We consider the asymmetric simple exclusion process (ASEP) on the one-dimensional finite lattice {1, 2, …, N}. The particles can be created/annihilated at the boundaries with given rates. These rates are $L^\infty$ functions of time and are independent of the jump rates in the bulk (cf. Comm. Math. Phys. 310 (2012) 1–24). The boundary dynamics is modified by a factor $N^θ$ with θ > 0. We study the hydrodynamic limit for the particle density profile under the hyperbolic space-time scale. The macroscopic equation is given by (inviscid) Burgers equation with boundary conditions which are characterized by the boundary entropy (C. R. Acad. Sci. Paris 322 (1996) 729–734). A grading scheme is developed to control the formulation of boundary layers on the microscopic level.

Hydrodynamic limit for asymmetric simple exclusion with accelerated boundaries

Lu Xu
2024-01-01

Abstract

We consider the asymmetric simple exclusion process (ASEP) on the one-dimensional finite lattice {1, 2, …, N}. The particles can be created/annihilated at the boundaries with given rates. These rates are $L^\infty$ functions of time and are independent of the jump rates in the bulk (cf. Comm. Math. Phys. 310 (2012) 1–24). The boundary dynamics is modified by a factor $N^θ$ with θ > 0. We study the hydrodynamic limit for the particle density profile under the hyperbolic space-time scale. The macroscopic equation is given by (inviscid) Burgers equation with boundary conditions which are characterized by the boundary entropy (C. R. Acad. Sci. Paris 322 (1996) 729–734). A grading scheme is developed to control the formulation of boundary layers on the microscopic level.
2024
Nous considérons le processus d’exclusion simple asymétrique (ASEP) sur le réseau fini unidimensionnel {1, 2, …, N}. Les particules peuvent être créées/annihilées sur les points de frontière avec des taux qui sont des fonctions $L^\infty$ du temps et sont indépendants des taux de saut à l’intérieur du système (cf. Comm. Math. Phys. 310 (2012) 1–24). La dynamique des bords est modifiée d’un facteur $N^\theta$ avec θ > 0. Nous étudions la limite hydrodynamique du profil de densité des particules sous l’échelle espace-temps hyperbolique. L’équation macroscopique est donnée par l’équation (non visqueuse) de Burgers avec des conditions aux limites caractérisées par l’entropie du processus sur les points de frontière (C. R. Acad. Sci. Paris 322 (1996) 729–734). Un schéma adapté est développé pour contrôler la formulation des couches limites au niveau microscopique.
asymmetric simple exclusion process, open boundary, hydrodynamic limit, entropy solution, boundary layer
File in questo prodotto:
File Dimensione Formato  
2024_AnnHenriPoincareProbabStat_60_Xu.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 355.81 kB
Formato Adobe PDF
355.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Postprint_2024_AnnHenriPoincareProbabStat_60_Xu.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso gratuito
Dimensione 362.32 kB
Formato Adobe PDF
362.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/31044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact