We present an individual-centric model for COVID-19 spread in an urban setting. We first analyze patient and route data of infected patients from January 20, 2020, to May 31, 2020, collected by the Korean Center for Disease Control & Prevention (KCDC) and discover how infection clusters develop as a function of time. This analysis offers a statistical characterization of mobility habits and patterns of individuals at the beginning of the pandemic. While the KCDC data offer a wealth of information, they are also by their nature limited. To compensate for their limitations, we use detailed mobility data from Berlin, Germany after observing that mobility of individuals is surprisingly similar in both Berlin and Seoul. Using information from the Berlin mobility data, we cross-fertilize the KCDC Seoul data set and use it to parameterize an agent-based simulation that models the spread of the disease in an urban environment. After validating the simulation predictions with ground truth infection spread in Seoul, we study the importance of each input parameter on the prediction accuracy, compare the performance of our model to state-of-the-art approaches, and show how to use the proposed model to evaluate different what-if counter-measure scenarios.

Epidemic Spread Modeling for COVID-19 Using Cross-fertilization of Mobility Data

Pinciroli, Riccardo
Membro del Collaboration Group
;
2023-01-01

Abstract

We present an individual-centric model for COVID-19 spread in an urban setting. We first analyze patient and route data of infected patients from January 20, 2020, to May 31, 2020, collected by the Korean Center for Disease Control & Prevention (KCDC) and discover how infection clusters develop as a function of time. This analysis offers a statistical characterization of mobility habits and patterns of individuals at the beginning of the pandemic. While the KCDC data offer a wealth of information, they are also by their nature limited. To compensate for their limitations, we use detailed mobility data from Berlin, Germany after observing that mobility of individuals is surprisingly similar in both Berlin and Seoul. Using information from the Berlin mobility data, we cross-fertilize the KCDC Seoul data set and use it to parameterize an agent-based simulation that models the spread of the disease in an urban environment. After validating the simulation predictions with ground truth infection spread in Seoul, we study the importance of each input parameter on the prediction accuracy, compare the performance of our model to state-of-the-art approaches, and show how to use the proposed model to evaluate different what-if counter-measure scenarios.
2023
Data Analysis, Simulation Models, Individual centric Models, COVID19, Disease Spread Modeling, Crossfertilization
File in questo prodotto:
File Dimensione Formato  
2023_IEEETransBigData_EA_Schmedding.pdf

accesso aperto

Descrizione: Manuscript
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 8.73 MB
Formato Adobe PDF
8.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/27045
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact