In this paper we deal with the Cauchy problem for the incompressible Euler equations in the three-dimensional periodic setting. We prove non-uniqueness for an L2-dense set of Hölder continuous initial data in the class of Hölder continuous admissible weak solutions for all exponents below the Onsager-critical 1/3. Along the way, and more importantly, we identify a natural condition on “blow-up” of the associated subsolution, which acts as the signature of the non-uniqueness mechanism. This improves previous results on non-uniqueness obtained in (Daneri in Comm. Math. Phys. 329(2):745–786, 2014; Daneri and Székelyhidi in Arch. Rat. Mech. Anal. 224: 471–514, 2017) and generalizes (Buckmaster et al. in Comm. Pure Appl. Math. 72(2):229–274, 2018).

Non-uniqueness for the Euler equations up to Onsager’s critical exponent

Daneri Sara;Runa Eris;
2021-01-01

Abstract

In this paper we deal with the Cauchy problem for the incompressible Euler equations in the three-dimensional periodic setting. We prove non-uniqueness for an L2-dense set of Hölder continuous initial data in the class of Hölder continuous admissible weak solutions for all exponents below the Onsager-critical 1/3. Along the way, and more importantly, we identify a natural condition on “blow-up” of the associated subsolution, which acts as the signature of the non-uniqueness mechanism. This improves previous results on non-uniqueness obtained in (Daneri in Comm. Math. Phys. 329(2):745–786, 2014; Daneri and Székelyhidi in Arch. Rat. Mech. Anal. 224: 471–514, 2017) and generalizes (Buckmaster et al. in Comm. Pure Appl. Math. 72(2):229–274, 2018).
File in questo prodotto:
File Dimensione Formato  
2021_AnnPDE_7_Daneri.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 653.48 kB
Formato Adobe PDF
653.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/25723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact