2.42) and, as a direct consequence of
(H2), we also have

1
18,00l grs = BHIBVLO) (D1 S b2 S 8. (6.48)
In view of the inequality (2.42), the bounds for R](;),’l will be easier with respect to the ones for

R](\),’l. In particular, we immediately have a factor ¢¢~'/2 from the low frequency part, whereas in
Section 6.4.1 the low frequency contribution give us et'/2.
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* Bound on RI(?] v Following the notation introduced in (6.36), we split the term as

/ R@ RR) | 150, EII,\IR,R) + R@ (RNR) R@ (NRNR) R;)ffp + R](:)]%p'

We now control each term separately.

o Bound on RyG™N. Using [nt — k€| < |¢,&||k —¢,n—&| and t ~ |n/k|, from (4.14) and
(4.24), we get

1

D i 161 (o ) (Eestica

L 1
(Ap») k|2 nt — kgmfen{ﬁmgill S1¢, €l
[kI(L+ ]t — -|)2

1 N N
st5|k,n|5|f,§|l‘ipf4(§>|f| (p?A), (E)eHk—ta5F T, ers,
N N 1 3 .
Sk, lz |6, 612 |3 (pTA),(§)erktnEl,

This way, combining the inequality above with (2.42) and Proposition 5.2, we have

s |V|
/ R@(RNR) < (1S |V|2AQ” tSA( AL) |8, |2IIJ “@;E”Q“r .
N>8 ke (t)
5 8GRl + Gy i) (6.49)

implying (6.17) for this term.

¢ Boundon R® (NRR) This is the most dangerous term since we lose to exchange p (1) with p,(§)
(but we gain when we exchange Ay () with A,(€ )) On the support of the integrand we know
4|¢)? < |€| and (6.42), meaning that we have A < A. Then, appealing to (4.18) and (4.19) (with
the role of (k,7) and (¢, ) switched), we get

1 1 1 3 1
(Ap3)(m)lk|2T teI‘iUnIMXI =p, " (M(Ap3)()lk|= ﬂtel;mﬁlﬁf x'

£t 3
BN L HB R
Sp. () - A (Ap4)g(é’)e a
1§12 [£]3 (1+|t—-|)2
< kI 18] aw(§) oI5 (Gipl Akt ot
(n) 107 w,() [€12(Ap+).(§)e 7
t Gwy (&), 1~ 3 ot
L £12(Api Alk—t 915
S ARG [€]2(Ap+).(§)e

Since |n¢ —k&| S |&|lk — ¢,n — &|, combining the inequality above with (4.11), (2.42) and
Proposition 5.2, we infer

©,(NR.R 5tw~ ‘/a‘w~ Rk
. RNEI’ ) <t TAQ H 714(_AL)4 Iazl 4 “G)?é“g/lﬂ—“
N>8 k.t
S 8(GLIQ1+ Gy ), (6:30)

elliptic”?

consistent with (6.17).
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o Bound on Re INRNR) prom (4.17) and (4.19) we have

1 1 s s
(Ap)mIkl> 1€ = k& Viere are X' S “tagﬁglk,nlilf,ﬂl Ep/(§)lf| S (p* A (et

From (4.23), (2.42) and the elliptic estimate (5.4) we have

Z Z RJC;)],E;VR,NR) <1 |V|

N>8 k,t

|V|2AQH

1619 0] e

< 6(G,;1Q] + GE ), (6.51)

elliptic””

as required for (6.17).

o Bound on RO BB On the support of the integral we know that 4|k|? < |5| and 4|¢|? < |&].
Then, since k 7é ¢, we know that we can only have cases (b) or (c) in Lemma 4.5. The case (c)
is straightforward. In case (b) we are in a situation similar to Re NR,NR) . Indeed, we know that
we can apply (4.17), so that from (4.19) we get

1 1 _1 13 s
(Ap (mnt = kE|lkl2 1y, a1, X' S 1€D, > ()IE12 (ApH)p(§ecHk=tn=ET,

We also have

-3 £\ we(§) _ Bwe(®)
1§lp, 2 (§) S <?> e St o) (6.52)

Therefore, thanks to (2.42) and (5.4) we conclude that

E
/ RYGR <t \/ 'y \/—A( AL) 19, B
N>8k€

< 8(GulQ]+ Gy (6.53)

[ e

in agreement with (6.17).
o Bound on R - From (4.17) and (4.19) we deduce

1

(AP K2 It — KEIXS S 1€, €1p, > (E)I€]2 (ApH)p(£)ecth—tnE1,

1 N
Ift € I s onehas |¢,&[p, > (&) S t' |k, |2 ¢, §|2 Ift el ¢ Weuse (4.23), so that, in general

we have

IVI

REY (Y

Z 2/2 leﬂtelc S

N>8 k,t

|V|2AQH

<6 (GalQI+ Gy, ) (6.54)

as needed for (6.17).
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o Bound on R When te I; & in view of (4.19) and (4.17) we find

1

1 1 s s L 3 .
(AP IkIZ It = KE Viers S Viers I nI2 16,612 p, > (DIE 1 (PR A (el

whence, using (4.23) we get

22 / RG Tiers, S 8(GIQ1+ Gy 6.55)

N>8 k,t

1

= 1 1
If t€lyg, then |£,€] S || Since t > 2min{|n|, |§]} we also have p!(n) St2(k)2 and
p; (&) S (IkI(1))">/2. Hence

1 3

(AP4)k(77)|k| Int — k§|)(L11ze1€§<t2(k> £1p, *(©)I¢12 (p4A)f(§)eM'k Sty

1 1-s N N 1 3
< LS, BLZ i3, 215 1615 (o )@ttt

Exploiting the bound ¢~'| min{| €], |n[}|'~* < t~5, we get

V|2 31
G

(Lo Py (6.56)

e,L z
>3 [ RS, 5 |ivitac)
N>8 k¢ /R

H'V' Q”H : )S( A8, 17w

S 8GRI+ Ggyy i)

elliptic”?

as required in (6.17).

* Bound on R} ° . For this term, since ¥ is at the same frequency k, we can move the multiplier
l
Ap* without losing derivatives in the high-frequency part. In addition, we only need to recover

one derivative in z. Observe that, appealing to (4.21) and (4.17), we have

L4

(ApH)mIklz S - Ik|2 (Apa)(§)ecHk=tn ¢l (6.57)

(k|2 + |§ — kt[?)>

Then, we split this term as follows
/ ROWGES + (= 2 Dier + et D) (6.5%)

where the cut-off are defined in (6.4). Then, when ¢ € I ¢, combining (6.57) with Lemma 4.8
we have

(AP e, (1= 2 5 2 ;Eg)'ld (Apye(Eyetlitair,
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Since on the support of the integrand || ~ |€|, in view of (4.12) and (6.48) we get

9
(e i

< 5(Gw[Q] + G/l[Q] + elllptlc)

(€]
Z RN?\p‘“tEIk,g(l - XS) S
N>8

18,01l g2oe

Whent € I}ig’t > 2max{1/|nl, V1&[} and |kt|/2 < |§] < 2|kt|, since s > 1/2 observe that

el k] PRLIASE

<
~ T~

T TR ST,
(k12 + 1§ —ke|Dz (k12 +1512/1k1)2 1§12

which, since g < 1/4 + s/2, implies

> R Vet oterzsicizaiasd = 2 S £ |V|2AQHH TRrAC A1) 1817918, l ioe
N>8
S 5(G/1[Q] + Gelllptlc)
If |§] < |kt|/2 or |§] > 2|kt| we have
-1
k| 1 k| 1/§
T Veisike 2 S 7 LHESITRS I§/kl Si\x/) -
(Ik[2 + |§ — kt|?)2 (k> + 1§ - kt|2)2

(6.59)
Then, from (5.5), (6.57) and (H1) we obtain

3

0, 1 3 1 €
Z RN(,)\{JHteI}ign{|§|S|kt|/2}n{|§|22|kt|}(1 -x95 ?”AQ”HA(_AL)" |9, | Z‘I’Hﬂau@o”gw—é S
N>8 ’ {3
When ¢ < 2max{+/|n], VI|&|} we use 1 S 75|k, 7|2 |k, £|2, to get
> RYxS St A 'Vl A(A) a,19(|16,0 < 8(G[Q] + G5, ).
£ N\yX Q L | | ” Ollgla 6 ~ A Q + elliptic
>8

Therefore, also for the term RI(:),OlIJ we have bounds consistent with (6.17).
* Bound on ch:)f s+ We again consider a paraproduct decomposition in the v-variable and,

similarly to (6.44), we write

+ RO

0 _ po 0,z
RN, =R +R +R S.HIH"

5LH 6,HL 5HL

Since in the bounds for RJ(;),  We never used the fact we had |n¢ — k| instead of |, £ |',fork # ¢
we can repeat the arguments done for RI(?]  to deal with the case when the coefficients are in

'n the bounds for Rﬁ’gf’R) one exploit the presence of |n¢ — k€| whenk = €.
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(relatively) low frequencies, namely R?, .~ and R9Z  The same holds true if k = ¢, where the

§,LH s, HL
bounds are done as the ones for R ° . In particular, one has
e}
Z Rsint 5HL 59 Z (6.60)
N,M>8 N>8

We are then left with the high-low case when the coefficients are truly at high frequencies. In
analogy with the notation used in (6.46) we have to control

ROV = / AQL AP IKI2 o (E)e T ¢ <1616 1RIE N

X VLW (€ = &) apt s VO (1 — £) s dndEdE’
= ; / 5HL

For this term we can always move derivatives in z onto the stream function. Then, from the
definition of the weight AY, see (2.33), since 16|¢| < |£’| we know that on the support of the
integral A;(n) < A%(n) < AY(&"). Hence, appealing to (4.21) and (4.17) we have

1

(AP () S Py (AU et &' =5  seiby=5I”

Then, notice that

1

- 1 1 1 1 1 1 1
p,:(f’) S« + |§,|2“|§/|zz)<k>2 SE2Ter < + |§’|2]]|§’|2t)<k —t)2(f)>.

Since in general we do not have k # ¢, we can only use the worst bound (6.48). However, com-
bining the two bounds above with the bootstrap hypotheses and Proposition 5.1, when |£/| < ¢
we have

/ RO Viener S G NAQUIARI 4] o c1Olos S (6:61)
NM>8 k,t

If |£/| > t, since s > 1/2 one has |£|1/2 = |£/|V/275|E"|S < t1/275 |k, n|%/2|€'|¥/2. This way, from
the bootstrap hypotheses and (6.48) we get

0O,
DY IR AINETE
N,M>8 k.t

2 s
€ s
<[

2A”h

]|V|

’“lp?':“gla 5”9”91:: 5 (6.62)

o|34%k|| < e(GylQ1 + GElRD.

For the high-high term, we get

3 R, < 1AQIIAllgros
N>8

A el 5

meaning that R](?] 5 satisfies bounds in agreement with (6.17).
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* Bound on RS ;- First split this term as
e
= Z 5 RN,U(H IEIk,nﬂIk’g)(I + (1 - ﬂtelk,,}ﬂfkqg)(l))'

Notice that we always have O, since if k = 0 the term above vanishes. This is crucial since we
can always recover some time-decay from (2.42). The treatment of this term will be similar to
1

Rf\z, 5 however, in view of the ps the worst case will be when || > t. In contrast to (6.47), for
t € It NIy ¢, appealing to (4.17), Lemma 4.8 and (4.5), we now argue as follows

Ar(©)

A cfllk,n—fls,
A4 o(f)e

(Ap4)k(77)ﬂtelk,,nlk§)(1 pS Ikl 2+t - —I)

Inl A5 < ¢5 115165 208D etz
s(lkl)A@)e 8 kgl 1813 B D

where in the last line we used ¢ = |n/k|. Then, using (2.42) and (2.47) we get

V|2

[ e

S A
10,12 =0
dy

1
/ RNUﬂtEIkWﬂIkg)( <t2
N>8 k,¢

< Et—(1+s)t1+s |V|E

s A
|av|za—°sv'

v

2
S 8G[Q] + 6712 (t2+25Gl[6v_8H]+ f > (6.63)
-—S

t2

For the remaining term, if t > |5| then pi/“(;;) S Y23k 2 but Ag(n) < Ag(n)eten=¢P Hence

we can repeat exactly the same argument above. When |n| > ¢t we have pllc/ 4(77) < Inl'/2.
Therefore,

1
Z Z/ 2’0(1 - ﬂtelk,nmlkf}([)ﬂlnla S et 2

N>8 k,t

N A 1
= A E
10012 —= 100120

NE
3)

Arguing as done to prove (2.47), since H = v'd,0 and ¢ > 1, we deduce

s A
19,12 —=0,0|| <
(3,)

~

s A 1
|av|zﬁ|au|zv>t

v

0,15 0. HH
(6.

Combining the two inequalities above we have

s A
19,17 —
(3,)

5 6G;[Q] + 8727+ 5G;[(8,) " HI.

ME M

(6.64)

1
/ U-(l - ﬂtelk,nnlkvgxl)n izt S &t 2
N>8 k¢ /R

Thus, for R]C:)] ; We have bounds required in (6.17).

3SUS01T SUOWILIOD) BAIIERID 3|qedl|dde ays Aq pausenob ake sajonte YO ‘88N JoSajni 1oy ARld 1T auluQ 43|\ UO (SUOIIPUOD-pUR-SWLLIB)I0D AB | IM"Areiq 1 BU|UO//SANY) SUO I IPUOD pUe SWB | U} 89S *[7202/2T/Tz] Uo Ariqi]auluo A8 el eueIu0D Aq £2T2z edd/200T OT/I0p/Wod A3 1M ARelg Ul juo//sdny Wwouy papeojumoq ‘2T ‘€202 ‘ZTE0L60T



3748 | BEDROSSIAN ET AL.

« Bound on R On the support of the integrand |k — €, — £| < |¢, £|, hence we get

N,com*
53
3RS o S IAQIPNT o 5 55
N>8 IE

This concludes the proof of (6.17).

6.5 | Remainders

Considering (6.15), we note that on the support of the integrand, |¢, §| ~ |k — ¢, — &| and hence
by (4.9) we find

lk,nl* <clk—¢,n,§1° +c|t, §I°.

Hence, we can always pay regularity to move the multipliers. Arguing as in [8, Section 7], we
deduce that

R $ Ul gao-s(IAZI + 1AQID(1Zllgro-1 + IQllgio-1 + 18,@0llgrs )

which can be bounded as in (6.18) thanks to the bootstrap assumptions (H1)—-(H2) and (6.20).

6.6 | Remaining error terms

We estimate the remainder terms (6.6), (6.8) and (6.9), starting from the linear error term L% in
(6.6). Simply using the definition of the linear weight m in (2.29), we have

1, ap || 1 Cplkl|? <1 Cplk|? .1 o,m
—la, - < < oam

>

where Cg was introduced in (2.29). This readily implies that

V2 azly /4 a) <

. 1
Next, consider the divergence error term £4V in (6.8). As |3, p|/|k|p2 < 2, we apply (H4) to get

[2Q< 1

1
< i (1 - —>(Gm[Z] +G[QD.

T2 26

U)

EW < vl IAZNAQI S s < -
t2
1

It remains to estimate £ in (6.9). As |d,p|/|k|p2 < 2, the two addends of (6.9) reduce to the
control of

gbet '—,3‘ |k|2p 4AF((A1 AL)‘I‘),AQ>‘.
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We now write F((A; — Ap)¥) explicitly as in (5.7) and separate the part involving g and
the one involving v as €31 = £4:8 4 £8:V" | Similarly to (6.44), we consider the following
decomposition

Ayj Ar.j

g2l = gld p gl gl et je{g v} (6.65)

For the first two terms in the right-hand side of (6.65), the most dangerous case is for j = g since
more derivatives hit ¥. However, notice that from (4.17) and (4.21) we have

SN
(12 +1 — ktl):

lkl2(p +A)(m) <

Hence, we are in a situation analogous to RNOlI,, see (6.57). Proceeding as done for R N q,, with the
use of (6.48) replaced by (2.41), we get
Z SA”+£A”Z<5(G [Q] + G4[Q] + G¢ )+t’§s3
w 1 elliptic :
We now consider the remaining high-low term and we only deal with é‘A’ v , for which
A , //’
LIPS / |AQI (k|2 (AP 4)1{(77)1] rei<161¢1 107 | (B, — 18)¥) k(0 — ) cnr/s-

M>8
Using (5.12)-(5.13), (4.21) and absorbing all factors of |k| in the exponential, we have
1

K2 (p ™5 AY() § ———— — V@)t k5
L+ 15—t

We need to recover another half derivative to use the bounds available on (3,)~'v”. Observe that,
combining the bound above with (5.15)—(5.16) we have

1

33 1 1 .
[kl2(p +A)() < m <t21]|§|5|kt| +t2 "€ ﬂ|§|>|kt|> <§>§) cAlkn—§1°

To make use of the factor (1 + |t — & /k|)~!, we can consider the same splitting as in (6.58). Hence,
using (5.18), in a similar way as in (5.19), we finally obtain

et s Y 6GiQl+671(GU@) T+ (0 61818, "),
Jjeit,w}

hence concluding the proof of (6.19).

7 | BOUNDS ON THE ENERGY FUNCTIONALE,

In this section, we aim at proving bounds on E,;, defined in (2.39).
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7.1 | The energy inequality
The time-derivative of E,, is computed in the following lemma.

Lemma 7.1. Foreveryt > 0 we have the energy inequality

d SN
E + Z (G;[Q] + B*G [VLG)])S%< £ >+NLQ’®+£‘1“’+£A!. (7.1)

jEAw,m} |k|p§
where the G,|-] are defined in (2.36) and the error terms are given by
1 1
NL2® = [([A,U] - VQ, AQ)| +62|<P([Ap5,U] : V@),Ap5@>|,
Fiv = %|(v LU, |AQP + B2|AV,02)),

o ,82|<Akp5F((At ALW), Ap>® >|~

Remark 7.2. The term in (7.1) involving Q can be bounded as

1 a[p 2 4B 32‘8 2
5 <|k|p%AQ,AQ> < IIAQI < 523 BL0) < 557 (72)

thanks to the bootstrap hypothesis (H1) and the coercivity properties of E;, analogous to (2.16).
In particular, the bound of order €2t in (B2) cannot be improved in this setting. In addition, the
weight m has been introduced to control the term L in (6.5), while here we exploit a direct
control in Q. Hence the terms G,,[-] are superfluous. However, we decided not to introduce a
further modification of the weight A, since this would not imply any significant simplifications.

Proof of Lemma 7.1. The computations for the time-derivative of the functional in (2.39) exploit
some cancelations which are similar to those for the energy E;(t) in Section 6.1. The energy
inequality (7.1) is then obtained using (2.32) and (2.40). O
Now we control NL%©
nonlinearities as

in a similar way as Section 6. Thus, we define the transport

~ 1 1. ~ ~

Ty = {F([A, Uoyssl - VQy ), AQ) | + B2(F([Ap2, Uy sl - VON), Ap20©)| = Tht + T.
The reaction nonlinearities are given by

~ 1 LN ~ ~

Ry = [{F([A, Un]- VQoyys), AQ) | + B2|[(F([Ap>, Un] - VOy/s), Ap2©) | = Ry + RY.

The remainder is

R=Y Y KFIAUy]-VOy),AQ)| + B2|(F([Apz,Uy] - VON1), Ap20)|.
NeD N/8<N’<N

The main result of this section is the following proposition.
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Proposition 7.3. Lett > 1 and 3 > 1/2. Under the bootstrap hypotheses,

2
~ €
Y Tys ) 8(Gilal+Gv,.el) + =, (7.3)
N>8 jeidw} {2
Ry < 3G.[Z] + 6G,[Q] + 6G[V, 0] + 6t(G* 21 2GY[18,15(8,) v
N ~ &t j[ ]+ j[ ]+ J[ L ]+ t elliptic+g <t> /1“ Ul < U> v ]
N>8 jefAw}
+ 8610 + 8Ga[(80) “H] + €2G[h] + 8¢, (7.4)
~ 52
R$6—, (7.5)
gdiv < i
~ t 9
EN <8 Y (GiVLe]+ GJ[1— @)1+ GY[(3,) """ + <t>'2SG§’[I6UIs(au>‘1v”])
jedw}
)
+ 6Gelliptic +0¢’. (7.6)

Having at hand Proposition 7.3, we first show that (B2) holds true.
Proof of (B2). Observe that from (H1)-(H2), (2.45) and (5.6) one has

t 3 3
/ X 02621+ 87(G e + X0 GLIIGLI (@) V] )dT S 4% + 66 + 836 S 8.
b jetaw}

Also all the remaining terms on the right-hand side of (7.3)~(7.6) are at most of size ¢t when
integrated on [1, t]. Hence, combining (7.1) with (7.2), Proposition 7.3 and the local well-posedness
Proposition 2.7, choosing & sufficiently small the bound (B2) is proved. O

In the following subsections we show the proof of (7.3)-(7.4). For some term we can directly
deduce the bounds from the one given in Section 6. In these cases, we will only highlight the

arguments that need to be used. Moreover, (7.5)-(7.6) are analogous to those in Section 6.6 and
therefore omitted.

7.2 | Transport nonlinearities

To handle these terms, we have to exploit the commutation properties of the weights involved.
Most of the bounds that we need are already done in Sections 6.3.1-6.3.2.

721 | BoundonTY
In view of (6.21), we rewrite this term as
Ty < [{Fm™([mA, Uy s]- V), AQ)| + [{F(Im™, Ucy sl - V(mAQ)y ), AQ)]|

_ FQA | AQm
=Ty + Ty
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The term Tﬁ’m can be controlled exactly as done in Section 6.3.1 to get

D TN 5 8(GulQ] + GAlQ)).
N>8

Regarding the bound on TS’A, we do not have the factor (px(n)/p.(€))*/* as for TS’A in Sec-
1

tion 6.3.1, meaning that we never lose a power 2. One can split this term as done in (6.30) and
proceed in the same way. The only difference is for the term 7, l\fﬂ p, defined as in (6.31)-(6.32),
where we need to use (4.16) instead of (4.15). In particular, the following inequality holds

2

e )
Y Ty $6G,[Q] +¢G;[Q] + =
N>8 t2

Thus, the two bounds above are consistent with (7.3).

7.2.2 | BoundonTY
Similarly to what was done in Section 6.3.2, we rewrite T‘S as

1
2

- 1 ~ 1 LN
TIC:), S(Fm™p2[mA, U_y/s]- VON), Ap20)| + [(F(m™'[p2, Uy 5] - V(MA®)N), Ap20©))|

1 1
+ [{F(Im™, Uy 3] - V(mAp2®)y), Ap20)|

— TG’A

70,p 70,m
N T+ T

Also in this case the bounds on Ty and T can be done in the same way as Ty and Ty and
one obtain

2

~ A~ &
Y T+ Ty S 8G,[V,0] +¢G;[V,0] + .
N>8 t2

It thus remain to control Tg’p .
* Bound on Tg’p . For the control of Tfj’p we need to present some technical differences in more

detail. In analogy to what was done for the term TP we have T"[(:)]’p ) k.t /RZ 7'[5 " ?I\f 2,
where we define

Ipe(®)? — pe()7 ]

~ N 1 1.
V= 16, N0l = ©)an sl AP> 8l (§)n|AP2 Ol (),
pe(§)2
1 1
=p2 _ P2 =], o N N
rpe = A= 2181, £ 514D 7Bl E)n AT,

pe(6)2
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To control 7. 1\1; ’1, notice that

G+ (ke =ED+CHE=ON g L @
~ k .

PO + p (6 I+ 1= £)

[P(§)2 = pe(§)z] = tlk — €|
Therefore, the analogous of (6.23) become

IPk(f) Pf(f) llf £ S s (n— £k — £>z:l§;: 1 .
Pf(‘f)z (1+| —t])

As in Section 6.3.1, also in this case the term 7, ]\1; 2 s simpler and therefore omitted. To control

T 1\}; ’1, for intermediate and long times we can argue as done for Tf,’l. Instead, for the short times,
if t € I we use |£/k| S 1172k, n|$/?|¢,|/%. When t € I . Weargue as in (6.27). Therefore,
appealing to (H2), we conclude that

/ TP < 8(G,[V,0] + GV, 0)).
N>8k6’ R2

This is consistent with (7.3).

7.3 | Reaction nonlinearities

We now turn our attention to the control of Ry in (7.4).

7.31 | Bound on RY

We rewrite this term as follows

|R’,‘3|s]<A(,f )Py V) AZ>' ‘<A(§)§r<vN(aUQ)<N/8),AZ>]
+ ‘<A(%)‘l‘r((1 — UV W)y - VQ<N/8),AZ>' + ‘(F(UN : VAQ<N/8),AQ>'

+ [{AgF (Uy - VQy 5), (AQ)y )

=Ry + Ry + Ry 5+ Ry

N,com

pQ
+ Ry o

Notice that, besides the term R} | and the factor k in the first three terms, Ry, has the same struc-

ture of Rﬁ’l studied in Section 6.4.2. Hence, we will be able to directly recover most of the bounds
from the ones in Section 6.4.2 with the change
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* Bound on R}% - Inview of (7.7), proceeding as done to obtain (6.49), (6.50), (6.51), (6.53), (6.54),
(6.55) and (6.56), one has

3
X% | B S et Gulz] + 6,121+ Gy ).
N>8 k¢

* Bound on the remaining terms. Proceeding as done for the term R](:)] 5 With the change (7.7),
thanks to (6.60), (6.61) and (6.62) we have

~ ~ 1
D Ry 558 Y RG, + 2 NAZIATRNP4]| o5 191 1o
N>8 N>8

1_
+t27°

visaz]|| 18,17 a%

‘ ”m#”gﬂ,a—s ”Q”gﬂ,o—s

S stgé(Gw[Z] +GilZ]1+GEy, ) + € +€X(GAZ] + GLLRD).

elliptic
For R} s> similarly to (6.63) and (6.64) we obtain
~ 1 s A s A s
YD IR O ENEF |av|z—°sH’ |19t aziang.-
N>8 ke JR2 (0y) (0y)

~(5+2) 145
S ot 2’t

5 s A
|V|2AZH 16,12 =2 H| + =
(9y) t

< 8(GL1Z] + Gy(6,) " H]) + 65
t2

Moreover,

2
~ 2 €
2 RN com S NAQIANU 06 S 6.
N>8

For the last term ﬁﬁ o being A, always non-resonant, it is not difficult to show that we have a

bound consistent with (7.4). The proof of the bounds for Eﬁ 1S over.

7.3.2 | BoundonRY

For this term we cannot directly reduce ourselves to one which we have already controlled.
Therefore we need to present some more details. We rewrite this term as

50 _ pO 590 50 50 560
Ry = RN,\P + RN}I‘ + RN,6 + RN,U' + RN,com’
=0

@>,
R

! 1
N(,J‘l‘ = ‘<Ap£r(aZ(lP¢)Nav(®0)<N/8)aAp5@> s

where we define

N =

1
Ry = ‘<APEP(VL(T¢)N - V(®x)<nys), AP
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1
Rf?w = <Ap2P((1—U’)VJ-(lP¢)N VO y/s), Ap2 6 > ,

1 1
RI(:)I,U = <Ap2F(vNav®)<N/8):Ap2®> ,

1 1
RJ(;)Icom = <P<UN : V(Ap2®)<N/8>,Ap2®>’.

We will proceed in a similar way to what was done for the term RI(;),  but now we have the factor
1 1
p2 instead of p4. The bounds will be presented with fewer details with respect to Section 6.4.2.

* Bound on E]?, ¢+ With the notation introduced in (6.36), we split the term as

/ R@(RR) O(NRR)+R®(RNR)+R®(NRNR)+R ](:)]ﬁJ

We now control each term separately.

¢ Bound on R® RNR) Brom (4.14) and the fact that |t — n/k| S |/k?|, we get

1

Inl>

1
(Ap2)(mint — kﬁlﬂzelk,ﬂm;g)(' S8l
k(1 + |t — -I)2

I+ €= DA 8 g

S tlh 12 16,8172 b (XA (D8 T g

This way, appealing to (4.22), the elliptic estimate (5.3) and (2.42), we obtain

[V|AV,;©

22 [ R s e

N>8 k,t

0lgee

i
(%) Tacooe.

elllpttc)

< 8(G,[V.0]+G

in agreement with (7.4).
o Boundon R® (NRB) This is the most dangerous term. Since 4|¢| < |€|, appealing to (4.18), (4.19)

(with the role of (k,n) and (¢, ) switched) and the fact that p;1/4(77) hS (n/k)_l/z, we get

1

1 —- 3
(Ap2)Mnt — k€| Viere ar, x" = p, * AP DMInt — k| Ver: a1, X'
2l ’ 1 ?

1
e e=2p3 el . o
S lk.ylp, * () T g S (Ap3)(§eli=t
HE 13+ 1= =)
—atwf(g)

St —221¢]> (Am)f(»z)eﬂ“c en=E1°,

we(§)
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Since A, (1) < Ax(n), see (6.42), combining the inequality above with (4.11), (2.42) and (5.4) we

infer
oW ~ ow ~ 3 1
\/tTAVLG) \/tTA(—AL)4|6Z|2‘P

< 8G,[V, 0] + 8tGE

elliptic’

3
Y [ RS s e Y

N>8kt’

that is consistent with (7.4).
o Bound on Re NRNR) yWe have to treat separately the case |&| < |£¢t| and |£| > |£t|. In the
former, from (4 17), (4.19) and (4.23) we have

1
(Ap2)(m)nt — k§|“ze1,g’nn1;,§“|§|s|fz|)(1
N 1 S _l
S Ve grggisielkn1216,61 2 p, 2(E)(pA)p(£)ecHk=t =l

s § 1-s g -1 s
5“|§|s|ft|f1_zslkﬂ7|5<5> <E> |£, €12 (pA)e(§)ecH—r 1=,

Since |£| < |£t], using (5.3) and (2.42) we deduce

b

-1
9 \ VI
(%) e

[V|ZAV; 0
(ty’

©.(NR.NR _
/ IRy ( )|ﬂ|§|5|m| St

elllptlc)

1921l g2—s
N>8 k¢

< 8(G4[V. 0] + G

If |£] > |€t] we know |¢, £|1/2 < t1/275|¢, &5, Hence, since (£/¢)1/?p _1/4(5) Slfortely

g’
from (4.17) and (4.19) we have
(Apz)k(ﬂ)lnf k§|“{re1“ nlcg}n{|§|>|€t|})(
i
[2 —7 13 PP
“zeﬂ I, §IS p, *(OIE12(p3 A)p(§)eHr=t =]
Ifl2
1 s 513 s
S 127 k|2 1€, €12 1€]2(p3 A)p(§)ecHk=tn=El, (7.8)
From (7.8), (5.4) and (2.42) we get
1 s |V|
ZZ RS O gz S 12 |V|2AVL@‘ 5w 04[] g2.0-s
N>8 k,t
s 2
EN 2 32 ENU
Set 2|||V|2AV.O| +et2 0 A(—=Ap)4+|0,|2¥
t

< EGA[VL ] + 5tGlelp[lc
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Bound on R (R R) Since k # ¢, we know that we can only have cases (b) or (c¢) in Lemma 4.5.
The case (¢) is straightforward. In case (b), we know that we can apply (4.17), so that from (4.19)
we get

.
(AP Ine — el Ty o, S H— L

(Ap)(§)echli=tsl,
14 1i-y

Combining the inequality above with (6.52), (2.42) and (5.4) we conclude that

ow ~ d ow ~
>3 [ REs e ave)l( ) PR acaw o
N>8 k.t z
S 6(Gw[ G)] + Gflllptlc)
Bound on ﬁgﬁ, Applying (4.17) and (4.19) we have
1 | -2 1 ;
(Ap2)mInt =kl x° S é: p/‘(f)lfl (p4A)f(§)ed'k st
€12

Then, since t < 2max{+/|n|, V|€|},if t € I §and |£] < |€|, we have

2.8, - [
P, *(Olgers nqieisien S 121

SIS O e k)
13 L+ 812 /1¢]

S N _l
If |€] < |¢] we simply use that 1 < t725|¢, |2 |k,7|2. When t € I, ¢ then |6’,§||€|‘1/2p€ MBS
|£/€] S t1725|€|5. Therefore, using (5.4) and (2.42) we obtain

s |V|

Z Z/ ROS, <1 |V|2AVL®‘ ——A(- AL) 19, IZ‘I’ 1021l g1o-s
N>8 k,t < >
S 8(GaVLOl + Gy yi)-

Bound on R - As observed in (6.43), using (4.19) we can always recover factor of times from
negative powers of p. In particular, we have

1

—————(pA) (et T
10+ 15 = 1)

(Ap2)(MInt — kEIx* S 1€, &)

<tk )2 1€, E2 (DA)(E)ecHk—En=5I,
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3758 | BEDROSSIAN ET AL.

Since in this case we know |&| < |£t], appealing to (2.42) and (5.3) we get

v
|5 Grcaoam

)

Y[R e 5 2ivravie
N>8 k,t

< 8(G,[V,0] + G°

elliptic

* Boundon R} ° . Here we can argue as for the term R ° . In particular, (6.57) is replaced by

ApD)mIk| < (Ap)(E)ectli—t =P

1

£
1+ |E —t|
Notice that in (6.59) we recover the factor (¢/kt)~!, which is important to apply (5.5).
Therefore,

Z EI?IOIP < 8(Gy VOl +Gy[V 0] +Go. . )+ 62

N>8

elliptic

* Bound on ﬁg 5- Reasoning as in Section 6.4, rewrite this term as

+R°

50 50 50,z
RN, =R +R + R® S.HIH"

5LH 6,HL 5HL

With the same arguments done for the term R® ., one can prove

N5’

Z R?LH 5,HL~52

N,M>8 N>8

We are then left with the term

D) / |42 BlIAP* [ px (O e <1616 1AE

X ﬁFm(s — &) en /sl VO (n — &)y jsldndEdE’

where pp is the cut-off of the paraproduct decomposition. Here, we have to be careful since
p'/2 can be a full derivative in h. Indeed, in this term we have to crucially exploit the bounds
available on |3, |%h. In particular, from (4.7) and (4.19) we have

1

(Ap2)(n) S p? (ENAC(E yeclt €&l elli—t n=t
< (¢ €<t + 1€ |§’|zt)<f><k - 5)Au(gl)ec|f,§/—§|5+c/1|k—€,;7—§|5‘

When |¢’| < t, appealing to (2.42), (6.48) and (2.43) we get

/ Ryt V< S HAVLONIARI W4 ] oo 1Ol gros S €%t S 8762
N>8 k.t
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If |€'| > t,since s > 1/2 then |€'| = |&'|V75|€'|S < |€7151€ /2 |k, n|*/?, so that

AlV|2V,0

/ cEomreey PN | PUCHEENGD) (E P T

N>8k€

52

—S —2s
t2—3s ¢ t

A”|au|5(|au|8h)u
< 82G,[V,,0] + 81 3GU16, 1A,

where in the last bound we used s < 2/3. This is not restrictive, as explained after (2.28).
* Bound on EI(;), ;- The treatment of this term is similar to R](;)] ;- We split this term as

Rus X / |AP= 81, (AP DIBIE)x 13,817 — )y /slndE

= Z /R2 RN,U(H Ielk,nnlk,f +1- ‘“tEIkJ]nIk’E)X ’

Here we do not always have ©. as in Section 6.4.2, but this is insignificant for the bound
we need.

Fort € Iy, NI ¢ and 2max{\/|n_|, \/m} <t <£2min{|n|, ||}, appealing to (4.17) and, since
Ay is always non-resonant, using the definition of w (4.5) and (4.13) we get

(Apz)k(n)ﬂfeknﬂlk&xl S Ikl 41t = kl)AEEg“lo(f)“telknnm){
SIKIA+1e =2y HE ; _ Ag(£)ecAln—E1
k11 + |t — ;I)E
< Il

1y @rettkn=6 <tk i 1813 288 etk (7.9)
Sk (n)*

Notice that for t € I}, N I} ; we have k # 0. Hence, given q as in (2.28), using (2.47) we get

RNUﬂtEIknnIkg}( St H'VIZAVL 16u |2 ”G)#”g/w 6
N>8 k,¢ 7 R? 9
s 2 1 sa, I°

< —2q 3 2+2s 5220
N5(t IV[2AV. 0| + t2+2(s_q)t |6U|Zavsv )

—s 82
S 8G[VO] + 6| 215G, [0, H]+ =] (7.10)

t2

where in the last line we used 2 + 2(s — q) > 2q. For the remaining term, we need to distinguish
whether k = 0 or not. If k = 0, observe that

(Ap>)o(m) < [E11k, 131815 208
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Thus, appealing to (2.46) and (2.41) we get

18,01l 2o

s A
|au|za—‘lavv'

v

Y [ RS- Tien o e VI V,0
N>8 k¢ 7 R2

2
+ t2+2S

2
(i )

< 8G,[V,.0] + 8t212G,[8,°d,v]. (7.11)

S A
|au|za—‘§auv'

v

When k # 0, if t > || then pi/z(n) < t(k) and Ag(n) < Ag(n)etk1—¢ Hence, we have the
same inequality as in (7.9) and we obtain the same bound in (7.10). When |5| > ¢t we have

pY/ 2(77) < Inland A () S Ag(n)etkn—¢I" ‘meaning that we can argue similarly to what is done
to obtaln (7.11).
* Bound on R](?, com+ ON the support of the integrand |k —¢,n —§| < |£,§]. From Cauchy-

Schwarz and Young’s convolution inequality we get

3
€
Z RNcom S ”AVLGH ”U”Ha 6 ~ -
N>8 t2

This concludes the proof of (7.4).

8 | BOUND ON THE ENERGY FUNCTION E,

In this section, we first prove Lemma 2.11 and next we provide the coordinate system controls (B3)
and (B4) which are stated in (part of) Proposition 2.8. The proof consists of four main steps.

8.1 | Proofof Lemma 2.11

First, notice that
1-@)? =0 -1 -2 —1) = h* -2h,
v =v'd,v =46, —1) + (' - 1), — 1)) =38,h + hd,h.

This way, (2.44) and (2.45) follow from the algebra property of A® and the norms in the G;.’ (see[8,
Lemma 3.8]). To prove (2.46)-(2.48), first observe that

1 . 1
9,0 = ?U’aUU=H+ (U_1>H' (8.1)
Then, from the bootstrap hypothesis and using that A < A when k = 0, we have

Combining (8.1) with the bound above and (H3), we obtain (2.46).

b 1
Wl < ) Avh]" S etz (8.2)
n=1
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To prove (2.47)-(2.48), we cannot directly rely on the low-frequency estimates of H, but we can
use the decay properties of U in a lower regularity class (the bootstrap hypothesis (H4)). To this
end, let us denote f<;(n) = f(M)1},<1 and f5; = f — f<;. Notice that Ay(¢,7)<; < 1 and, using
(H4), that

Ay s Ap .
|a |2U 10, |2 9uUs1 |av|2_savv .

H @, @) (6v)
This way (2.47) follows from the above estimate, (8.1) and (8.2). The proof of (2.48) is analogous:
just notice that there is no need of a low frequency analysis as d,w = 0 if || < 1/2. The lemma
is proved.

S ol + S5 2

8.2 | Control of h

To obtain (B3) we need the following two energy inequalities:

2dt||AUh|| + ) G;[h]s—(A“h,AUv'aUh)+%(Avh,AUQO), (8.3)
JEid,w}
and
1d =25 AV18..15h 2 =25 GYI18..1°h
S (EZNA8PRIT) + 072 Y GUlIa, Al
JEid,w}
< 7B AY18, °h, AV18, S (03, h) + %t-ZSAUwUPh,A%avlSQO, (8.4)

which are directly derived using (2.7), the definition of H, and G;[-] in (2.38). We only deal with
the right-hand side of (8.4), as (8.3) is very similar, and in fact slightly simpler. For the first term,
notice that

~(AP13, 'R, 410, (03,h)) = 3 (8,0, 1416, I'hIZ) = (A°18, %R, [A°16, %, 516, h).

For the first piece, we simply use Sobolev embeddings and the bootstrap assumptions (H3)-(H4)
to obtain

2

<a 6, 1A°18, 1*hI%) $ — 1A%18, kI’ < &
(t)’ ¥

The treatment of the second piece is similar to what was done in Section 6. Namely, we write

(A°16,1°h, [A18, %, 010, k) = D Th + D' RE +R"

M>8 M>8

where

T]}\l/[ = <AU|av|sh, [Avlauls’ U<M/8]ath>’ R]}\l/[ = <Av|aulsh’ [Avlavlsv UM]aUh<M/8>’

R = Z Z Av|avlsh,[AU|av|S, UM]auhM"
MED M /8<M'<M
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The transport nonlinearity T]}\l,[ can be treated as in Section 6.3.1, with the simplification that the
z-frequency is always the same. The reaction and remainder terms are analogous to those in [8,
Section 8], since the weight A" has the same properties as AR in [8]. The different assumptions
(H3)-(H4) give

|<Av|av|8h,Av|aU|S(v'avh>>|sa< Y, GUlGu IR+ (0" 6, [(a,) " H] + e ) 85
(

3/2
jedw} £y
We now turn to the second term in (8.4). For this, we write
[(A°18,1°h, A°13, ¥ Q)| < L + L7,

with

1=y /[R A RDIA DBl Ve, 2

k#0

= [ AR IR (1~ Ve, 1)
k#0

For L?, we use the definition of A" in (2.33) and w" in (4.6) to get

v s Inl dwe) , A(n).
wie(n)
Then
0 o) C
Ll < 0" 22 a0, a1/ A0 < 265118 RT + SHn TP Gylal,

where C; > 1 is independent of €, 8. Turning to L, as A < A, in the support of the integral, we
have
A%16,["2h

t C
5| | < 658 h1 + S0 6,0

H‘vaﬁﬂ

As a consequence, we have from (8.4) that

1 1 C
—(OTB(AYI8, 1R, AV18, Q)| < (73 YL GUlIS,Ihl+ == D) GjlQl.  (8.6)
t 4 _ J 4

jelw} JjEw}

Collecting (8.5), (8.6) and the analogous bounds for (8.3), we end the proof of the estimates on h
in (B3).
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8.3 | Control of H

To complete the proof of (B3), we start from the energy inequality

1d )
2 dr <(t>2+23 @, >sH” ) + <l’>2+2S Z Gj [<au> SH] <7 4 F
Jje{dw}
where G;[-] is defined in (2.36) and the transport and forcing terms are given respectively by
A A
T 2+42s |
<t> <<a >s <a >SUa H> (8 7)
(2> [ A N .
F=-— H, viw, .vQo ' 0s
t (0p)* (9,)8 (U # #)0 (8.8)

In this case T’ in (8.7) is similar to the transport terms of Section 6; F in (8.8) describes the non-
linear feedback of the non-zero frequencies onto the zero one. Bounds on T’ are obtained as for
(8.5), giving

T < 5( 1y Z G;[(8,)" H] z/2> (8.9)
(t)

Je{d,w}

We focus on the forcing term, which contains v’ = 1 + (v” — 1), so that we can write F = F,, + F9,
where

<t>2+2s A A
Fo===5 <<av>sH’ Gy (Ve m#>0>’
<t>2+23 A A ,
Fo=— t <<6U>SH’ (0v)* (@ =)V, VQ¢)0>'

As argued in [8, Section 8], it is enough to consider F, treating in a separate way low-high, high-
low and remainder interactions, namely F* = F? + F};, + F %, with

<t>2+2s < A A >
FO = _ H, vig,). P |
o ! A;g,;:‘) Ay b Gy V P<mys - (VO

<t>2+2s
t

0 —_ —
FHL_

A
M, = (V") - (VQ)< >
1\;8%<<av>s (3,)8 kM - k)<M/8

0 <t>2+2s A .
Fp=-— Z Z Z<_H (V2¥mr - (VQ_ k)M>

MED M /8<M'<M k+#0 (3,057 (8,) )S

There are various similarities with [8, Section 8] in the treatment of all the non-resonant con-
tributions, as the weight A in our case is comparable to that in [8]. In particular, as in [8],
appealing to (4.22) and the usual arguments for short and long times, taking the case of F?
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one has

ONR
\Fyr | =

<t>2+25
D Z<<1 Vien XD 73 <a G >S<Viwk>M (vo_ k)<M/8>

M>8 k#0

<86, [(8,) " H] + 812G, [(8,) " H] + 8G?

elliptic

<86, [(8,) " H] + 867

elliptic’

(8.10)

provided s < 2/3. For t € I;. ¢, our weight and the one in [8] are different, so that a careful
treatment is needed in the following.

A ~ A ~ —
FRrl S 3 ) / ey 222 7 <j7(>’2)|k,§||lvk(§)M||m_k(n—§><M/8|.
R2

M>8 k0 n)

Ast € I ¢, we now exchange Ay(n) with A, (§), by means of (4.18); using that || ~ |§| ~ |kt|, we
get

AO(’?)lk §| < (t)_ satwk(g) CM’? —£|s

oy N P (E)k]> A (©).

This implies that (see (4.12)) we have
ow A
\/ 28 20 )| +
W (8y)

SN Gi[(8,) T H] +8(t)GE
jERw}

10,15 Aq
RS

3
0,R -+s
|Fp | S 6(t)2

ow ~ 3 1
H‘ H\/%’A(—Amazw

elliptic®

(8.11)

We now turn our attention to FgH where the regularity gap between H and Q is crucial to control
V_,Qy, at high frequencies. Since Ay(n) < e“4"~¢F A, () and 1 — s < s notice that

Ao(m)
)

e, €15 1 ESAEXINH T Sl [k, 1> A(§)eHkn =5

This way, we have

1+2s 2s—1

IFD 1 S (t)

(6u) (© v>

A s s
s|aU|2HHH|V| zAQ"||W||a,U_4 < 8(t)

SER |2HH”|V|2AQH

3 5(<t>2+2SGA[<aU>‘SH] +(* |V|§AQ||2>

$8(0 610, HI+ Gilal), (812)
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where the last inequality holds for s < 2/3. It remains to treat F %. Arguing as in [8], we get

52
(t)l_s‘

From (8.9), (8.10), (8.11), (8.12), (8.13), and integrating on (1, t) we get precisely (B3).

A

N
v

1+2s

0
IFO < (t) H

(8.13)

”Q”gl,u—l “lp# ||gl’g—4 S 5

8.4 | Control of v

To prove (B4), we begin from the identity

1d s P
2dr [0,]20

(O 101000 ) = 200 E BN 006 + <r>“<i(t)'

+ (U, 8,0) gino—s )

Ql(t),a—ﬁ

Using (2.9), we notice that

L 200 Loea L/ (vl x
(9,80) - = =10l Gun0ms = (1, 08,0) a<>-m——<v’v (v -vuz) '
tU)c.0-6 { GMD,0-6 vE/GAl t * #/o GMDa—6

A simple computation leads to

| o

1 .
) (<t>4l|vllél(l),a—6) <V + Vs, (8.14)

o

t

with
o
V= (N0, 00,0) giness Vo= ——<v, v’(Vi‘Igé : VUX> > .
t #/0
g&(t),cr—ﬁ
To control Vy, using (8.1), the algebra property and (8.2), it easy to see that

7
Vi S ()2 100 -6 (8.15)
Turning to V,, we first notice that by (2.41)-(2.43) we have that

N

7 3
: =82 —=+
V, S e (O6llguoe-s S 02T 10l ge-s + 30727 (8.16)

Putting together (8.15) and (8.16) back into (8.14) and integrating on (1, t) gives precisely (B4).

ACKNOWLEDGEMENTS

J.B. was supported by National Science Foundation CAREER grant DMS-1552826. M.C.Z. and

M.D. acknowledge funding from the Royal Society through a University Research Fellowship

(URF\R1\191492). R.B., M.C.Z. and M.D. are partially supported by the GNAMPA (INdAM).
Open access funding provided by Ecole Polytechnique Federale de Lausanne.

REFERENCES

1. D. Adhikari, C. Cao, H. Shang, J. Wu, X. Xu, and Z. Ye, Global regularity results for the 2D Boussinesq equations
with partial dissipation, J. Differ. Equ. 260 (2016), no. 2, 1893-1917. MR3419749

85UL0 ! SUOWWIOD BAITeRID) 8ol |dde sy Aq peusenof ae ssjonte YO 8N JO Se|ni Joj Akeiqi aulluQ A8|IAA UO (SUONIPUOD-pUR-SWLBIA0Y A8 |IM Areig 1 jpul |UO//:SdNY) SUONIPUOD PpUe SWB 1 8y 8eS *[7202/2T/TZ] Uo Ariqiaulluo 8|1 elfeleuelyood Aq €212z edo/Z00T 0T/10p/wod A8 1m Aeiq puljuo//sdny wo.j pepeojumod ‘ZT ‘€202 ‘ZTE0L60T



3766 | BEDROSSIAN ET AL.

2.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math. 145
(2001), no. 3, 597-618. MR1856402

. P. Antonelli, M. Dolce, and P. Marcati, Linear stability analysis of the homogeneous Couette flow in a 2D

isentropic compressible fluid, Ann. PDE 7 (2021), no. 2, 53. MR4329964

. J. Bedrossian, Nonlinear echoes and Landau damping with insufficient regularity, Tunis. J. Math. 3 (2021), no.

1, 121-205. MR4149085

. J. Bedrossian, P. Germain, and N. Masmoudi, Dynamics near the subcritical transition of the 3D Couette flow II:

Above threshold case, Mem. Amer. Math. Soc. 279 (2015), 1-147.

. J. Bedrossian, P. Germain, and N. Masmoudi, On the stability threshold for the 3D Couette flow in Sobolev

regularity, Ann. of Math. 185 (2017), no. 2, 541-608. MR3612004

. J. Bedrossian, P. Germain, and N. Masmoudi, Dynamics near the subcritical transition of the 3D Couette flow I:

Below threshold case, Mem. Amer. Math. Soc. 266 (2020), no. 1294, v+158. MR4126259

. J. Bedrossian and N. Masmoudi, Inviscid damping and the asymptotic stability of planar shear flows in the 2D

Euler equations, Publ. Math. Inst. Hautes Etudes Sci. 122 (2015), 195-300.

. J. Bedrossian, N. Masmoudi, and C. Mouhot, Landau damping: paraproducts and Gevrey regularity, Ann. PDE

2(2016), no. 1, 71. MR3489904

J. Bedrossian, V. Vicol, and F. Wang, The Sobolev stability threshold for 2D shear flows near Couette, J. Nonlinear
Sci. 28 (2018), no. 6, 2051-2075. MR3867637

R. Bianchini, M. Coti Zelati, and M. Dolce, Linear inviscid damping for shear flows near Couette in the 2D stably
stratified regime, Indiana Univ. Math. J. 71 (2022), no. 4, 1467-1504. MR4481091

A. Bracco, J. McWilliams, G. Murante, A. Provenzale, and J. Weiss, Revisiting freely decaying two-dimensional
turbulence at millennial resolution, Phys. Fluids 12 (2000), no. 11, 2931-2941.

F. K. Browand and C. D. Winant, Laboratory observations of shear-layer instability in a stratified fluid,
Boundary-Layer Meteorol. 5 (1973), no. 1, 67-77.

K. M. Case, Stability of an idealized atmosphere. I. Discussion of results, Phys. Fluids 3 (1960), no. 2, 149-154.
D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math. 203 (2006),
no. 2, 497-513.

D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc.
Edinburgh Sect. A 127 (1997), no. 5, 935-946.

F. Charve, Global well-posedness and asymptotics for a geophysical fluid system, Commun. Partial. Differ. Equ.
29 (2004), no. 11-12, 1919-1940.

B. Cushman-Roisin and J.-M. Beckers, Introduction to geophysical fluid dynamics [International Geophysics
Series], 2nd, vol. 101, Elsevier/Academic Press, Amsterdam, 2011. Physical and numerical aspects, With a
foreword by John Marshall. MR3292658

R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type
data, Comm. Math. Phys. 290 (2009), no. 1, 1-14.

R. Danchin and M. Paicu, Global existence results for the anisotropic Boussinesq system in dimension two, Math.
Models Methods Appl. Sci. 21 (2011), no. 3, 421-457.

T. Dauxois, T. Peacock, P. Bauer, C. P. Caulfield, C. Cenedese, C. Gorle, G. Haller, G. N. Ivey, P. F. Linden,
E. Meiburg, N. Pinardi, N. M. Vriend, and A. Woods, Confronting grand challenges in environmental fluid
dynamics, Phys. Rev. Fluids 6 (2021), 1-40.

Y. Deng and N. Masmoudi, Long time instability of the Couette flow in low Gevrey spaces, arXiv e-prints (Mar.
2018), available at 1803.01246.

Y. Deng and C. Zillinger, Echo chains as a linear mechanism: norm inflation, modified exponents and
asymptotics, Arch. Ration. Mech. Anal. 242 (2021), no. 1, 643-700. MR4302767

B. Desjardins, D. Lannes, and J.-C. Saut, Normal mode decomposition and dispersive and nonlinear mixing in
stratified fluids, Water Waves 3 (2020), 1-40.

H. Dietert, B. Fernandez, and D. Géerard-Varet, Landau damping to partially locked states in the Kuramoto
model, Comm. Pure Appl. Math. 71 (2018), no. 5, 953-993. MR3794519

L. A. Dikil, The stability of plane-parallel flows of an ideal fluid, Soviet Physics Dokl. 5 (1961), 1179-1182.
MRO0147072

C. R Doering, J. Wu, K. Zhao, and X. Zheng, Long time behavior of the two-dimensional boussinesq equations
without buoyancy diffusion, Phys. D: Nonlinear Phenom 376 (2018), 144-159.

85UL0 ! SUOWWIOD BAITeRID) 8ol |dde sy Aq peusenof ae ssjonte YO 8N JO Se|ni Joj Akeiqi aulluQ A8|IAA UO (SUONIPUOD-pUR-SWLBIA0Y A8 |IM Areig 1 jpul |UO//:SdNY) SUONIPUOD PpUe SWB 1 8y 8eS *[7202/2T/TZ] Uo Ariqiaulluo 8|1 elfeleuelyood Aq €212z edo/Z00T 0T/10p/wod A8 1m Aeiq puljuo//sdny wo.j pepeojumod ‘ZT ‘€202 ‘ZTE0L60T



INVISCID DAMPING AND INSTABILITY IN BOUSSINESQ 3767

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.
55.

56.

B. Dong, J. Wu, X. Xu, and N. Zhu, Stability and exponential decay for the 2D anisotropic Boussinesq equations
with horizontal dissipation, Calc. Var. Partial Differ. Equ. 60 (2021), no. 3, 21. MR4265795

T. M. Elgindi and K. Widmayer, Sharp decay estimates for an anisotropic linear semigroup and applications to
the surface quasi-geostrophic and inviscid Boussinesq systems, SIAM J. Math. Anal. 47 (2015), no. 6, 4672-4684.
MR3431131

E. Faou and F. Rousset, Landau damping in Sobolev spaces for the Vlasov-HMF model, Arch. Ration. Mech.
Anal. 219 (2016), no. 2, 887-902. MR3437866

B. F Farrell and P. J Ioannou, Transient development of perturbations in stratified shear flow, J. Atmos. Sci. 50
(1993), no. 14, 2201-2214.

P. Germain, N. Masmoudi, and J. Shatah, Global solutions for the gravity water waves equation in dimension 3,
Ann. of Math. (2) 175 (2012), no. 2, 691-754. MR2993751

E. Grenier, T. T. Nguyen, and I. Rodnianski, Landau damping for analytic and Gevrey data, Math. Res. Lett.
28 (2021), no. 6, 1679-1702. MR4477671

R.J. Hartman, Wave propagation in a stratified shear flow, J. Fluid Mech. 71 (1975), 89-104.

L. N Howard, Note on a paper of John W. Miles, J. Fluid Mech. 10 (1961), no. 4, 509-512.

A.D. Ionescu and H. Jia, Inviscid damping near the Couette flow in a channel, Comm. Math. Phys. 374 (2020),
no. 3, 2015-2096. MR4076093

A. D. Ionescu and H. Jia, Nonlinear inviscid damping near monotonic shear flows, arXiv e-prints (Jan. 2020),
available at 2001.03087.

A.D.Ionescu and H. Jia, Axi-symmetrization near point vortex solutions for the 2D Euler equation, Comm. Pure
Appl. Math. 75 (2022), no. 4, 818-891. MR4400903

A. D. Ionescu and F. Pusateri, Global solutions for the gravity water waves system in 2D, Invent. Math. 199
(2015), no. 3, 653-804. MR3314514

C. G. Koop and F. K. Browand, Instability and turbulence in a stratified fluid with shear, J. Fluid Mech. 93
(1979), no. 1, 135-159.

H. Lindblad and I. Rodnianski, The global stability of Minkowski space-time in harmonic gauge, Ann. Math. (2)
171 (2010), no. 3, 1401-1477. MR2680391

K. Liss, On the Sobolev stability threshold of 3D Couette flow in a uniform magnetic field, Comm. Math. Phys.
377 (2020), no. 2, 859-908. MR4115008

R. R. Long, On the Boussinesq approximation and its role in the theory of internal waves, Tellus 17 (1965), 46-52.
MR205547

A. Majda, Introduction to PDEs and waves for the atmosphere and ocean [Courant Lecture Notes in
Mathematics], vol. 9, American Mathematical Society, Providence, 2003. MR1965452

A.J. Majda and A. L. Bertozzi, Vorticity and incompressible flow [Cambridge Texts in Applied Mathematics],
vol. 27, Cambridge University Press, Cambridge, 2002.

J. Malberbg, C. Wharton, C. Gould, and T. O’Neil, Plasma wave echo, Phys. Rev. Lett. 20 (1968), 95-97.

N. Masmoudi, B. Said-Houari, and W. Zhao, Stability of the Couette flow for a 2D Boussinesq system without
thermal diffusivity, Arch. Ration. Mech. Anal. 245 (2022), no. 2, 645-752. MR4451473

N. Masmoudi and W. Zhao, Nonlinear inviscid damping for a class of monotone shear flows in finite channel,
arXiv e-prints (Jan. 2020), available at 2001.08564.

J. W. Miles, On the stability of heterogeneous shear flows, J. Fluid Mech. 10 (1961), no. 4, 496-508.

C. Mouhot and C. Villani, On Landau damping, Acta Math. 207 (2011), no. 1, 29-201. MR2863910

S.-J. Oh and D. Tataru, Global well-posedness and scattering of the (4 + 1)-dimensional Maxwell-Klein-Gordon
equation, Invent. Math. 205 (2016), no. 3, 781-877. MR3539926

W. Orr, The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect
liquid, Proc. Royal Irish Acad. Sec. A: Math. Phys. Sci. 27 (1907), 9-68.

W. M’F. Orr, The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: A
Perfect Liquid, Proc. R. Ir. Acad., A: Math. Phys. Sci, 1907, pp. 9-68.

M. Rieutord, Fluid dynamics: An introduction, Graduate Texts in Physics, Springer, Cham, 2015.

G. B Smith and M. T Montgomery, Vortex axisymmetrization: Dependence on azimuthal wave-number or
asymmetric radial structure changes, Q. J. R. Meteorolog. Soc. 121 (1995), no. 527, 1615-1650.

A. Tabaei and T. R. Akylas, Nonlinear internal gravity wave beams, J. Fluid Mech. 482 (2003), 141-161.
MR2016759

85UL0 ! SUOWWIOD BAITeRID) 8ol |dde sy Aq peusenof ae ssjonte YO 8N JO Se|ni Joj Akeiqi aulluQ A8|IAA UO (SUONIPUOD-pUR-SWLBIA0Y A8 |IM Areig 1 jpul |UO//:SdNY) SUONIPUOD PpUe SWB 1 8y 8eS *[7202/2T/TZ] Uo Ariqiaulluo 8|1 elfeleuelyood Aq €212z edo/Z00T 0T/10p/wod A8 1m Aeiq puljuo//sdny wo.j pepeojumod ‘ZT ‘€202 ‘ZTE0L60T



3768

BEDROSSIAN ET AL.

57.

58.

59.

60.

61.

62.

63.

64.

L. Tao, J. Wu, K. Zhao, and X. Zheng, Stability near hydrostatic equilibrium to the 2D Boussinesq equations
without thermal diffusion, Arch. Ration. Mech. Anal. 237 (2020), no. 2, 585-630.

J. Vanneste, P. Morrison, and T. Warn, Strong echo effect and nonlinear transient growth in shear flows, Physics
of Fluids 10 (1998), no. 6, 1398-1404.

D. Wei, Z. Zhang, and W. Zhao, Linear inviscid damping for a class of monotone shear flow in Sobolev spaces,
Comm. Pure Appl. Math. 71 (2018), no. 4, 617-687.

D. Wei, Z. Zhang, and W. Zhao, Linear inviscid damping and vorticity depletion for shear flows, Ann. PDE 5
(2019), no. 1, 101.

J. Yang and Z. Lin, Linear inviscid damping for Couette flow in stratified fluid, J. Math. Fluid Mech. 20 (2018),
no. 2, 445-472.

J. Yu and C. Driscoll, Diocotron wave echoes in a pure electron plasma, IEEE Trans. Plasma Sci. 30 (2002), no.
1, 24-25.

C. Zillinger, Linear inviscid damping for monotone shear flows, Trans. Amer. Math. Soc. 369 (2017), no. 12,
8799-8855.

C.Zillinger, On enhanced dissipation for the Boussinesq equations, J. Differential Equations 282 (2021), 407-445.
MR4219325

3SUS01T SUOWILIOD) BAIIERID 3|qedl|dde ays Aq pausenob ake sajonte YO ‘88N JoSajni 1oy ARld 1T auluQ 43|\ UO (SUOIIPUOD-pUR-SWLLIB)I0D AB | IM"Areiq 1 BU|UO//SANY) SUO I IPUOD pUe SWB | U} 89S *[7202/2T/Tz] Uo Ariqi]auluo A8 el eueIu0D Aq £2T2z edd/200T OT/I0p/Wod A3 1M ARelg Ul juo//sdny Wwouy papeojumoq ‘2T ‘€202 ‘ZTE0L60T



	Nonlinear inviscid damping and shear-buoyancy instability in the two-dimensional Boussinesq equations
	Abstract
	1 | INTRODUCTION
	1.1 | The main result
	1.2 | Organization of the article
	1.3 | Notations and conventions

	2 | OUTLINE OF THE PROOF
	2.1 | Change of coordinates
	2.2 | The linearized dynamics: Symmetric variables
	2.3 | The nonlinear growth mechanism
	2.4 | Weights and energy functionals
	2.4.1 | The linear weight 
	2.4.2 | The nonlinear weight 
	2.4.3 | The coordinate system weight .
	2.4.4 | The linear-type energy functional 
	2.4.5 | The coordinate change energy functional 
	2.4.6 | The nonlinear-type energy functional 

	2.5 | The bootstrap proposition
	2.5.1 | Immediate consequences of the bootstrap hypotheses


	3 | PROOF OF THE MAIN THEOREM
	4 | THE MAIN WEIGHTS AND THEIR PROPERTIES
	4.1 | Construction of the weight
	4.2 | Properties of the weights
	4.2.1 | Properties of the main weight 
	4.2.2 | Properties of 
	4.2.3 | Properties of 


	5 | ELLIPTIC ESTIMATES
	6 | BOUND ON THE ENERGY FUNCTIONAL 
	6.1 | The energy inequality
	6.2 | Enumerating nonlinear terms
	6.3 | Transport nonlinearities
	6.3.1 | Bound on 
	6.3.2 | Bound on 
	6.3.3 | Bound on 

	6.4 | Reaction nonlinearities
	6.4.1 | Bound on 
	6.4.2 | Bound on 

	6.5 | Remainders
	6.6 | Remaining error terms

	7 | BOUNDS ON THE ENERGY FUNCTIONAL 
	7.1 | The energy inequality
	7.2 | Transport nonlinearities
	7.2.1 | Bound on 
	7.2.2 | Bound on 

	7.3 | Reaction nonlinearities
	7.3.1 | Bound on 
	7.3.2 | Bound on 


	8 | BOUND ON THE ENERGY FUNCTION 
	8.1 | Proof of Lemma 2.11
	8.2 | Control of 
	8.3 | Control of 
	8.4 | Control of 

	ACKNOWLEDGEMENTS
	REFERENCES


