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Epidemic Spread Modeling for COVID-19 Using
Cross-fertilization of Mobility Data
Anna Schmedding, Riccardo Pinciroli, Lishan Yang, and Evgenia Smirni

Abstract—We present an individual-centric model for COVID-19 spread in an urban setting. We first analyze patient and route data of
infected patients from January 20, 2020, to May 31, 2020, collected by the Korean Center for Disease Control & Prevention (KCDC)
and discover how infection clusters develop as a function of time. This analysis offers a statistical characterization of mobility habits and
patterns of individuals at the beginning of the pandemic. While the KCDC data offer a wealth of information, they are also by their
nature limited. To compensate for their limitations, we use detailed mobility data from Berlin, Germany after observing that mobility of
individuals is surprisingly similar in both Berlin and Seoul. Using information from the Berlin mobility data, we cross-fertilize the KCDC
Seoul data set and use it to parameterize an agent-based simulation that models the spread of the disease in an urban environment.
After validating the simulation predictions with ground truth infection spread in Seoul, we study the importance of each input parameter
on the prediction accuracy, compare the performance of our model to state-of-the-art approaches, and show how to use the proposed
model to evaluate different what-if counter-measure scenarios.

Index Terms—Data Analysis, Simulation Models, Individual-centric Models, COVID-19, Disease Spread Modeling, Cross-fertilization
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1 INTRODUCTION

On March 11, 2020, the WHO1 declared COVID-19 the first
pandemic caused by a coronavirus. Since then, a tremen-
dous amount of data has been collected to help public
policy decisions that limit the spread of COVID-19. For
example, Google2 provides time-series data of infections
at a coarse granularity (i.e., as a function of the area’s
population, no information is provided at the granularity of
single individuals). Epidemiological simulation and math-
ematical models have been used to predict the spread of
the disease. Typically, model effectiveness is tied to its input
parameterization.

In this paper, we use the data provided by the Korean
Center for Disease Control (KCDC) and local governments
during the first wave of the disease in South Korea. In con-
trast to the Google data, the KCDC data focus on individual
patients and allow the development of an individual-centric
model of the COVID-19 epidemic. Infected individuals are
monitored3 and their movements are logged using CCTV,
cellphones, and credit card transactions. The KCDC records
patient movements in plain text (i.e., natural language)
without any unified rule. These logs are parsed through
automated code and rule-based methods to extract key-
words that are then used with web mapping service APIs
(e.g., Google Maps) to extract geographical coordinates (i.e.,
latitude and longitude) and other data. The parsed logs are
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made publicly available [1] and being collected by KCDC
are deemed trustworthy.

To the best of our knowledge, the KCDC logs are the only
publicly available data that contain patient-centric informa-
tion in great detail: they report on the patient mobility, i.e.,
traveled distance and the sequence of locations visited on
a daily basis, the date of the onset of symptoms, whether
and when the patient got in contact with other patients
that are also diagnosed. This leads to our first research
question, RQ1: What statistical information can be extracted
by the KCDC mobility data to parameterize an agent-based
simulation that models the spread of the disease?

The KCDC logs are a valuable resource for studying the
spread of COVID-19, yet they have limitations:

• The last version of the KCDC data set contains data
collected up to May 31, 2020 (the KCDC data set has
not been updated since then). By that date, approx-
imately 11,500 COVID-19 cases were confirmed in
South Korea [2], but only 35% of them have been
logged into the data set.

• Some locations visited by patients (e.g., locations
where people live) are not recorded due to privacy
concerns. Consequently, patient infection informa-
tion and route data do not always coincide. For
example, there are patients that infect each other
even if their routes do not cross. This may happen
when patients belong to the same household.

• Patient and route data may be incomplete (i.e., some
attributes are occasionally missing, such as the type
of locations visited by some patients) and require
manual completion before analyzing the data set.

• There is route data information for only a portion of
the patients. Patient movement has been logged only
for the 15% of all confirmed cases by May 31.

• The KCDC logs do not contain a complete picture
of all different factors affecting the disease spread.

https://bit.ly/3izwIdL
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For example, these logs have no information on the
number of people living in a single residence, or on
behaviors of healthy individuals. The length of time
a patient spends at a particular location in their route
is also not recorded.

To compensate for the lack of information in the KCDC
logs, we also analyze data sets detailing human mobility
in German cities and districts [3]. These data sets contain
detailed information on the routes of individuals, such as
distance travelled, unique locations visited, and overlapping
routes. The KCDC and German data sets still have several
key differences. The KCDC logs contain information on
COVID-19 cases, whereas the German data only contains
information on healthy individuals. On the other hand, the
German data sets contain detailed information on important
factors that affect the disease spread, e.g., household size
and time spent at a location by individuals. These obser-
vations lead to our second research question, RQ2: Can
the Seoul data sets be cross-fertilized with German data by
leveraging parallels between the two logs?

We illustrate that such cross-fertilization across the Seoul
and Berlin logs is possible. Further, we show that cross-
fertilized data can be fed into GeoSpread [4], an extended
version of GeoMason [5] that leverages agent-based mod-
els (ABM) and geographic information systems (GIS), and
showcase the benefit of using inferential statistics (i.e., us-
ing samples to make predictions about a population) for
studying disease outbreaks. We validate the results of
the simulations with the ground truth derived from the
KCDC logs. GeoSpread offers a flexible model based on
real-world COVID-19 spread information and can be used
to facilitate evaluation of different mitigation measures to
reduce the spread of the disease. GeoSpread needs only data
distributions to simulate the spread of SARS-CoV-2. Here,
we use distribution data in the form of histograms (and
make them available to the community [6]). GeoSpread is
the focus of our last research question, RQ3: Does an ABM,
parameterized using only data distributions, accurately pre-
dict the spread of COVID-19 and the efficiency of possible
counter-measures?

Contributions and outline of this paper are:

• Data Discovery: We analyze and connect data from
various KCDC logs to extract information on patient
movements (Sections 2 and 3).

• Statistical Analysis: We provide statistical analysis
of population movements and habits in the form
of histograms for Seoul, Berlin, Dusseldorf, Kelheim
(district), and Leipzig. This information is extracted
using only descriptive statistics (i.e., the quantitative
description of attributes).

• Cross-fertilization: We investigate similarities be-
tween the KCDC and German data sets seeking for
common humna movement patterns in these urban
environments (Section 4). Leveraging this informa-
tion, we cross-fertilize to incorporate useful informa-
tion from the Berlin data set which are unavailable
in the Seoul data (e.g., travel speed, transportation
means, household size).

• GeoSpread: We parameterize an agent-based model
using the cross-fertilized data as input, see Section 5,

and outline its flexibility to capture a variety of
conditions. The simulation tool, GeoSpread, and pro-
cessed data is open sourced [6].

• Model Validation with Real Data: GeoSpread is
validated, is compared to state-of-the-art approaches,
and is used to analyze the effect of different mitiga-
tion measures (i.e., border lockdown, stay-at-home
advisory, and vaccination) in Section 6. Its usage and
limitations are discussed in Section 7.

2 THE KCDC DATA SET

The data sets [1] used in this paper contain data collected by
the KCDC and local governments from January 20, 2020, to
May 31, 2020. PatientInfo and PatientRoute contain informa-
tion and routes of COVID-19 patients in Seoul, respectively.
The number of (healthy and sick) people moving across
Seoul districts are provided in the SeoulFloating data set and
has been collected using the Big Data Hub of SK Telecom, a
Korean wireless telecommunications operator.
PatientInfo data set. This data set provides epidemiolog-
ical data of COVID-19 patients. It contains 4004 different
entries, each entry represents a different patient identified
by a unique ID (patient id). Other attributes include their
gender and age, their provenance (country, province, and
city), whether they have been infected in a known case
(infection case, e.g., overseas inflow or contact with patient)
and the ID of the patient that infected them (infected by),
the number of people that the patient came in contact
with (contact number), and the date of their first symptoms
(symptom onset date). This data set is also described in [7].
PatientRoute data set. This data set contains 8092 entries,
each one reporting a visit (to one of 2992 unique locations) of
1472 (out of 4004) unique South Korean COVID-19 patients
logged in the PatientInfo data set. A location is unequiv-
ocally identified by its latitude and longitude. Province, city,
and type (e.g., airport, hospital, store) of each location are
also provided. The attribute type of almost 30% of entries is
set to etc (i.e., locations that cannot be identified using the
rule-based approach of [1]). We manually look for their type
using their geographical coordinates and OpenStreetMap4

to compensate for this lack of data. Each entry also contains
the patient (identified by patient id, the same as in the Pati-
entInfo data set, and by global num, another ID used only in
this data set) that visited the location on a specific date. The
time spent in the location is not available. Locations visited
by a patient in a single day are logged in chronological
order.
SeoulFloating data set. This data set provides hourly data
of people moving across Seoul districts. Data are collected
from January 1 to May 31, 2020, by SK Telecom. Collected
data are grouped by gender, age, and district and allow
visualizing the movement of people in Seoul during this
period. Age is provided at the decade granularity for people
in their 20s through 70s. No information is provided for
children or for people who are 80 or older. As a result,
it is not possible to conclude on infections at education
facilities or directly model mitigation measures that include
school closings. This data set reports data on the entire

4. https://www.openstreetmap.org/

https://www.openstreetmap.org/
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(a) South Korea. Blue
points: hotspots.

(b) Seoul: Gangnam (blue) and Seocho
(green) districts.

(c) Top-10 most visited locations in Seoul. (d) Travels
between Gangnam
and Seocho.

Fig. 1: Most visited locations (and their type) in Seoul.
Movements between Gangnam and Seocho districts.

Seoul population, not just the COVID-19 patients, and only
considers those with cell phones.

3 DATA DISCOVERY: KCDC DATA

Although the information contained in the KCDC data sets
is not as accurate as one would like, it still allows for the
analysis of patient movements and interactions with high
accuracy. In this section, we discuss information and statisti-
cal data that we extract from the data sets and how it is used
to parameterize GeoSpread. All input parameterization data
for GeoSpread is given in the form of distributions [8].

3.1 Visited Locations

Figs. 1(a) and 1(b) depict heat maps of the most visited
locations in South Korea and Seoul, respectively, showing
where COVID-19 outbreaks are more likely to happen. Heat
maps in Fig. 1 also show the South Korean cities for which
movement data are recorded. Visibly, Seoul is the city with
the most visited locations. Within Seoul, the south-west and
south-east areas are those with more patient routes. The
financial district and company head-quarters are located
in the south-west part of the city. The south-east region
corresponds to the Gangnam and Seocho districts, outlined
in blue and green in Fig. 1(b), respectively. Many shopping
and entertainment centers are located in Gangnam. Fig. 1(c)
shows the ten most visited facilities in Seoul, with Hospi-
tal being the first one. This is mainly due to the KCDC
data set being obtained during the COVID-19 pandemic
by monitoring sick people. No information about schools is
available since this data set monitors only people in their 20s
through 70s. The scarcity of logged residential facilities is
due to privacy concerns. Fig. 1(d) illustrates the movement
of population between two neighboring districts, Gangnam
and Seocho that we use later in our model.

3.2 Patient Connections
Fig. 2(a) presents a subgraph of patient connections discov-
ered by linking the PatientRoute and PatientInfo data sets.
To improve visibility, we only present a small portion of
the entire graph. Here, nodes depict patients, black edges
connect patients that visited the same place during the
same day from the PatientRoute data set, and red edges
represent the virus spreading information obtained from
the PatientInfo data set (i.e., infected by attribute). Some
red edges do not overlap with black edges. This means
that, even if one of the two nodes connected by the red
edge infected the other, no connections (i.e., visits to the
same location during the same day) have been recorded
in the data set. The node degree in Fig. 2(a) shows the
contact degree among patients and illustrates visually the
complexity of the problem.

Patient connections can also be visualized in a hypergraph
(i.e., a generalization of a graph where an edge can cap-
ture common relationships between two graphs and offer
insights on the relationship between the graphs that have
common hyperedges). Here, we use hypergraphs to connect
information on two graphs, i.e., patients and locations, to
discover how many times patients come into contact and
at what locations. A small example can be seen in Fig. 2(b)
where a node represents a patient and a hyperedge represents
the connection between any number of patients who met at
a specific location on a specific date. Visually, a hyperedge
is shown as an edge that branches to connect two or more
patients. This allows us to look at gatherings of groups of
people, rather than just the binary relationship of whether
or not two individuals came into contact with one another.
Clusters of cases in Seoul can be seen in the hypergraph in
Fig. 2(c).

Fig. 2(d) shows a summary view of patient connec-
tions: the contact degree cumulative distribution function
(CDF) [8] of all patients for the entire dataset. Three CDFs
are shown: one for the whole South Korea, one for Seoul,
and another one for the Gyeongsangbuk-do province. Inter-
estingly, all CDFs have a similar shape. High contact degrees
indicate potential super spreaders (i.e., patients that infect
many other people). People who come into contact with
many others are not necessarily super spreaders since it is
unknown whether they were sick or healthy when contact
occurred. Further analysis is required to determine whether
or not a patient is a super spreader.

3.3 Super Spreaders
Fig. 3 illustrates a subset of patients where the infected by
relationship (i.e., patient A is infected by patient B) is known
from the PatientInfo data set. The entire graph contains 1052
patient nodes and 822 edges representing the known infec-
tion spread. For the sake of visibility, we present just a subset
of the entire graph. Red nodes correspond to individuals
with available route information who are known to have
infected others, green nodes correspond to individuals who
infected others but have no available route information, and
blue nodes correspond to patients who are not known to
have infected others. This particular subset shows a mix
of super spreaders (i.e., people who infected more than
six people) and low spreaders, who infected six or fewer
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(a) Patient connections (partial) (b) Hypergraph of connections (partial) (c) Hypergraph cluster (partial) (d) Contact degree CDF

Fig. 2: Patient contacts in Seoul (a)–(c) and contact degree at different levels of governance (d).

Fig. 3: Infection spread subgraph: Red nodes are patients with route information who infected others. Green nodes are
patients who infected others but do not have route information. Blue nodes are patients who did not infect anyone else.

people5. The large “fans” in this figure are indicative of
super spreaders. Using this classification of patients based
on the number of people they infect, we discover different
behaviors of super/low spreaders, shown in Fig. 4. Super
spreaders account for 3.59% and low spreaders account for
the remaining 96.41% of patients.

Fig. 4 presents frequencies (first row) and their respective
CDFs (second row) for different attributes of low- and
super-spreaders. Frequencies (a)–(d) show how likely low
and super spreaders infect a specific number of people,
appear in the logs for a given number of days, and visit
a specific number of unique or total locations, respectively.
CDFs (e)–(h) indicate that, in general, super spreaders tend
to be active for more days, visit more unique locations, and
have longer routes than low spreaders. Overall, these figures
show that all super spreaders in the data set are active for
three or more days and visit three or more unique locations.
Some of these super spreaders are active for up to 19 days
and visit up to 18 unique locations with route lengths of up
to 31 locations.

3.4 Daily Traveled Distance

Fig. 5(a) plots the density heat map of distance traveled by
patients in Seoul and the number of locations visited in a
day, two important features due to the vital nature of patient
movement to spread COVID-19. The darker the area, the
more patients have the same traveled distance and visited
locations. With some exceptions, people mostly travel short
distances and visit only a few locations each day. The CDF
of the daily traveled distance is shown in Fig. 5(b).

5. We define a “super spreader” as someone who infects at least
6 people. This allows us to divide the data set to obtain the most
noticeable difference in patient behavior (number of locations, number
of days, number of records).

3.5 Patient Mobility
Patient mobility is another important attribute to consider.
Intuitively, the more places a patient visits, the higher their
mobility is. Analyzing the mobility of patients in the KCDC
data set, there are days where individuals exhibit high
mobility and days where they move significantly less. This
leads us to a more usable definition of mobility as a function
of different time periods (days). Considering how many
unique locations are visited by all patients each day, we
observe that a typical patient visits 1–3 locations in the 88.9%
of days, and more than 3 locations in the remaining 11.1%
of days.

Defining a high mobility day as a day during which a
patient visits at least L locations, the mobility of a patient
is given as the ratio of the patient high mobility days to
all logged days for this specific individual, depicted in the
following equation.

Mobility =
# High Mobility Days

Total Active Days
. (1)

Note that this is not the only way to define mobility. For
simulation purposes (see Section 5), this definition provides
a practical way to capture mobility with a probability. Based
on the analysis of the KCDC data set, days with L ≤ 3
are considered of low mobility. The CDF of patient mobility
using the above definition is depicted in Fig. 6(a). The figure
shows that the mobility of 57.6% of patients is 0, i.e., those
patients never visit more than L = 3 unique locations in a
day since # High Mobility Days = 0, see Eq. (1).

Different classes of patients have different mobility.
Fig. 6(b) shows the difference in mobility between low and
super spreaders, while Fig. 6(c) illustrates mobility by age
groups. Super spreaders and young people have higher
mobility compared to low spreaders and seniors, respec-
tively. For higher percentiles, the low spreaders have higher
mobility than super spreaders due to the small number of
super spreader agents in the KCDC data set.
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Fig. 4: Super spreader analysis in Seoul.

(a) Density heat map (b) Distance CDF

Fig. 5: Daily traveled distance and unique locations visited
in Seoul.
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Fig. 6: Patient mobility in Seoul.

3.6 Irresponsible Behaviors

Patients may behave irresponsibly when they keep moving
after the onset of their first COVID-19 symptoms, which
facilitates the diffusion of the disease. We present how long
all sick people continue to show mobility after exhibiting
symptoms, see Fig. 7. The figure shows that only 20% of
patients stop moving and isolate immediately after initial
symptoms are observed. Many patients, see Figs. 7(a)–(c),
may go to a pharmacy or hospital after showing symptoms,
indicating that a few movements after onset is not necessar-
ily irresponsible. Some patients, however, keep moving for
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Fig. 7: Irresponsible behavior of sick patients in Seoul.

more than a week after the onset of symptoms, see Fig. 7(d).
They also visit many locations; Figs. 7(e) and 7(f) show the
number of unique and total locations that sick patients visit
after initial symptoms are observed.

Summarizing, the answer to RQ1 is as follows.
RQ1: Information from the KCDC Logs

We analyze movement habits of Seoul patients apply-
ing statistical analysis and descriptive statistics to the
KCDC data sets. Patient connections, super spreaders,
and irresponsible behaviors are examples of informa-
tion that is not directly provided in the data sets, but
can be obtained by manipulating the available data.
These distributions are used as input to GeoSpread.
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4 THE BERLIN DATA SET

TABLE 1: Area and population of Seoul and four German
cities considered for comparison and cross-fertilization.

City Country Area (sq mi) Population (12/2021)
Seoul SK 233.67 9 443 722
Berlin DE 344.10 3 677 472
Dusseldorf DE 83.94 619 477
Kelheim (district) DE 412.00 123 899
Leipzig DE 114.81 601 866

In spite of the detailed data provided in the KCDC data
sets, there is still a lot of unavailable information which
is necessary for understanding how COVID-19 spreads in
an urban environment. In this section, we compare distri-
butions of different characteristics of human mobility from
Seoul, with distributions from German cities and districts
(i.e., Berlin, Dusseldorf, Kelheim, and Leipzig) with different
areas and population, see Table 1. We focus on commonalities
in movements of individual in Seoul and in German cities
that can be used as a basis. After determining the German
city (i.e., Berlin) whose population behavior better matches
the one of people in Seoul, we extract new information
to cross-fertilize the statistical data of the KCDC data set.
Cross-fertilization across data sets is common in the broader
systems area, where similarities across data sets are explored
to fill-in missing data [9, 10, 11, 12, 13, 14].

In the following, we describe in detail the Berlin data
set [3] that we use to cross-fertlize the KCDC log. Note
that data sets of other German cities are similar to the
Berlin one. The Berlin data set contains movement logs
obtained by monitoring people that visited Berlin before the
COVID-19 pandemic, during business days and weekends.
It provides demographic data of all monitored people, the
public transportation used by people for their movement,
and the type and capacity of all visited facilities. Here, we
consider movement logs collected during business days by
observing people whose actions are located only in Berlin.
Fig. 8 shows the most active district of Berlin, i.e., areas of
the city that appear more frequently in the Berlin data set.

Fig. 8: Heat map of the most visited Berlin locations.

EventWeekdays data set. People’s movements over 30
hours are logged in this data set, where almost 6 million
activities are recorded from start to finish. For each entry, the
timestamp (in seconds) is provided as well as the type of entry
(i.e., start for activities that begin or end for activities that are
completed) and the person to which the activity is associated.
For this analysis, we use only logs from people that never
leave Berlin during the observation period, i.e., 67% (i.e.,
3,919,990 entries) of this data set. All activities in this data set
represent a visit to a facility or the usage of public transport.
In the former case, facility id and link id allow associating

the entry to a venue, while the actType attribute specifies
the type of activity performed in that location (e.g., home,
school, work). When an entry refers to a transport activity, it
provides the vehicle attribute with the ID of the vehicle that
is used for moving.
Demographic data set. This data set contains information
about each person (i.e., more than 1.2 million people) whose
activities have been logged in the EventWeekdays data set.
Specifically, age and gender for all people is provided as well
as their home district, home id, and home coordinates. The
home district attribute contains one of the 401 administrative
districts of Germany. Here, since we focus just on Berlin, a
metro area similar to Seoul, we consider people who do
not leave Berlin during the observation period. Therefore
only 55% (671,256) of the original data set is analyzed.
The home id attribute associates each person in the data set
to their home-place, while the coordinates attribute allows
placing each building on a map with an accuracy of 500
meters.
FacilityType data set. This data set contains all 631290
facilities visited in the EventWeekdays data set. The 75%
(476,572) of these venues are located in Berlin. Univocal id
and link id attributes are associated to all entries of this
data set for the identification of each facility. Coordinates
(using the EPSG:25832 coordinate reference system) are also
associated to each venue. This allows placing each venue on
a map. Functions (e.g., home, school, work) are associated
to each facility depending on the activities that are carried
out within that venue. Note that multiple functions can
be associated to the same building. For each function of a
facility, a capacity attribute (i.e., the maximum number of
people that can occupy the facility doing the same activity)
is also provided.
PublicTransport data set. This data set records vehicles
used for public transportation. An id and a type (e.g., bus,
metro, tram) are associated to each vehicle. Many people
use public transportation: 1,791,061 movements are logged
in this data set.

4.1 Similarities of KCDC and German Data Sets

KCDC and German (i.e., Berlin, Dusseldorf, Kelheim, and
Leipzig) data sets allow retrieving information and at-
tributes (e.g., Age Group, Travel Distance, Unique Loca-
tions, and Contact Degree) that can be used for comparing
movement habits of Seoul patients to those of German in-
habitants. Besides visual and statistical (i.e., mean value and
standard deviation) analyses, three widely used [15, 16, 17]
statistical hypothesis tests (Mann–Whitney or MW, Pear-
son’s chi-squared or CS, and Kolmogorov-Smirnov or KS)
are considered to evaluate the goodness-of-fit of KCDC
and German movement attributes defined by their CDFs.
We use these tests to determine which German city is
the most similar to Seoul in terms of movement habits,
i.e., travel distance, unique locations, and contact degree
attributes. For all these tests, the null/alternative hypothesis
is that the two models are defined by identical/different
distributions. The Mann–Whitney test is not affected by
outliers since it evaluates the center of the distributions.
The Pearson’s chi-squared test evaluates similarities along
the whole distributions by considering sample frequencies.
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Fig. 9: Daily presence of different age groups in Seoul and
Berlin. The y-axis of both figures is normalized over the total
number of people monitored in each city.

The Kolmogorov-Smirnov test considers the CDFs of both
groups and their maximum distance. We further evaluate
the similarity of KCDC and German data sets using the
Kullback-Leibler divergence test (KL or relative entropy), i.e.,
a statistical distance measure used in the literature [18]. The
analysis of the Age Group parameters is only visual since
no distribution is provided for this attribute. Moreover, the
Berlin data set is the only one providing enough data to
carry out such analysis. In the following, similarities and
differences of KCDC and German attributes are analyzed
and described in detail.
Age Group. Fig. 9 depicts Seoul and Berlin population
floating during a business day. Data is grouped based
on people’s age with decade granularity. For the sake of
comparison, since the number of observations in the two
data sets is different, all values are normalized over the
maximum number of people monitored in each city. Table 2
reports the average daily presence observed for each age
group to highlight similarties and differences between the
KCDC and Berlin data sets. No comparison between Seoul
and Dusseldorf, Kelheim, or Leipzig population is given
since population age is not reported in the data sets of these
German cities and districts.

The SeoulFloating data set monitors people that are in
their 20s through 70s for both healthy and sick individuals.
As a result, this data set is valuable for comparison to
the Berlin data set. We investigate the population habits
from January 1, 2020, to May 31, 2020 by age group, see
Fig. 9(a). Fig. 9(b) provides information on movements of
people living in Berlin. Differently from the KCDC data set,
in this case also people younger than 20 or older than 79
are monitored, see dashed lines. Overall, Seoul and Berlin
experience similar people floating dynamics, probably due
to both cities being the capital and the main economic
center of their country. Specifically, the normalized number
of people that are between 60 and 79 is similar in both cities

TABLE 2: Average daily presence of different age groups in
Seoul and Berlin.

Data set Age Groups
0s 10s 20s 30s 40s 50s 60s 70s 80s 90s

Seoul – – 0.86 0.96 0.96 0.90 0.60 0.46 – –
Berlin 0.64 0.48 0.85 0.97 0.81 0.90 0.59 0.42 0.23 0.21

and it tends to be flat during the day since the number
of working population in this age range is limited. Adults
and young-adults of both cities show also similar dynamics,
with the only exception of people in their 40s and 50s. The
normalized number of people that are between 40 and 49 is
larger in Seoul than in Berlin, but they float similarly in both
cities, i.e., they increase around 6 AM and decrease after 3
PM. The normalized average number of people in their 50s
that live in Seoul and Berlin is the same (i.e., 0.9), although
the two data sets present slightly different trends. Looking
at the Berlin data, it is also possible to observe that there
are not many people older than 80 and that their number
does not change during the day. The only age group whose
population decreases in the morning and increases in the
evening is the one representing kids younger than 10.
Daily Traveled Distance. Fig. 10(a) plots the CDF of daily
traveled distance (in miles) for people living in Seoul and
the considered German cities and districts (i.e., Berlin, Dus-
seldorf, Kelheim, and Leipzig). CDFs of Seoul and Berlin
populations match closely meaning that Korean patients
and Berlin inhabitants travel the same distance on a daily
basis. Specifically, 75% of people move less than 5 miles and
only a small percentage of the population travels more than
15 miles. People living in Dusseldorf and Kelheim travel
more than Seoul and Berlin inhabitants, possibly due to
facilities and businesses more spread on the territory. In-
stead, the Leipzig population moves less than 10 miles every
day. Table 3 reports mean value and standard deviation for
all data sets and shows that the Berlin data set is the one
whose average travel distance is closer to the one observed
in the KCDC data set. All considered statistical tests accept
the null hypothesis (i.e., samples are drawn from the same
distribution) with 95% confidence (i.e., p-value > 0.05)
only when comparing the distance traveled by Berlin and
Seoul inhabitants. The divergence test further confirms the
similarity between these attributes.
Unique Locations. Fig. 10(b) depicts the daily number of
unique locations visited by all monitored people in Seoul
and Germany. To compare observations from different data
sets, the attribute is normalized over the maximum number
of unique visits for each city. Differences between Seoul
and Dusseldorf population are noticeable when looking at
Fig. 10(b), with inhabitants of the German city visiting in a
day more unique locations than Seoul patients. Such differ-
ences are less visible when considering other German cities
(i.e., Berlin and Leipzig) or districts (i.e., Kelheim), with
Berlin and Kelheim having very similar CDFs except for
0.25 ≤ CDF ≤ 0.6, see the box inside Fig. 10(b). Therefore,
we leverage statistical analysis and hypothesis tests (i.e.,
Table 3) to determine which German city better matches
Seoul habits when considering this attribute. Specifically,
Seoul and Kelheim populations visit the same number of
unique locations on average, with Berlin and Leipzig show-
ing similar average values. The three considered tests do
not reject the null hypothesis with 95% confidence when
comparing Seoul observations to Kelheim and Berlin ones,
whereas the null hypothesis is accepted only by the Mann-
Whitney test (i.e., the test which evaluates only the center
of distributions) when the Seoul and Leipzig CDFs are com-
pared. The divergence test shows smaller relative entropy
when comparing Seoul unique locations to those of Berlin
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TABLE 3: Statistical analysis, hypothesis tests, and divergence test for parameters shared by the KCDC and German data
sets. Column 1 reports shared parameters; columns 2 and 4 show the mean value and standard deviation for the KCDC and
German data sets, respectively; column 3 reports the considered German data sets; columns 5–10 show results (i.e., statistic
and p-value) from three well known hypothesis tests, Mann-Whitney (MW), Chi-squared (CS), and Kolmogorov-Smirnov
(KS); column 11 shows results from the Kullback-Leibler (KL) divergence test. For each parameter, the German data set
that is more similar to the KCDC one is highlighted using Italic. The best results for each test is also highlighted using Italic.

Parameter Mean ± StD. German Mean ± StD. MW CS KS KLKCDC Data Set statistic p-value statistic p-value statistic p-value

Travel
Distance 2.79 ± 2.91

Berlin 2.90 ± 2.75 4833 0.68 1.55 0.82 0.17 0.81 0.01
Dusseldorf 4.86 ± 3.28 3491 2.28e-4 23.38 1.06e-4 0.40 0.02 0.08

Kelheim 9.63 ± 6.46 1802 5.51e-15 26.84 2.14e-5 0.63 5.80e-6 0.13
Leipzig 1.84 ± 1.11 6321 1.25e-3 40.51 3.30e-8 0.40 0.02 0.13

Unique
Locations 0.25 ± 0.14

Berlin 0.28 ± 0.12 4527 0.25 7.31 0.12 0.18 0.40 0.04
Dusseldorf 0.33 ± 0.15 3508 2.67e-4 11.8 0.02 0.30 0.02 0.12

Kelheim 0.26 ± 0.14 5037 0.93 7.31 0.12 0.18 0.40 0.04
Leipzig 0.22 ± 0.12 5584 0.15 40.75 3.03e-8 0.30 0.02 0.08

Contact Degree
(w/ outliers) 0.12 ± 0.13

Berlin 0.02 ± 0.03 7016 8.29e-7 15.39 3.95e-3 0.60 2.37e-5 0.14
Dusseldorf 0.13 ± 0.10 4731 0.51 2.96 0.57 0.17 0.81 0.04

Kelheim 0.03 ± 0.06 6974 1.18e-6 43.07 1.00e-8 0.53 2.93e-4 0.23
Leipzig 0.10 ± 0.10 4900 0.81 1.54 0.82 0.13 0.96 0.02

Contact Degree
(w/o outliers) 0.12 ± 0.13

Berlin 0.10 ± 0.18 4861 0.73 4.00 0.41 0.17 0.81 0.02
Dusseldorf 0.19 ± 0.22 3233 1.52e-5 11.56 0.02 0.50 9.00e-4 0.13

Kelheim 0.08 ± 0.17 5409 0.31 4.67 0.32 0.17 0.81 0.02
Leipzig 0.18 ± 0.23 3502 2.46e-4 10.87 0.03 0.43 6.55e-3 0.13
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Fig. 10: Movement habits of Seoul patients and Berlin in-
habitants. The number of unique locations (b) is normalized
over the total number of visited locations in each data set.

and Kelheim. These similarities might be due to the area of
Seoul, Berlin, and Kelheim (i.e., all larger than 200 square
miles), see Table 1.

Contact Degree. The analysis of how many people are met
by each person logged in KCDC and German data sets (i.e.,
contact degree) allows discovering relationships that can
facilitate the spread of the virus. Intuitively, the more people
a COVID-19 patient meets, the faster the virus can spread.
In the KCDC data set, no data is provided about the time
a patient visits a facility, only the date is known. For this
reason, their contact degree is computed as the number of
other people that visit the same facilities on the same day.
People’s movements in German data sets are provided with
their exact time. This enables a more precise evaluation of
the contact degree since we can determine who is in the
same facility during the same period. The contact degree
of inhabitants of Seoul and German cities is normalized
over the maximum number of contacts for each city and
compared in Fig. 11(a). Dusseldorf and Leipzig are the
German cities whose contact degree follows a distribution
similar to the Seoul CDF, whereas Berlin and Kelheim
show large differences with respect to Seoul. This is due

to a few individuals living in Berlin and Kelheim meeting
many other people, i.e., the tail of the CDFs is long. As
expected, when all monitored individuals are considered,
the statistical tests reject the null hypothesis when the KCDC
data set is compared to the Berlin or Kelheim ones. Instead,
Dusseldorf and Leipzig show promising results, with the
contact degree of Leipzig population being more similar to
the one of Seoul patients.

To further investigate how outliers (i.e., few people that
meet many others) impact the goodness-of-fit of Seoul and
German data sets, we also consider the contact degree of
German cities up to the 99th percentile to exclude possible
outliers from the analysis. Results are shown in Fig. 11(b),
where the contact degree observed in Berlin and Kelheim
is now closer to the one of Seoul patients. Such results
are confirmed by analyzing distributions of these data sets
with statistical tests. The null hypothesis is not rejected for
Berlin or Kelheim by any of the considered tests with 95%
confidence (i.e., p-value > 0.05).

Comparing movement habits of Seoul patients to habits
of inhabitants of German cities (i.e., Berlin, Dusseldorf, and
Leipzig) and districts (i.e., Kelheim) with different areas
and populations, we identify the Berlin data set as a good
candidate to cross-fertilize the KCDC data set. Besides close
similarities among movement habits of Berlin and Seoul
(that are confirmed by visual and statistical analysis, as
well as hypothesis and divergence tests), the Berlin data set
provides more information than other German data sets, i.e.,
Dusseldorf, Kelheim, and Leipzig data sets come without
any information about population age and floating.

4.2 Unique Characteristics of the Berlin Data Set
The prior analysis of KCDC and German data sets show
that Seoul and Berlin share many attributes, summarized in
the first section of Table 4. In addition to this, both data sets
also contain a wealth of unique characteristics. Unique dis-
tributions pertaining to the KCDC data set are summarized
in the second section of Table 4, and unique distributions
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TABLE 4: Main attributes, parameters, and information that can(not) be extracted from the KCDC and Berlin data sets.

Parameters Definition KCDC data set Berlin data set Simulation
Age Group (20–79) Daily presence of people in their 20s through 70s X X

Travel Distance Travel distance between two places X X X
Unique Locations Number of unique locations visited by an agent X X
Contact Degree Number of encountered people X X

Facility Type Type of facility visited by an agent X X
Super/Low Spreader Type of spreaders X X

Mobility Probability of leaving a building X X
Irresponsible Patients People that move around even if infected X X

Regional Habits Probability of visiting different districts X X
Age Group (19−, 80+) Daily presence of people younger than 20 or older than 80 X

Activity Type Type of activity carried out by an agent X
Minors Minors’ habits X

Activity Length Total time spent on staying in a building X X
Public Transport Types of vehicles used by agents X

Travel Habits Travel time and speed X X
Household Size Number of family members X X

Population Number of simulated agents X
Infection Rate Probability of a healthy agent to be infected X
Caution Level Agent willpower to leave their house X
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Fig. 11: Contact degree of Seoul patients and Berlin inhabi-
tants normalized (over the maximum value) for comparison.
Outliers are considered in (a) and discarded in (b).

pertaining to the Berlin data set are summarized in the third
section of Table 4.

While both data sets contain information about distance
traveled, the Berlin data set contains additional information
about travel time and speed. The probability density func-
tion (PDF) [8] of these attributes are depicted in Figs. 12(a)–
(b). The time spent for each travel is skewed towards small
values, each movement takes less than 10 minutes on av-
erage, and the 95% of travels is completed in less than 40
minutes. The PDF of speed shows a trimodal distribution:
the first and second peaks may represent people walking
at two different speeds (i.e., between 1.8 and 5 mph). The
last peak might be people using a vehicle to move. In this
case, people might move at a reduced speed (i.e., around
15 mph) due to the typical traffic of metropolitan cities.
One notable drawback of the KCDC data set is the lack
of fine-grained time stamps on patient routes. The KCDC
logs only contain the date and the order in which locations
were visited by that patient on that date. The Berlin data
set has detailed time stamps and records of the amount of
time spent performing a specific activity (e.g., shopping or
working). Fig. 12(c) shows the PDF of activity lengths, from
which it is visible that 50% of activities last only 2 hours
and, on average, activities are completed within 3.22 hours.

Since the KCDC data sets only contain information about
individuals with COVID-19 and route information is often

incomplete due to privacy concerns, no information can be
extracted about the number of people living together. On
the other hand, household size is available in the Berlin
data sets. This information is shown in Fig. 12(d). More than
50% of households are made of only one person, while the
average household size is less than 2. This might help to
limit the spread of COVID-19 through a household. These
unique characteristics have the potential to cross-fertilize the
information extracted from the KCDC data sets, and aid us
in modeling and understanding different factors of human
mobility that affect virus spread. CDFs of travel time, travel
speed, activity length, and household size are depicted in
Figs. 12(e)–(h) and fed to GeoSpread in Section 6 to study
the spread of COVID-19 in Seoul.

The answer to RQ2 can be summarized as follows.
RQ2: Cross-fertilization of Data Sets

Attributes of Seoul and Berlin data sets (i.e., one of the
available German data sets) generally follow similar
distributions. Moreover, the Berlin data set provides
information that are not contained in other German
data sets (e.g., daily presence of different age groups).
Therefore, the KCDC data set is enriched with Berlin
data to provide more information in the input of
GeoSpread.

5 AGENT-BASED MODEL

In this section, we show how to parameterize a simulation
based on GeoSpread [6]. The attributes, life cycle, and states
of an agent are shown in Fig. 13(a). The following attributes
are set during the initialization phase:

1) Infection status. One or more random agents are
selected as the initial case(s).

2) Position. Agents are randomly placed on a road in
the simulated area.

3) Speed. Speed determines how fast an agent moves
from one location to another and is selected ac-
cording to a distribution. Specifically, we sample
from the speed distribution from the Berlin data
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Fig. 12: PDFs and CDFs of unique features from the Berlin data set. (a)–(c) depict the mean value, the median, and the 95%
confidence interval of the continuous distributions. (d) reports the mean value and the standard deviation of the discrete
distribution. (e)–(h) depict CDFs of the four Berlin features.
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Fig. 13: Simulation life cycle and visualization.

set characterization to select an agent’s speed, see
Fig. 12(f).

4) Type of spreaders. We define two classes of spread-
ers: 3.59% of patients are super spreaders and
96.41% are low spreaders (see Section 3.3).

5) Mobility. We use the mobility of super spreaders
and low spreaders depicted in Fig. 6(b) to model
different types of patient mobility.

6) Home district and home building. We assign agents
a home building within their home district based on
Fig. 1(d). Agents select destination buildings in the
simulation depending on how agents move between

these districts, see Fig. 1(d).
7) Family size and family members. Agents are as-

signed family members who all live together in a
home building. While at home, agents are able to
infect family members they are in contact with. The
number of individuals in a family is determined by
sampling from the household size distribution in
Berlin described in Fig. 12(h).

In addition to the mobility distribution of super spreaders
and low spreaders, the CDF of daily traveled distance in
Fig. 5(a) is also used to determine the distance to a destina-
tion. The location type an agent will travel to is determined



11

by Fig. 1(c). The amount of time agents spend at a location
is determined according to Fig. 12(g). Simulation time is
defined by cycles. In each simulation cycle, agents outside
a building move along the road toward their destination;
agents inside a building can choose to stay or leave, based
on their mobility. Agents with high mobility have a high
probability to leave the building and visit many others. Note
that agents stay in a building for at least 15 minutes in order
to meet the definition of close contact6. If multiple agents are
inside the same building, they may infect each other with a
certain probability.

When infection happens, the agent state changes from
healthy to infected, as the state transition shown in
Fig. 13(a). We assume the outdoor infection probability
to be negligible. Given the probability of infection inside
a building, α, and the number of infected agents in the
building, n, the probability of a healthy agent to be infected
by a contact within the building is:

Pr(infection) = 1− (1− α)n. (2)

Note that the probability of infection defined by Eq. (2) is
nominal. Any model can be used here to capture the viral
load: the total number of people in the location, the duration
of interaction among individuals, the square footage of the
room, its air circulation, wearing a mask or not, see [3] for
examples on how to adjust Eq. (2).

It takes 1–14 days for patients to show symptoms af-
ter infection according to the WHO7. GeoSpread supports
any distribution (e.g., uniform, log-normal) to define the
transition of an individual from infected to symptomatic.
This allows capturing different scenarios and model future
variants of SARS-CoV-2 or different pathogens.

Since there exist patients who continue to move even
after showing symptoms, as seen in Fig. 7, we use the CDF
in Fig. 7(d) to determine the number of active days after
their first symptoms. After each infected person exhausts
their active days after infection, they are isolated.

Consistent with infectious disease simulation stud-
ies [19], we set the simulation cycle to 5 minutes. The
simulation stops either when all agents are infected or after
a number of cycles defined by the user.8

A summary of all distributions used for simulations is
recorded in the last column of Table 4. Note that we do
not directly incorporate patient age due to lack of detailed
infection-spread data, and we do not directly use the contact
degree and unique number of locations visited due to the
individual-centric nature of the simulations. Contact degree
and the number of unique locations visited are used for
validation since these are not explicitly used as parameters.
Tunable simulation parameters are listed in the last section
of Table 4.

We simulate the COVID-19 outbreak in the Seocho and
Gangnam districts, i.e., the region of Seoul with the most
hotspots, see Fig. 1(b). This area9 has 11,438 road intersec-

6. https://bit.ly/3FkLHRn
7. https://bit.ly/3EXl2Jh
8. In this simulation, we do not explicitly model agent recovery: a

recovered agent that resumes its mobility is considered immune and
non-contagious, therefore does not contribute to the disease spread.
The simulation can be trivially extended to model recovered agents
re-entering the simulation cycle.

9. https://bit.ly/3gWMD5g

tions and 7,043 buildings. GeoSpread loads the GIS data
(e.g., roads, road intersections, buildings) stored in a shape-
file format, i.e., a file that stores geometric locations and
their attribute information. Although the longest distance
we observe in the PatientRoute data set in Seoul is 30 miles,
the longest distance between two buildings in the simulated
Gangnam district is 7.06 miles. Therefore, we normalize
the maximum distance to 3.53, which is half of the longest
distance in the simulated area, to ensure a valid building
selection as the agent’s destination. In the Gangnam district
there are 604,586 people and a total of 7,043 buildings. We
do not have any information on building stories, entries, or
number of rooms. This information is crucial, especially for
apartment buildings, where multiple people can be inside
the same building at the same time without contact. To
address this lack of information, we limit the population
in our simulations. We validate parameter choices against
ground truth data in Section 6.

A screenshot of the GeoSpread simulation execution can
be seen in Fig. 13(b). Black lines are roads that agents travel
on and green areas are buildings where agents stop. Agents
only have two states in terms of infection, i.e., healthy (blue
dots) or infected (red dots). The box in the top-right corner
zooms on a detail of the GeoSpread view.

6 MODEL VALIDATION AND CASE STUDY

After presenting the generic GeoSpread tool in Section 5,
we showcase the flexibility of this simulation model. We
first validate the simulation using the ground truth and
show that GeoSpread can efficiently predict the temporal
evolution of COVID-19 cases in a given place. We investi-
gate the effect of each data distribution on the prediction
accuracy. Then, we compare GeoSpread to two state-of-the-
art approaches, i.e., mathematical [20] and an agent-based
model [3]. Hence, we use GeoSpread to simulate differ-
ent mitigation measures (i.e., stay-at-home advisory, border
lockdown, and vaccination) and assess their effectiveness.

6.1 Validation

We focus on agents moving between Seocho and Gagnam.
Fig. 1(d) shows the percentage of residents in these two
districts that have been infected, the figure also illustrates
the frequency of residents visiting buildings in their home
district, as well as visiting the other district. We use this
information to parameterize the simulation. During the
initialization phase, we separate the agents into Gangnam
residents (70.4% of the population) and Seocho residents
(29.6% of the population). Next, we retrieve the distributions
of agent mobility and spreader types from the data set for
residents of each district to set their attributes. After ini-
tialization, when selecting destination buildings, the prob-
ability of a resident staying or leaving their home district
follows Fig. 1(d).

Since two districts are considered in this simulation,
starting with only one infected agent in one of the two areas
could bias the results. Here, we start the simulation with
55 infected agents, i.e., the number of infections observed
from the data set on March 9, 2020, proportionally assigned
to agents in the two districts (29.6% in Seocho, 70.4% in

https://bit.ly/3FkLHRn
https://bit.ly/3EXl2Jh
https://bit.ly/3gWMD5g
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Fig. 14: Validation. Results are presented with 95% confi-
dence intervals (shaded areas).

Gangnam). We selected March 9, 2020 because mitigation
efforts in Seoul have yet to produce a noticeable effect on
disease spread, while also allowing us to clearly see trends.
Simulations starting at any time earlier or around March 9,
result in similar infection trends.

Fig. 14(a) depicts the number of COVID-19 cases in the
Gangnam and Seocho districts observed from the data set
(black line) and simulation (red and blue lines). The ground
truth line illustrates the COVID-19 outbreak in the two
districts. At the beginning of April, the curve flattens. This is
likely due to effective counter-measures executed in Seoul,
especially the Strong Social Distancing Campaign (i.e., stay-
at-home advisory) which began on March 22. Consistent
with the COVID-19 incubation timeline, the effectiveness of
the Strong Social Distancing Campaign does not show im-
mediately, but after the beginning of April. Our simulation
in Fig. 14(a) does not model the effect of social distancing
campaign so it is expected not to capture the knee of the
ground truth curve.

We align the beginning of simulation data to the time
of 55 infection cases in the ground truth, since this is the
starting point of the simulation. The two simulation lines
in Fig. 14(a) (whose 95% confidence interval is represented
by the shaded areas) closely follow the ground truth: the
simulation of population 10,000 with infection rate 0.004
and the simulation of population 20,000 with infection rate
0.002 are in excellent agreement with the ground truth from
March 26, 2020 to April 5, 2020, when the effects of any
counter-measures are not discernible yet. The overlap of
two simulation cases with the ground truth validates the
simulation. Different population and infection rate values
can be adopted, e.g., using the approach proposed in [21]
to estimate dynamic parameters from real epidemic trends.
The integration of dynamic parameters with GeoSpread is
left for future work.

(a) Ground truth (b) Simulation: 10K (c) Simulation: 20K

Fig. 15: Hotspots in the data set (ground truth) and model.
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Fig. 16: Validation of clusters and contact degree.

We note in Fig. 14(a) an interesting relationship be-
tween population and infection rate: when the population
is doubled, dividing the infection rate in half gives similar
simulation outcomes. This observation also meets the results
in the generic simulation that higher population leads to
faster spreading of the COVID-19 virus, while lowering the
infection rate slows down the virus spreading. We conclude
that we can use a “limited” population with an adjusted in-
fection rate to efficiently (yet accurately) model the expected
behavior of larger populations.

As further validation, we simulate the effects of applying
a stay-at-home advisory mid-simulation in order to cap-
ture the effects of the mitigation measures taken in Seoul
on March 22 – the Strong Social Distancing Campaign.
Fig. 14(b) depicts the results of these simulations (with 95%
confidence interval) against the ground truth. In this simula-
tion case, we begin with no mitigation measures and apply
a stay-at-home advisory once we reach a certain threshold
number of infections. Here, we select this threshold based on
the number of infections in the ground truth data when the
Strong Social Distancing campaign was enacted, however,
this threshold is a parameter and we can choose to transition
between no measures and a stay-at-home advisory at any
given number of infections. After applying the stay-at-home
advisory mid-simulation, the simulation results also exhibit
a flattening trend, which is consistent with the ground
truth. This further highlights the ability of the model to
capture what-if scenarios of different patterns of population
movement.

Next, we focus on hotspot locations. In Fig. 15(a), we
present the heat map of most visited locations in the
Gangnam and Seocho districts from the data set (ground
truth). The most visited areas are in the northern part of
Gangnam and across the border between the two districts.
These hotspots correspond to the density of commercial
buildings in these areas, which results in higher traffic areas.
Figs. 15(b) and 15(c) show the heat map of visits in the
first week for simulated populations of 10,000 and 20,000,
accordingly. From both simulations, we observe similar
hotspots, consistent with the ground truth heat map.
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Fig. 17: Effects of removing parameters or using simpler
distributions.

Additionally, we examine properties of clusters (i.e. out-
breaks) in the ground truth KCDC logs and the simulations.
Fig. 16(a) depicts the number of patients seen in infection
clusters in a 7-day sliding window. Fig. 16(b) shows the
number of unique locations visited by patients in infection
clusters in a 7-day sliding window. Finally, we can see
the contact degree between patients over seven days in
Fig. 16(c). The similarity of these curves further validates
the accuracy of the simulation.

Here, we consider the effects of the different distribu-
tions on the simulation accuracy. To this end, we either
remove an input parameter from the simulation or utilize
a more generic distribution (i.e., Uniform) for sampling.
When using the Uniform distribution, we assume to know
the approximate minimum and maximum values, but no
further information. Results are presented in Fig. 17. The
simulation matches the ground truth closely only when all
data distributions and mitigation measures are considered.
Larger errors are detected when (i) low and super spreaders
are not considered, (ii) when irresponsible behaviors, i.e.,
mobility after symptoms onset, are neglected, and (iii) when
the location type is selected from a Uniform distribution.

In Fig. 18, we compare GeoSpread to two other models:
the Kermack-McKendrick Susceptible-Infected-Recovered
(SIR) model [20] as well as a state of the art agent-based
model [3]. While both models achieve reasonable accuracy,
it is important to highlight that both have shortcomings for
our particular case. The SIR model cannot take into account
spatial information and this cannot be used to simulate
situations such as border lockdowns (see Section 6.2 for
using GeoSpread to evaluate this scenario). Additionally, it
is not suited for analyzing different classes of patients, such
as super spreaders. On the other hand, the state-of-the-art
ABM is able to perform this kind of analysis, however, this
model requires synthetic traces to achieve its results. The
results shown here are based on a synthetic mobility trace
constructed using GeoSpread, and achieves high accuracy
since GeoSpread accurately captures patient mobility.

6.2 Applying mitigation measures
We now turn to the evaluation of the effectiveness of
counter-measures. We first consider stay-at-home advisory
that allows for only essential activity outside of the agent’s
domicile. On average, agents stay at home for longer peri-
ods time under the advisory, but are are permitted to leave
periodically. The probability of leaving home is set to 20%
of the agent’s mobility. This can be tuned to simulate a
stricter (or more relaxed) stay-at-home advisory. Once the
agent arrives at the destination building, the probability of
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Fig. 18: Results from a state-of-the-art ABM [3] and a math-
ematical model (SIR) [20]: comparisons with ground truth
and GeoSpread.
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Fig. 19: Comparison of mitigation measures.

leaving the building is defined by the mobility without any
additional scaling (i.e., the time spent outside the domicile
is not affected).

In addition to this counter-measure, we also consider
strict district border control between the Gangnam and
Seocho districts, i.e., forbid movements between these two
areas entirely. With a strict border control between these
two districts, agents can only stay in their home district:
the probability of leaving their home district is set to 0. We
simulate these two mitigation measures under population
10,000, see Fig. 19(a) where all results are shown with 95%
confidence intervals. First, the application of a stay-at-home
advisory decreases the rate of virus spread in comparison
to the baseline scenario where no counter-measures are
applied. The strict border control offers a mild mitigation
measure comparing to the baseline scenario.

Other mitigation measures (e.g., [22, 23, 24]) can be
evaluated by tuning available parameters to simulate dif-
ferent behaviors of the population. For example, the effect
of counter-measures that limit the transmission of the virus
(e.g., face masks) can be studied by changing the parameter
Infection Rate, see Table 4.

Finally, we consider the effects of vaccination. We con-
sider the situations where 75% and 100% of the population
are vaccinated, with the vaccine being 50% and 75% effec-
tive. The four variations are compared against simulations
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with no mitigation measures in Fig. 19(b). We see that a more
effective vaccine is very important to slowing the spread of
the virus when much of the population receives the vaccine.
All cases see notable improvement over the baseline case.

The answer to RQ3 is given in this section and is sum-
marized below.

RQ3: Efficiency and Accuracy of GeoSpread

Despite its simple input parameters, GeoSpread pre-
dicts accurately the spread of COVID-19 in two Seoul
neighborhoods. Other mathematical and agent-based
models may achieve similar accuracy but they have
shortcomings: they cannot assess mitigation measures
and need an actual synthetic trace as input. GeoSpread
uses as input empirical distributions extracted from
available data sets and can evaluate an array of
counter-measures (e.g., stay-at-home advisory, border
lockdown, and vaccinations).

7 DISCUSSION AND LIMITATIONS

The proposed model captures the spread of COVID-19 in
an urban setting. Although the model is validated using
ground truth, incomplete and/or missing data may limit
its generalization and make it far from being the defini-
tive COVID-19 spreading model. Main limitations of our
approach include:
First wave data. This data is from the first wave in the
disease in South Korea. With South Korea having one of the
best responses to the disease globally, the mobility patterns
reflect inevitably cultural and demographic characteristics
as well as policy decisions.
Privacy concerns. The KCDC data set is anonymized and
no sensitive data of monitored patients can be retrieved. No
data about the underage population is provided as well as
movements of patients from/to their private homes. In or-
der to help address this problem, we examine distributions
from the Berlin data set regarding household size, but this
problem still limits the scenarios that can be analyzed, e.g.,
the impact of school closures.
Transportation assumptions. The KCDC data set does not
show the transportation mode of patients. We overcome this
limitation by extracting such information from the Berlin
data set. The Seoul and Berlin data sets present comparable
attributes and can be used for cross-fertilization.
Data set volume. Despite more than 9.5 million people
lived in Seoul in 202010, movements of only 4004 unique
patients are logged in the KCDC data set. This might give
rise to doubts on the representativeness of the data set.
Although data sets with more information about move-
ments of Korean people are not available, we verify that
the information extracted from the KCDC data set (i.e.,
distributions presented in Section 3) is emblematic of the
population of a metropolitan city by comparing it with the
information from the German data sets [3] which collects the
movements of millions of individuals in Germany before the
COVID-19 pandemic. We compare movements and habits of
Seoul patients with those of the Berlin, Dusseldorf, Kelheim
(district), and Leipzig. These data sets are suited for this

10. https://bit.ly/3AZhe99

analysis since they monitor movements of millions of people
through their cellphones (i.e., provide person-centric data)
but cannot be used to validate GeoSpread since they do not
include information about the virus spread.

8 RELATED WORK

The COVID-19 pandemic has been studied extensively in
recent months due to its disruptive effects. Different ap-
proaches have been adopted to increase our knowledge
on the pandemic. Bao et al. [25] propose COVID-GAN, a
framework that allows generating human mobility traces
when different real-world conditions apply (e.g., local poli-
cies and disease severity). Pung et al. [26] interview COVID-
19 patients in Singapore to collect epidemiological/clinical
data to study the spread of the virus in three different
Singapore clusters, this approach by its nature can be applied
to populations of a small scale only. Blockchain is used
to deploy a contact tracing system [22] and to predict the
pandemic evolution from real-time data [23], Internet-of-
Medical-Things is adopted to limit the contagion while
gradually lifting restrictions [24]. A co-location model is
used in [27] to study the spread of SARS-CoV-2 with limited
data. Contreras et al. [28] use a numerical simulation to
evaluate the efficiency of a test-trace-and-isolate strategy in
containing the COVID-19 pandemic in Germany. An ML-
based framework is proposed in [21] to estimate dynam-
ically changing values (i.e., contact, recovery, and mortal-
ity rates) of a SIRD epidemiological model (acronym of
Susceptible, Infected, Recovered and Deceased individual)
starting from available mobility data and epidemic trends.
Epidemiological models study how an infection spreads on
a larger scale and are either mathematical or agent-based.

Mathematical models are defined by a set of equations
that allow describing the evolution of the disease [29]. Ker-
mack et al. [20] develop a SIR model based on differential
equations to study the spread of diseases. SIR models are
widely adopted in the literature. Since they do not consider
spatial attributes, the analysis of space-related scenarios is
not supported. Bi et al. [30] use conditional logistic regres-
sion to study the transmission of COVID-19 in Shenzhen,
China. Using data from contact-based surveillance and ac-
curate infector-infectee relationships, they confirm that, on
average, COVID-19 has an incubation period of less than a
week and a long clinical course. Rader et al. [31] evaluate
the socio-economic and environmental aspects of a region
affect the spreading of COVID-19 but do not focus on the
actual virus spread.

Pejó and Biczók [32] use game theory to evaluate the
efficiency of face masks and social distancing in limiting the
spread of COVID-19 when some selfish patients do not use
any counter-measures. Bhattacharyya and Bauch [33] use
game theory to study the efficiency of protective vaccines,
i.e., the safest way to achieve herd immunity [34].

Agent-based models (ABMs) are a simulation-based
alternative of mathematical models that incorporate human
interactions [35]. ABMs are widely used in the literature to
successfully model the spread of diseases [36].

Ferguson et al. [37] model the spread of influenza in
British and American households, schools, and workplaces.
Their simulations are parameterized using census and land

https://bit.ly/3AZhe99
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use data as well as air travel patterns. Note that the above
work considers only large scale (international) population
movements. ABMs parameterized by census data have been
used to capture the spread of COVID-19 in Australia [38].
Using census and age-distribution data from Germany and
Poland, Bock et al. [39] investigate the efficiency of mitiga-
tion strategies by accounting for interactions within house-
holds where it is hard to social distance. Almagor et al. [40]
use an ABM to evaluate the effectiveness of contact tracing
app to limit the spread of COVID-19. Kim et al. [19] use
synthetic, location-based social network data to study out-
breaks and evaluate the effectiveness of different mitigation
strategies, especially how social behaviors affect the virus
spread. ABMs are used also to model the spread of SARS-
CoV-2 in small areas, e.g., supermarkets [41]. Differently from
our approach, no fine-grained movement data is used in any of the
above works. The above models are parameterized using census or
synthetic data while population movement habits are captured at
a coarse granularity.

Müller et al. [3] use an ABM parameterized with mobil-
ity traces from mobile phone data for public transportation
applications to study the COVID-19 outbreak in Berlin. This
work is the closest to the one presented here but does not
have any detailed statistics on agent mobility during the
pandemic.

Here, we extract human movement habits and dynamics from
the KCDC data set of real COVID-19 patients. Statistics on
patient mobility, traveled distance, and visited locationare used
to tune GeoSpread and model the COVID-19 outbreak in two
districts of Seoul. Agent movements and behaviors are simulated
using the statistics of actual human movements, other structures
(e.g., networks or graphs) are not required. GeoSpread allows the
investigation and identification of mitigation strategies.

9 CONCLUSIONS

Information and routes of South Korean COVID-19 patients
are analyzed to study the disease outbreak in the Gang-
nam and Seocho districts of Seoul. We enrich this analysis
by analyzing detailed mobility data of four German cities
and districts, i.e., Berlin, Dusseldorf, Kelheim (district), and
Leipzig. Movement habits in South Korea are extracted
from available data sets (i.e., the KCDC dataset cross-
fertilized with the Berlin one) to parameterize simulations
in GeoSpread, our tool based on ABM and GIS, and to study
interactions among people. Simulation results are in excel-
lent agreement with ground truth and show that this model
can be used to flexibly examine and evaluate a wide variety
of different scenarios based on different human mobility
patterns from real-world data. While we do not claim that
it is a definitive COVID-19 spread model, GeoSpread can be
used to investigate useful what-if scenarios. We plan to (i)
expand the simulation model to capture more details on a
wide variety of mitigation measures, (ii) extract additional
information from the data in [3] to investigate the impact
of public transport and minors’ movement habits on the
COVID-19 pandemic, and (iii) include dynamic parameter
computation in GeoSpread.
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