: Boron nuclei in cosmic rays (CRs) are believed to be mainly produced by the fragmentation of heavier nuclei, such as carbon and oxygen, via collisions with the interstellar matter. Therefore, the boron-to-carbon flux ratio (B/C) and the boron-to-oxygen flux ratio (B/O) are very essential probes of the CR propagation. The energy dependence of the B/C ratio from previous balloon-borne and space-based experiments can be well described by a single power-law up to about 1 TeV/n within uncertainties. This work reports direct measurements of B/C and B/O in the energy range from 10 GeV/n to 5.6 TeV/n with 6 years of data collected by the Dark Matter Particle Explorer, with high statistics and well controlled systematic uncertainties. The energy dependence of both the B/C and B/O ratios can be well fitted by a broken power-law model rather than a single power-law model, suggesting the existence in both flux ratios of a spectral hardening at about 100 GeV/n. The significance of the break is about 5.6σ and 6.9σ for the GEANT4 simulation, and 4.4σ and 6.9σ for the alternative FLUKA simulation, for B/C and B/O, respectively. These results deviate from the predictions of conventional turbulence theories of the interstellar medium (ISM), which point toward a change of turbulence properties of the ISM at different scales or novel propagation effects of CRs, and should be properly incorporated in the indirect detection of dark matter via anti-matter particles.
Detection of spectral hardenings in cosmic-ray boron-to-carbon and boron-to-oxygen flux ratios with DAMPE
Alemanno, F;Barbato, FCT;De Mitri, I;Di Giovanni, A;Di Santo, M;Kyratzis, D;Parenti, A;Silveri, L;
2022-01-01
Abstract
: Boron nuclei in cosmic rays (CRs) are believed to be mainly produced by the fragmentation of heavier nuclei, such as carbon and oxygen, via collisions with the interstellar matter. Therefore, the boron-to-carbon flux ratio (B/C) and the boron-to-oxygen flux ratio (B/O) are very essential probes of the CR propagation. The energy dependence of the B/C ratio from previous balloon-borne and space-based experiments can be well described by a single power-law up to about 1 TeV/n within uncertainties. This work reports direct measurements of B/C and B/O in the energy range from 10 GeV/n to 5.6 TeV/n with 6 years of data collected by the Dark Matter Particle Explorer, with high statistics and well controlled systematic uncertainties. The energy dependence of both the B/C and B/O ratios can be well fitted by a broken power-law model rather than a single power-law model, suggesting the existence in both flux ratios of a spectral hardening at about 100 GeV/n. The significance of the break is about 5.6σ and 6.9σ for the GEANT4 simulation, and 4.4σ and 6.9σ for the alternative FLUKA simulation, for B/C and B/O, respectively. These results deviate from the predictions of conventional turbulence theories of the interstellar medium (ISM), which point toward a change of turbulence properties of the ISM at different scales or novel propagation effects of CRs, and should be properly incorporated in the indirect detection of dark matter via anti-matter particles.File | Dimensione | Formato | |
---|---|---|---|
2022_SciBull_67_Alemanno.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
576.9 kB
Formato
Adobe PDF
|
576.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.