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Abstract

The nonresonant streaming instability (Bell instability) plays a pivotal role in the acceleration and confinement of
cosmic rays (CRs), yet the exact mechanism responsible for its saturation and the magnitude of the final amplified
magnetic field have not been assessed from first principles. Using a survey of hybrid simulations (with kinetic ions
and fluid electrons), we study the evolution of the Bell instability as a function of the parameters of the CR
population. We find that at saturation, the magnetic pressure in the amplified field is comparable with the initial CR
anisotropic pressure, rather than with the CR energy flux, as previously argued. These results provide a predictive
prescription for the total magnetic field amplification expected in the many astrophysical environments where the
Bell instability is important.

Unified Astronomy Thesaurus concepts: Cosmic rays (329); Galactic cosmic rays (567); Particle astrophysics (96);
Cosmic ray sources (328); High-energy cosmic radiation (731); High energy astrophysics (739); Plasma
astrophysics (1261)

1. Introduction

Collisionless shock waves associated with supernova
remnants (SNRs) are believed to be the primary source of
Galactic cosmic rays (CRs; up to “knee” rigidities of ∼1015 V),
through the Diffusive Shock Acceleration (DSA) mechanism
(Bell 1978; Blandford & Ostriker 1978). However, for efficient
CR acceleration through DSA, CRs must be confined close to
the shock, which requires the presence of very strong, turbulent
magnetic fields (Lagage & Cesarsky 1983; Blasi et al. 2007).
Strong magnetic turbulence and CR acceleration are thus
closely related and the study of the growth and saturation of
such strong magnetic fields is crucial to explaining the origin of
high-energy CRs.

Winske & Leroy (1984) originally found that in systems
with a sufficiently strong CR current, right-handed modes with
wavelengths significantly smaller than the CR gyroradius could
be excited; these modes differ from the linearly polarized ones
driven by the resonant CR streaming instability, which is
caused by CRs in gyroresonance with Alfvénic modes (Kulsrud
& Pearce 1969; Zweibel 1979; Achterberg 1983). Historically,
only the resonant modes were believed to be important,
because of the gyroresonance condition for CR scattering; the
nonresonant branch was ignored until Bell (2004) showed that
the right-handed modes grow faster than left-handed ones and
—most importantly—that they can grow to nonlinear levels,
eventually saturating at large amplitudes. This claim was
motivated by simulations that couple a magnetohydrodynami-
cal (MHD) description of the thermal plasma with a kinetic
treatment of the CR current (Lucek & Bell 2000; Bell &
Lucek 2001). The nonresonant streaming instability, often

referred to as the “Bell instability,” occurs in many space/
astrophysical environments, and in particular is crucial for the
production of high-energy CRs in SNRs, as attested by global
kinetic simulations of nonrelativistic shocks (e.g., Caprioli &
Spitkovsky 2013, 2014a, 2014b, 2014c; Crumley et al. 2019;
Marcowith et al. 2021), as well as for the dynamics of the
shocks themselves (e.g., Caprioli et al. 2020; Haggerty &
Caprioli 2020).

1.1. Linear Theory and Modifications

The linear theory for the Bell instability shows that the
instability is expected to grow faster than the resonant
instability when the maximally unstable wavelength, of
wavenumber kmax, is much smaller than the CR gyroradius
rL, i.e., k r 1;Lmax we comment on such a condition
extensively in what follows.
In this regime, right-handed circularly polarized modes are

driven unstable and grow faster than their resonant (left-
handed) counterparts, as shown, e.g., in Section 4.3 of Bell
(2004) and Section 3 of Amato & Blasi (2009). The
wavenumber of the fastest-growing mode is
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and its corresponding growth rate reads

⎜ ⎟⎜ ⎟
⎛

⎝

⎞

⎠
⎛
⎝

⎞
⎠

k v
n

n

v

v

1

2
, 2cimax max A,0

cr

g

d

A,0
( )g = = W

where e and m are the proton charge and mass, Jcr= encrvd is the
CR current, ncr and vd are the CR number density and drift
velocity relative to the background plasma, B0 and ng are the
background magnetic field and plasma number density,
v B mn4A,0 0 gpº is the initial Alfvén speed, Ωci≡ eB0/(mc)
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is the ion gyrofrequency, and di≡ vA,0/Ωci is the ion inertial
length.

It is important to point out that a current of energetic
particles may also drive a plethora of additional modes, both
parallel and transverse to the magnetic field (e.g., Bykov et al.
2011; Malovichko et al. 2015), as discussed in the thorough
review by Bret (2009), where the growth rates of Weibel, two-
stream, Buneman, filamentation, Bell, and cyclotron instabil-
ities are compared for different CR parameters. While these
instabilities may be important in some environments, especially
at scales smaller than the ion skin depth, global kinetic
simulations of strong shocks confirm that Bell amplification is
the most prominent way of producing the turbulence
responsible for the acceleration of CRs to higher and higher
energies (e.g., Caprioli & Spitkovsky 2014a, 2014b; Caprioli
et al. 2018; Haggerty & Caprioli 2019; Marcowith et al. 2021).

The original derivation of the growth rate of the Bell
instability did not account for situations where the background
plasma is not strictly cold or collisionless. The Bell instability
is expected to be modified when the background plasma is
sufficiently warm; in this regime (dubbed “WICE,” for warm
ions/cold electrons), the fastest-growing wavenumber shifts to
k kwice max< and the growth rate is suppressed (Reville et al.
2008; Zweibel & Everett 2010; Marret et al. 2021).
Additionally, the instability is modified in systems where the
collisional timescale becomes comparable to the growth rate
(Reville et al. 2007). Systems with proton-neutral collisions
were found to have reduced growth rates and saturated
magnetic field amplitudes, while systems with proton–proton
collisions resulted in a larger saturated magnetic field, owing to
the suppression of temperature anisotropy generation (Marret
et al. 2022). While these considerations are potentially
important for selecting systems, they are not included in the
present work.

1.2. Simulating the Bell Instability

MHD simulations have shown that for a fixed CR current,
large amplification factors can be achieved (e.g., Bell 2004,
2005; Zirakashvili et al. 2008; Matthews et al. 2017).
Nevertheless, these simulations cannot self-consistently capture
the backreaction of the growing modes on the CRs, hence they
cannot be used to assess the saturation of the Bell instability.

Using particle-in-cell (PIC) simulations, Niemiec et al.
(2008) found a much lower level of amplitude of the saturated
magnetic field, but they also found a growth rate for the fastest-
growing mode that was smaller than what Bell (2004) had
predicted, putting into question the existence of the Bell
instability beyond the MHD limit. However, PIC simulations
performed by Riquelme & Spitkovsky (2009) showed that for
the exceedingly strong currents adopted in the work of Niemiec
et al. (2008), a transverse filamentary mode can grow faster
than the Bell instability; they also found that for typical CR
currents, the Bell instability grows as expected and saturates to
levels of δB/B0 10. The saturation was found to be caused by
the background plasma being accelerated in the direction of the
CR drift velocity, which reduces the CR current Jcr that drives
the instability. Similar results have been found in the PIC
simulations performed by other groups as well (Ohira et al.
2009; Stroman et al. 2009; Gupta et al. 2021).

Gargaté et al. (2010) and Weidl et al. (2019a, 2019b) used
hybrid simulations (with kinetic ions and fluid electrons) to
follow the instability on longer timescales, well into the

nonlinear regime when saturation occurs. Their results
supported a saturation mechanism similar to that described by
Riquelme & Spitkovsky (2009), who used full PIC simulations:
saturation occurs due to the deceleration of CRs and
simultaneous acceleration of the background plasma, which
reduces the CR current, an effect also seen in the earlier work
of Lucek & Bell (2000).
The vast majority of the studies above were performed in 2D

periodic boxes, with a CR current initialized but not sustained
(undriven simulations), while in astrophysical environments a
parcel of fluid, e.g., in a shock precursor, is constantly exposed
to “fresh” CRs. To mimic this more physical situation, Reville
& Bell (2013) used an MHD+Vlasov code, where the CR
distribution function is expanded in spherical harmonics
satisfying a Fokker–Planck equation to run driven simulations,
in which the CR current is enforced to be constant. In their
simulations, the maximum value of the magnetic field is always
time-limited, and no final saturation of the magnetic field was
reported.
Kobzar et al. (2017) performed one full PIC 2D simulation in

a nonperiodic box, which allowed the authors to follow the
spatiotemporal evolution of the instability; however, the
relatively high current that they used led to the formation of
a shock and in general does not allow for the construction of a
theory for arbitrary CR distributions.
In this paper, we study the Bell instability via hybrid

simulations using the massively parallel code dHybridR
(Gargaté et al. 2007; Haggerty & Caprioli 2019), where ions
are treated kinetically and their relativistic dynamics is retained.
We perform driven simulations, in which CRs are injected in the
simulation box at a constant rate from the left side and are free to
leave from the right, while the thermal background plasma and the
electromagnetic fields are subject to periodic boundary conditions.
This setup allows for a self-consistent coupling between CRs and
thermal plasma, which eventually leads to the saturation of the
instability. We explore a large range of parameters that
characterize the CR current, always in the regime in which Bell
is the fastest-growing instability, and we use a suite of 1D, 2D,
and 3D simulations to investigate how the amplified magnetic
field at saturation scales with the CR parameters.
We study the nonlinear evolution of the driven Bell

instability and provide the first simulation-validated prescrip-
tion for the level of the final magnetic field at saturation, i.e.,
that the final magnetic pressure is comparable to the initial net
CR momentum flux.
The structure of the paper is as follows. In Section 2, we

briefly outline the possible CR distributions that may trigger the
Bell instability and parameterize their free energy. Section 3
describes our computational setup, the explored parameter
space, and discusses the time evolution of a benchmark
simulation. In Section 4, we then describe the properties of the
system at saturation and present the scaling of the total
amplified magnetic field with the initial CR momentum flux.
Finally, in Section 5, we discuss our results in the context of the
current literature and outline some astrophysical implications of
our findings, before concluding in Section 6.

2. The Free Energy in Streaming CRs

Let us consider a population of CRs with isotropic
monochromatic momentum piso≡ γisomviso in their rest frame,
which drift with velocity v ev xd d ˆ= relative to the thermal
plasma; this corresponds to a current Jcr= encrvd, where ncr
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represents the CR number density measured in the rest frame of
the thermal plasma.

Let us fix the initial magnetic field B eB x0 ˆ= ; its inclination
with respect to vd should not be important for the growth or the
saturation of the Bell instability (e.g., Bell 2005; Matthews
et al. 2017). More specifically, the inclination may change the
growth rate along the parallel and perpendicular directions, k∥
and k⊥, respectively, with respect to ex̂, but the saturated
magnetic field’s amplitude may not change.

While the CR current and hence the growth rate only depend
on ncr and vd, the net CR momentum and energy fluxes depend
on piso, too. We consider two limiting cases: one in which the
CRs are a cold beam with pd? piso and one in which they have
a hot-drifting distribution with pd= piso, as illustrated in
Figure 1.

2.1. Bell’s Prescription for Saturation

According to the standard theory (Bell 2004; Amato &
Blasi 2009), the right-handed, nonresonant modes grow faster
than the resonant one if
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where rL(p⊥) is the typical CR gyroradius.
Bell (2004) suggested that the instability saturates when the

most unstable mode, calculated in the amplified field δB,
becomes resonant with the CRs, i.e., k B r B 1max L( ) ( )d d ~ . This
is realized when
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2 and U mn v 2B g A

2º are the CR and
magnetic energy densities, assuming that CRs are relativistic
and vd is not; at saturation, one then has B B2

0
2

Belld x» . Blasi
et al. (2015) came to a similar conclusion with an argument
based on the dynamical balance between the magnetic tension
and the Jcr×B force.

With regard to Equation (4), note that (1) it is only similar to
the ratio of CR and magnetic energy fluxes (the denominator is
not the magnetic energy flux, because waves do not move at c);
(2) it holds in the limit in which CRs are relativistic and the
drift is not, since the p⊥ that enters rL is effectively
p≈ γisomc; and (3) it has never been validated by means of
self-consistent kinetic simulations.

For relativistic CRs, energy and momentum are essentially
interchangeable, but for nonrelativistic particles, or

nonrelativistic drifts, that is not the case. Thus, it would be
desirable to have a relativistically covariant expression that
expressed the field at saturation for an arbitrary CR distribution.

2.2. A Covariant Formalism

We start by considering the CR rest frame, where the CR
mass density is crr̃ , the total (including the rest mass) energy
density is e ccr iso cr

2˜g r= , and the isotropic pressure reads
P ccr

1

3 iso cr
2

iso
2˜g r b= . Then we boost such a distribution into a

frame that moves with velocity vbst and has a corresponding
Lorentz factor v c1 1bst bst

2 2G = - . In this frame, the CR
density is cr bst cr˜r r= G and the CR stress tensor reads (see,
e.g., Section 133 of Landau & Lifshitz 1987)

T e P u u P , 5cr cr bst bst cr( ) ( )h= + +ab a b ab

where u bst
a is the four-velocity constructed with vbst and ηαβ is

the Minkovski metric. Explicitly, in components we have:
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where i, j= 1, 2, 3 and δ ij is the Kronecker delta symbol. Here,
T00 has the usual meaning of energy density, while T ij is the
flux along the i direction of density of momentum pj; T

0 i does
not have a nonrelativistic counterpart, though T0 i/c and cT0 i

are the density of momentum along i and the energy flux along
i, respectively.
Note that if CRs are relativistic, then the drift velocity vd that

enters the CR current is generally smaller than vbst (Gupta et al.
2021), i.e.,
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where vx= μ|v|. Since the simulations are set up with an
effective boost to the background plasma frame, we will
provide the saturation as a function of vbst rather than vd. Also,
the average momentum along x reads

p d p mv p
2

. 7xcr,
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1
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g
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The questions that arise then are (1) can the saturation of the
Bell instability be connected to the initial CR distribution? And
(2) which component(s) of T is the saturation of the Bell
instability related to?
In general, to drive the instability, we need a finite current

(i.e., charge flux), which also means a net momentum and
energy flux. We consider the following quantity:
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which expresses the net CR momentum flux (consider the terms
with T11 and T01), normalized to the magnetic pressure; the last
equality derives from the definition of T and expresses the density

Figure 1. Schematic diagram of the initial CR distributions, distinguishing the
hot and cold cases (also see Table 1).
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in kinetic energy in the CR drift (the term with T00).7 In the limit
considered in Equation (4) (ultrarelativistic CRs and nonrelativis-
tic drift), from Equation (8) one has ξ0/ξBell∼ vd/c= 1, which
suggests that a system may run out of free momentum before the
field can saturate at equipartition of the CR and magnetic fluxes.

3. Hybrid Simulations

We perform hybrid kinetic PIC simulations with dHybridR,
in which the ions are treated as macroparticles governed by the
relativistic Lorentz force and the electrons are a massless,
charge-neutralizing fluid (Haggerty & Caprioli 2019). The
parameters of the different runs are listed in Table 1 and cover
our benchmark run , several cold and hot CR distribution
functions (see Figure 1, runs  and , respectively), as well as
1D and 3D versions of our benchmark (runs ) and
nonrelativistic CRs (runs  ). The parameters are chosen in
such a way that Bell dominates over the resonant streaming
instability (ξ0? 1) and over the filamentary instability of
Niemiec et al. (2008;  cmaxg w ).

All simulations retain all three components of the velocity
and fields.

Periodic boundary conditions are imposed for fields and
thermal particles, while CRs experience periodic boundary
conditions in the perpendicular (⊥) directions and open along
the parallel (||) x-direction. This configuration mimics a system
in which energetic CRs are being continuously injected, such as
in a shock precursor (Reville & Bell 2013; Caprioli &
Spitkovsky 2014b).

In most of the runs, the speed of light is c= 100 vA,0, except
for the nonrelativistic beam runs (1 3- ), where it is
c= 500 vA,0. The spatial resolution is two cells per ion skin
depth and the time step is chosen to ensure that the Courant
condition is satisfied. Since we limit ourselves to cases in
which the growth rate is γΩci, k d 1imax  and the fastest-
growing mode is always resolved.

We initialize the simulation box with four particles per cell
for both background gas particles and CRs. Finally, electrons
are assumed to behave like a perfect fluid with adiabatic index
of 5/3 (see, e.g., Caprioli et al. 2018).

We checked the convergence of our results as a function of
number of particles per cell, space/time resolution, and box
size, finding that the minimum required box size must be larger
than at least one CR gyroradius in the initial magnetic field.
Since it is notoriously difficult to deal with hot (i.e., subsonic)
distributions close to open boundaries, for hot CR distributions
we consider much larger computational boxes and perform our
saturation analysis only in the center of the box, effectively
avoiding any boundary effect.

3.1. The Benchmark Run

We now discuss the benchmark run ( in Table 1) to outline
the features that are common to all of the simulations. As
expected, CRs drive magnetic field perturbations that grow
exponentially on a timescale max

1g~ - (e.g., Riquelme &
Spitkovsky 2009; Gargaté et al. 2010; Haggerty et al. 2019).
Figure 2 shows how the magnetic structures grow in size and

intensity. Initially, such structures are much smaller than the
CR gyroradius, represented by a white circle; both the growth
rate and maximally unstable wavelength are consistent with the
linear theory predictions. After a few to ten growth times, they
become comparable to the CR gyroradii calculated in the
amplified magnetic field 10 B0 (last panels).
It is interesting to look at the evolution of the first and second

moments (bulk velocity and pressure) of the CR and gas
distributions, indicated with us and Ps, with s=CR, gas,
respectively. When δB/B0 exceeds unity (t 5 max

1g~ - ), CRs start
scattering off the magnetic perturbations and transfer momen-
tum to the background gas. As a result, we see an abrupt
initial drop in the CR bulk velocity, while the gas is set in
motion in the direction of the CR drift, as discussed, e.g., by
Weidl et al. (2019a, 2019b). At saturation, the CRs and gas are

Table 1
List of the Simulations Used in the Work, Defined by: the CR Number Density,
ncr; the Parallel CR Momentum Boost, pbst; the Initial Isotropic Momentum,

piso; and ξ0, the CR Net Momentum Flux (see Equation (8))

Run ncr/ng pbst/(mvA,0) piso/(mvA,0) ξ0

 10−3 103 1 195
2 5 × 10−4 103 1 98

1 10−3 1.5 × 103 1 293
2 10−3 5 × 102 1 96
3 10−3 2 × 103 1 392
4 10−3 7.5 × 102 1 146
5 10−3 104 1 1960
6 10−3 5 × 103 1 980
7 10−3 3 × 103 1 588
8 10−3 8 × 103 1 1568
9 10−3 2 × 102 1 35
10 10−3 3 × 102 1 56
11 10−3 4 × 102 1 76

1 10−3 103 103 2601
2 10−3 103 500 1312
3 10−3 103 10 197
4 10−3 103 50 233
5 10−3 103 102 322

6 9.9 × 10−2 3 103 6
7 3.6 × 10−2 5 103 12
8 2.4 × 10−2 10 500 24
9 6.8 × 10−3 20 103 64
10 1.4 × 10−2 31 400 128
11 8.2 × 10−3 44 500 180
12 2.2 × 10−3 58 400 64
13 4.2 × 10−3 75 103 480
14 3 × 10−3 98 103 520
15 1.5 × 10−3 133 103 400
16 10−3 206 103 480

1 10−3 103 1 195
3 10−3 103 1 195

1 5 × 10−3 20 1 4
2 5 × 10−3 30 1 8
3 5 × 10−3 40 1 15

Note. The speed of light is c = 100 vA,0, except for the  cases, where it is
c = 500 vA,0. Run  is our benchmark case, while runs  and  indicate
cold-beam and hot-drifting cases, respectively; in all of these cases, the boxes
are 2D and measure at least d10 10 i

3 3 2´ . Finally, 1 and 3 correspond
to our quasi-1D and quasi-3D control runs and measure d10 50 i

3 2´ and
d10 10 200 i

3 3 3´ ´ , respectively.

7 Technically, we expect CRs to isotropize in the wave frame moving with vA
with respect to the background plasma. Hence, the correct boost velocity to use
in Equation (8) is the one that boosts the CR distribution to the wave frame
rather than the background plasma frame. This modification is necessary for
CR distributions with vd  vA, such as our cases 6 8– in Table 1.
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well coupled, and their relative speed reduces, as shown in
Figure 3. More specifically, the difference between the two
bulk velocities becomes comparable to the Alfvén speed in the
total magnetic field at saturation (the top panel of Figure 3),
which means that marginal stability is achieved. Since the CR
current is driven, after the initial drop due to scattering, Jcr∥
returns to its initial value in the simulation frame, but it keeps
reducing in the gas frame (the bottom panel of Figure 3), which
slows the growth rate down.

This picture is supported by Figure 4, which shows how the
thermal, CR, and perpendicular (i.e., self-generated) magnetic
pressures evolve in time; pressures are calculated both in the
simulation and in the thermal gas frame (the top and bottom
panels of the figure).

The magnetic field initially grows exponentially until
t 7 max

1g~ - , which marks the beginning of the “secular” stage
of the instability, when B keeps growing but with a slower
growth rate. During this stage, there is a rapid increase in
the isotropic gas pressure; both Pgas⊥ and Pgas∥ grow until
t 10 max

1g~ - , when the parallel momentum flux starts becoming
larger than the transverse gas pressure. The transferring of
momentum from the CRs to the gas can also be seen in the
slight drop of the parallel CR pressure, Pcr∥, at t 10 max

1g~ - .
This effect can be seen in more detail in Figure 5, which

shows the temporal evolution of the perpendicular (y, z)
magnetic power spectrum as a function of parallel wavenumber
(kxdi; top panel) and time (bottom panel). The maximum
growth is consistent with the predictions, with the black dashed
line marking the location of kmax (Equation (1)). The power in
these modes grows over the exponential stage of the instability,

Figure 2. Time evolution of the log10 of the perpendicular component of the magnetic field, B B By z
2 2 1 2( )d = + , for our benchmark simulation (run  in Table 1).

Time is normalized to max
1g- and the color scale indicates the strength of the field in units of B0. The CR Larmor radius, defined in the amplified magnetic field, is

represented by the white circles.

Figure 3. Top panel: time evolution of the difference between the CR and gas
bulk velocities for the benchmark run  in Table 1, compared with the Alfvén
speed in the total magnetic field. Once δB/B0  1, CRs are scattered and their
bulk motion drops abruptly, while momentum is transferred to the gas; the
effective CR drift speed drops and at saturation becomes comparable to
vA(Btot), which attests to an effective coupling between CRs and thermal gas
and the achievement of marginal stability. Bottom panel: CR current in both the
simulation and the gas frame.
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while in the secular phase it is the power in longer wavelengths
that takes over. Such longer-wavelength modes may be as
large as the CR gyroradius in the saturated magnetic field

(red dashed line; 1/rL). The power in these modes eventually
surpasses that in Bell modes by the time the simulation reaches
saturation, as shown in the bottom panel of Figure 5.
At t 10 max

1g- , the system reaches a state of pressure
equilibrium, where Pgas⊥ ∼ PB⊥ ∼ Pcr∥. The bottom panel of
Figure 4 illustrates this effect more clearly, by showing the
pressures in the frame moving with the bulk velocity of the
plasma, ugas∥. We note that the magnetic and thermal pressures
grow together, suggesting that a fraction of the magnetic
energy is dissipated into the background plasma, as already
reported, e.g., by Bell (2004), Ohira et al. (2009), and Gargaté
et al. (2010).

4. Magnetic Field at Saturation

To understand how the saturation of the nonresonant
instability depends on the CR distribution, we have preformed
simulations that cover a wide parameter space (Table 1). In
each simulation, the parameters are selected so that we are in a
regime where the Bell instability grows and dominates over any
other instability. We chose to not vary the thermal speed of the
background plasma, as we have found that “WICE”-like effects
can be important (Reville et al. 2008; Zweibel & Everett 2010;
Zacharegkas et al. 2019, 2022); we defer the study of this
regime to a future work, stressing how the results presented
here should apply to cases with plasma β≡ Pgas/PB= 10.
Similarly, a large CR current (Jcr> engvA,0) may trigger two-
stream, Bunemann, or filamentation instabilities (Bret 2009), a
regime that we defer to future works as well.

4.1. A Simulation-validated Prescription for Magnetic Fields at
Saturation

The amplitude of the transverse magnetic field at saturation
is shown in Figure 6 for many hot/cold runs (color-coded), as a
function of the normalized net CR momentum flux defined in
Equation (8). The black line corresponds to

B

B
P P

4 4
, 9B B

2

0
2

0
,

0
,0 ( )

x x
=  =^

^

Figure 4. Evolution of the pressures of CRs, thermal gas, and magnetic field
for our benchmark run  , as seen in the simulation (top panel) or gas rest frame
(bottom panel). In both panels, i denotes the direction (parallel or
perpendicular) and s denotes the species (CRs, magnetic field, or gas).

Figure 5. Top panel: transversely averaged perpendicular magnetic power
spectrum F y

2∣ ∣á ñ^ , where  F k y B x y B x y, , ,x y z
2 2 2∣ ( )∣ ∣ [ ( )]∣ ∣ [ ( )]∣= +^ and 

is the Fourier transform along the x-direction. The power spectrum is plotted as a
function of parallel wavenumber (kxdi) for the benchmark run  as it evolves in
time (color-coded). The black dashed line shows the predicted fastest-growing
mode (Equation (1)), while the red dashed line corresponds to the mode in
resonance with the CR gyroradius in the saturated magnetic field. Lower panel:
time evolution of the power in the kmax mode (black dashed line, crosses) and in
the resonant mode (red dashed line, diamonds). While the Bell mode grows much
faster, at saturation most of the power is in quasi-resonant modes.

Figure 6. Transverse magnetic field at saturation, as a function of the initial CR
anisotropic momentum flux normalized to the initial magnetic pressure, ξ0
(Equation (8)). The line corresponds to B B 40

2
0( ) x=^ . Each point represents

one case from Table 1, excluding the cases 1 and 3 because of their
different dimensionality. The gold band shades the 40% area around the line.
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indicating that ξ0 is a good parameter for estimating the total
magnetic field amplification produced by generic CR distribu-
tions. This result should apply in all the cases in which the Bell
modes grow faster than the resonant cyclotron instability
(  k r 1max L Bellx ). Also, it may apply even in the presence
of instabilities (e.g., Weibel, two-stream, etc.) that grow faster
than Bell, but at scales small enough that when their fastest-
growing modes saturate, the CR current is not strongly affected
and is still able to drive Bell modes. This would be similar to
what happens for the Bell instability, in that at saturation most
of the magnetic power is never on scales comparable to kmax,
but rather on scales of the order of the CR gyroradius, as shown
in Figure 5.

As our new prescription shows, the relevant quantity is the
CR momentum flux ξ0, rather than the CR current itself, which
means that saturation does not necessarily correlate with
growth rate. One nontrivial implication of this finding is that
the same electric current made of more energetic CRs should
result in a larger magnetic field amplification, which may be
relevant for CRs escaping their sources (e.g., Cristofari et al.
2021; Schroer et al. 2021, 2022). We tested this expectation
explicitly with our simulations 2, , and 7, which share the
same CR current but saturate at different values of δB
correlating with ξ0.

The amplification described by Equation (9) can be
explained with the following simple argument, based on the
bottom panel of Figure 4. At saturation, the system achieves
equipartition between: the three components of the thermal
plasma pressure, the three components of the CR pressure, and
the two transverse components of the amplified magnetic field.
Since the initial free momentum is ξ0, and since two of the
eight final channels are in PB⊥, Equation (9) naturally ensues.

In principle, another channel in which the injected energy
may go is the bulk motion; however, before saturation
(t 10 max

1g- ), the thermal gas is not sped up much, while after
saturation all of the energy goes into accelerating the coupled
system of CRs+thermal plasma+magnetic fields (the top panel
of Figure 4). Thus, the bulk motion is not an effective degree of
freedom of the system, but rather the ultimate sink of all the
energy injected after saturation.

Finally, we note that the effective CR drift becomes
comparable with the Alfvén speed, eventually, but this happens
after the magnetic field amplification has stopped because the
system has run out of free momentum; the achievement of
marginal stability can therefore be interpreted as a manifesta-
tion of the efficient coupling between CRs and magnetic fields
(e.g., Zweibel 2017).

5. Discussion

Arguably, the main application of the nonresonant instability
is for DSA in SNR shocks, as highlighted already by Bell
(2004), who derived Equation (4) in the limit of the
nonrelativistic drift of ultrarelativistic CRs with a power-law
distribution in momentum ∝p−4. In the same limit,
Equation (8) would return a perpendicular amplified magnetic
field

⎜ ⎟
⎛
⎝

⎞
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n

v

v

1

4

2

3
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2
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where we used vbst≈ vd for nonrelativistic boosts.

This field is much smaller than the one provided by
Equation (4), since vd∼ vshock= c for SNRs. Figure 7 shows
the ratio of B B0

2( )d ^ at saturation in simulations compared
with either Bell’s prescription (Equation (4)) or the new one
(Equation (8)). Note that in Figure 7, we multiplied Bell’s
prescription by a factor 2/3 in order to get an estimate of B2d ^
rather than the total δB2, assuming isotropic turbulence.
The current estimates of the maximum energy achievable in

SNRs, which rely on Bell’s saturation (e.g., Reville &
Bell 2012; Bell et al. 2013), suggest that typical SNRs can
accelerate particles up to maximum rigidities of fractions of a
petavolt, a factor of a few to ten smaller than the rigidity of the
CR knee. More precisely, the problem is not producing
petaelectronvolt particles, but producing enough of them such
that the overall CR spectrum rolls over at the knee (e.g.,
Cardillo et al. 2015; Cristofari et al. 2021, 2022; Diesing &
Caprioli 2021).
While our saturation prescription (Equation (9)) seems to

exacerbate this issue, thus challenging the idea that SNRs can
be the sources of Galactic CRs, one has to remember that ahead
of the shock there is a flux of escaping particles (e.g.,
Zirakashvili & Ptuskin 2008; Caprioli et al. 2009, 2010; Bell
et al. 2013; Caprioli & Spitkovsky 2014b), which have
momentum close to pmax, i.e., the instantaneous maximum
momentum. Such particles have a very anisotropic distribution
that can be effectively described as a cold beam with
p pbst max» and vbst≈ c, but with number density nesc

nv

c cr
sh , with ncr measured at the shock (at least for a p−4 CR
spectrum; see, e.g., Caprioli et al. 2009; Bell et al. 2013).
Hence, assuming isotropic turbulence, the total field, i.e.,
B B2 3

2
2d d= ^, produced by escaping particles reads
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2
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which is exactly Bell’s prescription (Equation (4), modulo a
factor of order unity). Eventually, our results do not
quantitatively change the estimates of the maximum energy
achievable in SNRs (e.g., Reville & Bell 2012; Bell et al. 2013;

Figure 7. Saturated value of B B0
2( )d ^ measured in simulations over the one

predicted by either Equation (4) (Bell 2004) or Equation (9); they differ by a
factor of vbstγbst/c, which means that Bell’s prescription overestimates the
measured values when the boost is nonrelativistic. We show the cases 6 16– ,
as these sample the vbst parameter space.
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Cardillo et al. 2015; Cristofari et al. 2021, 2022; Diesing &
Caprioli 2021), although they suggest that most of the magnetic
field amplification upstream of SNR shocks must be driven by
the current in escaping particles, rather than by the current due
to the anisotropy of CRs diffusing in the precursor. This also
means that if the CR spectrum is steeper than p−4, the saturated
magnetic field may be smaller than the standard prediction and
thus lead to smaller maximum energies, as pointed out, e.g., by
Cristofari et al. (2022).

6. Conclusions

We have used controlled hybrid simulations to investigate
the saturation of the Bell instability (Bell 2004, 2005) for a
wide range of CR distributions, spanning from cold beams to
hot-drifting cases (Figure 1 and Table 1). We used a suite of
1D, 2D, and 3D runs to assess the final amplitude of the self-
generated magnetic field, and our main findings can be
summarized as follows:

1. During the linear stage of the instability, the CR current is
undisturbed by the small-wavelength waves that are
excited at k ;max when δB/B0 1, CRs start scattering and
the amplitude of the magnetic field grows linearly rather
than exponentially.

2. After about 10 growth times, the pressures in CRs,
magnetic fields, and thermal plasma become comparable
(Figure 4) and the instability saturates.

3. At saturation, CRs and thermal plasma are well coupled:
the effective drift speed becomes comparable to the
Alfvén speed in the amplified field and marginal stability
is achieved (Figure 3).

4. In the asymptotic state, most of the magnetic power is not
at the fastest-growing mode, but rather at larger scales,
comparable to the CR gyroradius in the amplified field
(see Figures 2 and 5).

5. While the growth rate depends on the CR current, the
total magnetic field amplification that can be achieved
depends on the momentum flux in CRs, generally
parameterized by Equation (8). In particular, simulations
suggest that the final pressure in transverse magnetic
fields is ∼one-quarter of the initial CR pressure flux
(Equation (9) and Figure 6).

6. The simulation-validated prescription (Equation (9)) for
the saturated magnetic fields yields amplification
factors smaller than the original prescription by Bell
(Equation (4)), especially for nonrelativistic boosts
(Figure 7).

7. The results above do not change the estimate of the
maximum energy achievable in SNRs, where most of the
field amplification is driven by the anisotropic beam of
ultrarelativistic particles escaping upstream, rather than
by CR diffusing in the shock precursor.

These results provide the first prescription, validated by self-
consistent kinetic simulations, that can be used to estimate the
total magnetic field amplification ensuing from an arbitrary
distribution of anisotropic CRs, as long as electron physics is not
important (i.e., that the current is not too strong to drive
instabilities other than Bell’s; see Niemiec et al. 2008; Bret 2009;
Riquelme & Spitkovsky 2009) and the thermal plasma is
relatively cold (e.g., Reville et al. 2008; Zweibel & Everett 2010).
We defer the study of saturation in such systems to future works.

Quantifying the level of magnetic field amplification in
SNRs is important not only for estimating the maximum energy
achievable via DSA, but also the dynamics of the shock, the
overall shock compression, and the slope of the accelerated
particles (Caprioli et al. 2020; Haggerty & Caprioli 2020;
Diesing & Caprioli 2021; Cristofari et al. 2022).
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Appendix
Effects of Simulation Dimensionality

In 2D hybrid simulations, we report an anisotropy in the
transverse (self-generated) magnetic field. Specifically, for our
2D boxes in the x–y plane, we find that typically Bz By and
that the ratio of such transverse components may reach a factor
of a few, depending on the simulation parameters. This makes
it hard to choose which component of the magnetic field must
be used to calculate the saturated value of the field. In quasi-1D
boxes, i.e., when Ly= Lx and Lz= 0, we find that at
saturation, By∼ Bz> Bx and that Bx∼ B0, as expected. In 3D
simulations, instead, we find that By∼ Bz, similar to the 1D
case, and that the two components are comparable to the Bz one
in the 2D box. These scalings are shown in Figure 8, where we
compare simulations 1, 3, and . The former two are
similar to our benchmark simulation , but with 1D and 3D
boxes, respectively.
This test indicates that the Bz component in 2D simulations

might be a good proxy for the behavior of both perpendicular
components in more realistic 3D setups. However, the
difference between B B By z

2 2 1 2( )d = +^ and the proxy B2 z
is only about 20%–30%. Therefore, we use δB⊥ to quantify the

Figure 8. Time evolution of the parallel (solid) and perpendicular (dashed and
dotted) components of the magnetic field for the benchmark run, in 1D, 2D,
and 3D configurations (runs 1,  , and 3); note that run 1 has 50di in the y-
direction, so is not exactly 1D, which allows for a Bx that is not strictly
constant. The Bz component in 2D is a good proxy for both transverse
components in full 3D setups.

8

The Astrophysical Journal, 967:71 (9pp), 2024 May 20 Zacharegkas et al.



field at saturation in this paper, keeping in mind that this might
be slightly underestimating the actual value in full 3D. Such an
uncertainty is also conveyed by the yellow envelope around the
theoretical prescription (Equation (8)) in Figure 6.
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