The nonresonant streaming instability (Bell instability) plays a pivotal role in the acceleration and confinement of cosmic rays (CRs), yet the exact mechanism responsible for its saturation and the magnitude of the final amplified magnetic field have not been assessed from first principles. Using a survey of hybrid simulations (with kinetic ions and fluid electrons), we study the evolution of the Bell instability as a function of the parameters of the CR population. We find that at saturation, the magnetic pressure in the amplified field is comparable with the initial CR anisotropic pressure, rather than with the CR energy flux, as previously argued. These results provide a predictive prescription for the total magnetic field amplification expected in the many astrophysical environments where the Bell instability is important.

Modeling the Saturation of the Bell Instability Using Hybrid Simulations

Schroer, Benedikt
2024-01-01

Abstract

The nonresonant streaming instability (Bell instability) plays a pivotal role in the acceleration and confinement of cosmic rays (CRs), yet the exact mechanism responsible for its saturation and the magnitude of the final amplified magnetic field have not been assessed from first principles. Using a survey of hybrid simulations (with kinetic ions and fluid electrons), we study the evolution of the Bell instability as a function of the parameters of the CR population. We find that at saturation, the magnetic pressure in the amplified field is comparable with the initial CR anisotropic pressure, rather than with the CR energy flux, as previously argued. These results provide a predictive prescription for the total magnetic field amplification expected in the many astrophysical environments where the Bell instability is important.
2024
DIFFUSIVE SHOCK ACCELERATION, COSMIC-RAY ACCELERATION, MAGNETIC-FIELD, PARTICLE-ACCELERATION, STREAMING INSTABILITY, KINETIC SIMULATIONS, ION-ACCELERATION, FILAMENTATION INSTABILITY, NONLINEAR AMPLIFICATION, DRIVEN
File in questo prodotto:
File Dimensione Formato  
2024_ApJ_967_Zacharegkas.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/31705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact