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Abstract. In this paper we deal with the Cauchy problem for the in-
compressible Euler equations in the three-dimensional periodic setting.
We prove non-uniqueness for an L2-dense set of Hölder continuous ini-
tial data in the class of Hölder continuous admissible weak solutions for
all exponents below the Onsager-critical 1/3. Along the way, and more
importantly, we identify a natural condition on “blow-up” of the asso-
ciated subsolution, which acts as the signature of the non-uniqueness
mechanism. This improves previous results on non-uniqueness obtained
in [11, 12] and generalizes [3].

1. Introduction

In this paper we address the Cauchy problem for the incompressible Euler
equations 

∂tv + div (v ⊗ v) +∇p = 0 in T3 × (0, T )

div v = 0 in T3 × (0, T )

v(·, 0) = v0(·) in T3

(1.1)

on the three-dimensional torus T3, where v : T3× [0, T ]→ R3 is the velocity
field of the fluid and p : T3 × [0, T ]→ R the pressure field.

We are interested in admissible weak solutions to (1.1), namely weak
solutions v ∈ C([0, T ];L2

w(T3)) such thatˆ
T3

|v(x, t)|2 dx ≤
ˆ

T3

|v0|2 dx. (1.2)

The above is a very natural physical condition, which assuming the velocity
field is in C1 (namely the solution is classical) implies uniqueness among
all weak solutions which satisfy (1.2). This is the well-known weak-strong
uniqueness phenomenon, which holds even among measure-valued solutions
[1]. For L∞ weak solutions, it has been instead shown in [16] that infinitely
many admissible solutions can have the same initial datum. Such L∞ initial
data are the so-called “wild” initial data and are dense in L2 (see [32]).

A natural question is whether there exists a regularity threshold above
which admissibility implies uniqueness and below which non-uniqueness may
occur. We treat this question in the class of Cβ-weak solutions, that is, weak
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solutions which are Hölder continuous in space with exponent β, so that

|v(x, t)− v(y, t)| ≤ C|x− y|β ∀ t ∈ [0, T ], x, y ∈ T3 (1.3)

for some constant C. According to the celebrated Onsager’s conjecture
[29], Cβ-weak solutions of the Euler equations conserve the total kinetic
energy if β > 1/3, but anomalous dissipation of energy may be present if
β < 1/3. Recently this conjecture has been fully resolved (we refer to [21, 9]
for the case β > 1/3 and to [23, 3] for the case β < 1/3, and the extensive
references therein). Our aim is to extend the results in [23, 3] and show
that “wild” initial data is L2-dense in the class of Cβ-weak solutions, which
are admissible in the sense of (1.2). To state our result more precisely, we
introduce the following

Definition 1.1. Given a divergence-free vector field v0 ∈ Cβ0(T3), we say
that v0 is a wild initial datum in Cβ if there exist infinitely many weak
solutions v to (1.1) on T3 × [0, T ] and satisfying (1.2) and (1.3).

Our main result is the following.

Theorem 1.1. For any 0 < β < 1/3, the set of divergence-free vector fields
v0 ∈ Cβ(T3; R3) which are wild initial data in Cβ is a dense subset of the
divergence-free vector fields in L2(T3; R3).

Previous work on existence and density of wild initial data has been done
in [16, 32] for bounded L∞ weak solutions, and in [11, 12, 24, 14] for Hölder
continuous weak solutions. The underlying idea in is the following: iteration
schemes based on convex integration, as in [15, 18, 19, 2, 23, 3], start with
a subsolution (see Section 3 below) and, by a sequence of high-frequency
perturbations produce weak solutions of the Euler equations in the limit.
Thus, analogously to the celebrated Nash-Kuiper isometric embedding the-
orem [28] (see also [10]), such schemes not only produce one weak solution,
but automatically a whole sequence of weak solutions, which converge weakly
to the initial subsolution - this is referred to as a weak form of h-principle.

In fluid mechanics terms the subsolution can be interpreted as an aver-
aged, coarse-grained flow, with perturbations acting as fluctuations. This
interpretation is explained in detail in the surveys [17, 30, 20]. For the
Cauchy problem the notion of subsolution then needs to be modified so
that, at the initial time t = 0, the subsolution already agrees with the solu-
tion, implying the vanishing of the Reynolds stress term: |R| → 0 as t ↓ 0.
Conversely, in any example involving convex integration, the existence of a
strict subsolution for any given initial datum is the key information leading
to non-uniqueness, and in many cases the question of non-uniqueness for
the Cauchy problem can be cast as an existence problem for a certain type
of subsolution, see e.g. [31, 27], where the key issue is to construct suitable
subsolutions to 2D vortex sheet initial datum, and e.g. [6, 7, 26], where
non-uniqueness in compressible Euler systems is reduced to existence of a
“fan-”subsolution. At this point it is also worth mentioning that existence
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of non-Dirac measure-valued solutions (which can be seen as strict subsolu-
tions) can also act as signature of non-uniqueness in numerical simulations
[22]. In line with this research direction, our principal aim is to analyze non-
uniqueness in Hölder-spaces on the level of a suitable notion of subsolution.
Our main finding in this respect is that, roughly speaking, non-uniqueness

of weak solutions on the C1/3− scale follows from the existence of a smooth
subsolution with spatial C1 norm blowing up as |∇v| ∼ |R|−1− as t ↓ 0, in
agreement with the Onsager-criterion for energy conservation [9], requiring
a uniform bound on |∇v||R|. For the precise statement we refer to Definition
3.3 and Corollary 3.1 below.

Our strategy is based on the “double convex integration” method intro-
duced in [16] and adapted to the Hölder setting in [11, 12]. We recall that
in [11] the first author was able to show the existence of infinitely many
1/10
− Hölder initial data which are wild in the sense that to any such initial

datum there exist infinitely many 1/16
− Hölder solutions satisfying (1.1).

Then, based on the uniform estimates in [2] for obtaining 1/5− weak solu-
tions, in [12] the authors were able to show the statement of Theorem 1.1
above for all β < 1/5. In this paper we adapt the technique used in [12]
and combine with the convex integration scheme presented in [3] in order
to prove Theorem 1.1. We note in passing that if one is only interested in
proving the non-uniqueness l’art pour l’art, simpler strategies exist, see for
instance [5, 13, 4]. A different strategy has been used in [24], where infin-
itely many strictly dissipative solutions satisfying a local energy inequality
and with C0-dense initial data are constructed. The solutions constructed
in [24] are of a lower Hölder regularity.

A few words on our proof. As in [12] we rely on the notion of adapted
subsolution, which quantifies the relationship between loss of regularity and
the size of the Reynolds stress term. In order to reach any exponent β < 1/3
we use the gluing technique introduced in [23] in combination with Mikado
flows, introduced in [12]. Although naively one might expect that the step
from 1/5 to 1/3 should be a minor technical improvement, based on the im-
provements from the construction of 1/5-Hölder admissible weak solutions in
[2] to 1/3-Hölder admissible weak solutions in [3], there are a couple of sub-
stantial difficulties we needed to overcome. The main new challenge stems
from the fact that, whilst the construction in [2] (used in [12]) is purely
kinematic, making the time-localization rather straight forward, the con-
struction in [3] has a crucial dynamic component (the “gluing argument” of
Isett introduced in [23]). This leads to the following difficulties:

• A consequence of the gluing technique of Isett in [23] is that, along
the scheme, one does not have uniform control over the energy (and
the energy gap). Indeed, this lack of control of the energy profile led
to the conjecture that for such weak solutions the time-regularity
should generically be minimal (see [25]). Whilst this lack of energy
control was overcome in [3], for our purposes, where no uniform lower
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bound on the energy gap is available, additional ideas are required.
In particular in our scheme the mollification step has to be done with
a time-dependent parameter.
• In the schemes in [2, 3, 12] the presence of high-frequency oscilla-

tions immediately leads to the approximation result and hence to
non-uniqueness. In this case, in contrast with [12], in order to ap-
proximate in a weak norm we need to take as in [2, 3] arbitrarily
small parameters for the energy gap at the initial step of the convex
integration scheme. However, since we want to keep the initial da-
tum fixed, we cannot use a pure rescaling argument. To overcome
this problem requires introducing an additional step in passing from
adapted subsolutions to weak solutions (see Corollary 4.2).

This paper is organized as follows: In Section 2 we set the notation and
recall from [12] the construction of the Mikado flows. In Section 3 we define
the different notions of subsolutions (namely, strict, strong and adapted),
we state the main Propositions allowing to approximate one concept of sub-
solution with another one and in the end we show how to obtain from such
propositions the main Theorem 1.1. In Section 4 we show how to approxi-
mate a strict subsolution with a strong subsolution. Sections 6 and 7 contain
respectively the localized gluing and localized perturbation steps needed in
the double convex integration scheme. In Section 8 we show how to obtain
an adapted subsolution from a strong subsolution and in Section 9 how to
construct solutions with the same initial datum of an adapted subsolution.

Acknowledgements. L. Sz. gratefully acknowledges the support of Grant
Agreement No. 724298-DIFFINCL of the European Research Council.

2. Preliminary results

2.1. Notation. Throughout this paper our spatial domain is T3 = R3/(2πZ)3

the three-dimensional flat torus.

We denote by S3×3 the set of symmetric 3 × 3 matrices, S3×3
0 is the set

of symmetric trace-free matrices, S3×3
+ are the symmetric positive definite

ones and S3×3
≥0 are the symmetric positive semidefinite ones. Given a matrix

R ∈ S3×3, we denote by trR its trace and we often use the decomposition

R = 1
3trR Id + R̊ = ρ Id + R̊,

where R̊ ∈ S3×3
0 is the traceless part of R (the projection of R onto S3×3

0 )
and Id denotes the 3× 3 identity matrix.

We recall the usual (spatial) Hölder spaces. Let m = 0, 1, 2, . . . , α ∈ (0, 1)
and θ is a multi-index. For f : T3 × [0, T ] → R3 we denote by ‖f‖0 =
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supT3×[0,T ] |f(x, t)|. The Hölder seminorms are defined as

[f ]m = max
|θ|=m

‖Dθf‖0,

[f ]m+α = max
θ=m

sup
x 6=y,t

|Dθf(x, t)−Dθf(y, t)|
|x− y|α

,

where Dθ = ∂θ1x1
∂θ2x2

∂θ3x3
are spatial partial derivatives. The Hölder norms are

then given by

‖f‖m =

m∑
j=0

[f ]j , ‖f‖m+α = ‖f‖m + [f ]m+α.

If the time-dependence is to be made explicit, we will write [f(t)]α, ‖f(t)‖α,
etc.

We will use the following standard inequalities for Hölder norms:

[fg]r ≤ C([f ]r‖g‖0 + ‖f‖0[g]r),

[f ]s ≤ C‖f‖1−s/r0 [f ]s/rr ,

for 0 ≤ s ≤ r. Moreover, for f : T3 × [0, T ] → S ⊂ Rd and Ψ : S → R, for
the composition we have

[Ψ ◦ f ]m ≤ C([Ψ]1‖Df‖m−1 + ‖DΨ‖m−1‖f‖m−1
0 ‖f‖m),

[Ψ ◦ f ]m ≤ C([Ψ]1‖Df‖m−1 + ‖DΨ‖m−1[f ]m1 ).

We also recall the following estimates on mollification.

Proposition 2.1. Let ϕ ∈ C∞c (R3) be non-negative, symmetric and such
that

´
ϕ = 1. Then for any r, s ≥ 0 we have

‖f ∗ ϕ`‖r+s ≤ C`−s‖f‖r,

‖f − f ∗ ϕ`‖r ≤ C`2‖f‖r+2, (2.1)

‖(fg) ∗ ϕ` − (f ∗ ϕ`)(g ∗ ϕ`)‖r ≤ C`2−r‖f‖1‖g‖1.
The constant C depends only on r and s.

Next, we recall that H−1(T3) is the dual space of H1
0 (T3), the Sobolev

space of periodic functions with average zero, with norm

‖f‖H−1 = sup
‖ϕ‖

H1
0
≤1

ˆ
T3

fϕ dx.

2.2. Mikado flows. We recall Mikado flows, the basic building blocks for
the convex integration scheme introduced in [12].

Lemma 2.1. For any compact subset N ⊂⊂ S3×3
+ there exists a smooth

vector field

W : N × T3 → R3
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such that, for every R ∈ N{
div ξ(W (R, ξ)⊗W (R, ξ)) = 0

div ξW (R, ξ) = 0
(2.2)

and  
T3

W (R, ξ) dξ = 0, (2.3)

 
T3

W (R, ξ)⊗W (R, ξ) dξ = R. (2.4)

Using the fact that W (R, ξ) is T3-periodic and has zero mean in ξ, we
write

W (R, ξ) =
∑

k∈Z3\{0}

ak(R)Ake
ik·ξ (2.5)

for some coefficients ak(R) and complex vector Ak ∈ C3, satisfying Ak ·k = 0
and |Ak| = 1. From the smoothness of W we further infer

sup
R∈N

|DN
R ak(R)| ≤ C(N , N,m)

|k|m

for some constant C which depends only on N , N and m.

Remark 2.1. The choice of N = B1/2(Id), together with the choice of N
and m determines the constant M in Proposition 7.1.

Using the Fourier representation we see that from (2.4)

W (R, ξ)⊗W (R, ξ) = R+
∑
k 6=0

Ck(R)eik·ξ (2.6)

where

Ckk = 0 and sup
R∈N

|DN
RCk(R)| ≤ C(N , N,m)

|k|m
for any m,N ∈ N.

2.3. The operator R. We recall also the definition of the operator R from
Section 4.5 in [18].

Definition 2.1. Let v ∈ C∞(T3; R3) be a smooth vector field. We define
Rv to be the matrix valued periodic function

Rv :=
1

4
(∇Pu+ (∇Pu)T ) +

3

4
(∇u+ (∇u)T )− 1

2
(div u)Id, (2.7)

where u ∈ C∞(T3; R3) is the solution of

4u = v −
 

T3

v in T3

with
´

T3 u = 0 and P is the Leray projection onto divergence-free fields with
zero average.
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Lemma 2.2. For any v ∈ C∞(T3; R3) the tensor Rv is symmetric and
trace-free, and divRv = v −

ffl
T3 v.

The following proposition is a consequence of classical stationary phase
techniques. For a detailed proof see [12], Lemma 2.2.

Proposition 2.2. Let α ∈ (0, 1) and N ≥ 1. Let a ∈ C∞(T3), Φ ∈
C∞(T3; R3) be smooth functions and assume that

C̄−1 ≤ |∇Φ| ≤ C̄
holds on T3. Then∣∣∣ ˆ

T3

a(x)eik·Φ dx
∣∣∣ ≤ C ‖a‖N + ‖a‖0‖Φ‖N

|k|N
(2.8)

and for the operator R defined in (2.7), we have∥∥∥R(a(x)eik·Φ
)∥∥∥

α
≤ C ‖a‖0
|k|1−α

+ C
‖a‖N+α + ‖a‖0‖Φ‖N+α

|k|N − α
, (2.9)

where the constant C depends on C̄, α and N but not on k.

3. Subsolutions and proofs of the main results

In this section we introduce the various notions of subsolutions needed
to perform the convex integration schemes, and state the main propositions
which allow us to pass from one subsolutions to a stronger one. The combi-
nation of these propositions then leads to our main theorem, as in [12].

The first notion of subsolution is the same as that defined in [12] and
coincides with the notion of subsolution introduced in [17].

Definition 3.1 (Strict subsolution). A subsolution is a triple

(v, p,R) : T3 × (0, T )→ R3 × R× S3×3

such that v ∈ L2
loc, R ∈ L1

loc, p is a distribution, the equations

∂tv + div (v ⊗ v) +∇p = −divR

div v = 0
(3.1)

hold in the sense of distributions in T3× (0, T ) and moreover R ≥ 0 a.e.. If
R > 0 a.e., then the subsolution is said to be strict.

The next notion of subsolution is similar to the one defined in [12], dif-
fering only in point (3.2).

Definition 3.2 (Strong subsolution). A strong subsolution with parameter
γ > 0 is a subsolution (v, p,R) such that in addition trR is a function of
time only and, if

ρ(t) :=
1

3
trR,

then ∣∣∣R̊(x, t)
∣∣∣ ≤ ρ1+γ(t) ∀ (x, t). (3.2)
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Remark 3.1. In our schemes ρ will be sufficiently small so that in particular
ργ ≤ r0, where r0 is the geometric constant in [12]. Therefore (3.2) implies
that our strong subsolutions satisfy Definition 3.2 in [12]. Note also that if
(v, p,R) is a strong subsolution for some parameter γ > 0, then also for any
γ′ with 0 < γ′ < γ.

The next notion of subsolution has vanishing Reynolds stress at time
t = 0 and the C1-norms blow up at certain rates as the Reynolds stress
goes to zero. Such adapted subsolutions have been introduced in [12], but
this time the blow-up rate is different because it has to be consistent with a
C1/3−ε-scheme rather than a C1/5−ε-scheme as in [12].

Definition 3.3 (Adapted subsolution). Given γ > 0, 0 < β < 1/3, and ν
satisfying

ν >
1− 3β

2β
(3.3)

we call a triple (v, p,R) a Cβ-adapted subsolution on [0, T ] with parameters
γ and ν if

(v, p,R) ∈ C∞(T3 × (0, T ]) ∩ C(T3 × [0, T ])

is a strong subsolution with parameter γ with initial data

v(·, 0) ∈ Cβ(T3), R(·, 0) ≡ 0

and, setting ρ(t) := 1
3trR(x, t), for all t > 0 we have ρ(t) > 0 and there

exists α ∈ (0, 1) and C ≥ 1 such that

‖v‖1+α ≤ Cρ−(1+ν) , (3.4)

|∂tρ| ≤ Cρ−ν . (3.5)

The heuristic is as follows (see also [8]): the Reynolds stress R in the
subsolution is proportional to the kinetic energy gap, so that ρ ∼ |w|2, where
w is the fluctuation, i.e. the perturbation (obtained by convex integration)
required so that v + w is a solution. Therefore (3.4), taking α = ν = 0 for
simplicity, is consistent with the scaling |∇w| . |w|−2. In other words we
expect |∇|w|3| . 1.

Our first proposition shows that one can approximate a smooth strict
subsolution with an adapted subsolution.

Proposition 3.1. Let (v, p,R) be a smooth strict subsolution on [0, T ].

Then, for any 0 < β < 1/3, ν > 1−3β
2β and δ > 0 there exists γ > 0

and a Cβ-adapted subsolution (v̂, p̂, R̂) with parameters γ, ν such that ρ̂ ≤ δ
and ˆ

T3

|v̂|2 + tr R̂ =

ˆ
T3

|v|2 + trR for all t ∈ [0, T ],

‖v − v̂‖H−1 < δ,

‖v̂ ⊗ v̂ + R̂− v ⊗ v −R‖H−1 < δ.
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The proof will be given in Section 8.
Next, we show that at the small loss of the exponent β one can approxi-

mate adapted subsolutions by weak solutions with the same initial datum.

Proposition 3.2. Let 0 < β̂ < β < 1/3, γ > 0, η > 0 and ν > 0 with

1− 3β

2β
< ν <

1− 3β̂

2β̂
.

There exists δ > 0 such that the following holds.
If (v̂, p̂, R̂) is a Cβ-adapted subsolution with parameters γ, ν and ρ̂ ≤ δ,

then for any η > 0 there exists a C β̂-weak solution v of (1.1) with initial
datum

v(·, 0) = v̂(·, 0),

such that ˆ
T3

|v|2 =

ˆ
T3

|v̂|2 + tr R̂ for all t ∈ [0, T ],

‖v − v̂‖H−1 ≤ η,

‖v ⊗ v − v̂ ⊗ v̂ − R̂‖H−1 ≤ η.

As a consequence, we get the following criterion for wild initial data:

Corollary 3.1. Let w ∈ Cβ be a divergence-free vectorfield for some 0 <

β < 1/3. If there exists a C β̂-adapted subsolution (v̂, p̂, R̂) for some β <

β̂ < 1
3 with parameters γ, ν and satisfying ρ̂ ≤ δ as in Proposition 3.2 such

that v̂(·, 0) = w(·) and

ˆ
T3

|v̂(x, t)|2 + tr R̂(x, t) dx ≤
ˆ

T3

|w(x)|2 dx ∀ t > 0,

then w is a wild initial datum in Cβ.

Indeed, as observed in [12], given a C β̂-adapted subsolution (v̂, p̂, R̂) with
such parameters, Proposition 3.2 provides a sequence of Cβ admissible weak
solutions (vk, pk) with vk(·, 0) = v̂(·, 0),

ˆ
T3

|vk(x, t)|2 dx =

ˆ
T3

|v̂(x, t)|2 + tr R̂(x, t) dx ∀ t > 0

and such that vk → v̂ in H−1(T3) uniformly in time.

Proof of Theorem 1.1. The proof of Theorem 1.1 follows from Proposition
3.1 and Corollary 3.1 as in Section 4 of [12].

�
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4. From strict to strong subsolutions

We first state a variant of [12][Proposition 3.1].

Proposition 4.1. Let (v, p,R) be a smooth subsolution of (3.1) and S be a
smooth S3×3-valued matrix-field on T3× [0, T ], such that one of the following
two conditions is satisfied:

(i) S(x, t) is positive definite for all (x, t);
(ii) S(x, t) = ψ2(t)S̄(x, t), with ψ ∈ C∞c ([0, T ]; [0, 1]), S̄(x, t) = σ̄(t)Id +

˚̄S(x, t), σ̄ > 0 and ‖˚̄S‖0 ≤ 1
2 σ̄ for all t ∈ [0, T ].

Fix ᾱ ∈ (0, 1). Then for any λ > 1 there exists a smooth solution (ṽ, p̃, R̃)
with

(ṽ, p̃, R̃) = (v, p,R) for t /∈ suppσˆ
|ṽ|2 + tr R̃ =

ˆ
|v|2 + trR for all t,

(4.1)

and the following estimates hold:

‖ṽ − v‖H−1 ≤
C

λ
,

‖ṽ‖k ≤ Cλk k = 1, 2,

‖R− R̃− S‖0 ≤
C

λ1−ᾱ ,

‖ṽ ⊗ ṽ − v ⊗ v + R̃−R‖H−1 ≤
C

λ1−ᾱ .

(4.2)

Moreover, tr (R− R̃− S) is a function of t only and satisfies∣∣∣∣ ddttr (R− R̃− S)

∣∣∣∣ ≤ Cλᾱ. (4.3)

The constant C ≥ 1 above depends on (v, p,R), S and ᾱ, but not on λ.

Proof. The proof is a minor modification of the proof given in [12][Section 5].
We recall the main steps. Define the inverse flow of v, Φ : T3 × [0, T ]→ T3,
as the solution of {

∂tΦ + v · ∇Φ = 0

Φ(x, 0) = x, ∀x ∈ T3

and set

R̄(x, t) =

{
DΦ(x, t)S(x, t)DΦT (x, t) if (i) holds;

DΦ(x, t) S̄(x,t)
σ̄(t) DΦT (x, t) if (ii) holds.

Observe that in case (i) R̄ is defined on T3 × [0, T ] and, being continuous
and defined on a compact set, takes values in a compact subset N0 of S3×3

+ .
In case (ii) R̄ takes values in N0 := B1/2(Id).
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By Lemma 2.1, there exists a smooth vectorfield W : N0 × T3 → R3 with
properties (2.2)-(2.4). We define

wo(x, t) =

{
DΦ−1W (R̄, λΦ(x, t)) if (i) holds;

ψσ̄1/2DΦ−1W (R̄, λΦ(x, t)) if (ii) holds;

wc(x, t) =

{
− 1
λcurl (DΦTU(R̄, λΦ(x, t)))− wo if (i) holds;

− 1
λcurl (ψσ̄1/2DΦTU(R̄, λΦ(x, t)))− wo if (ii) holds.

Here U = U(S, ξ) is such that curl ξU = W . We then define

ṽ = v + wo + wc, p̃ = p+ p̄, R̃ = R− S − E̊(1) − E(2),

where p̄ = −1
3(wc · ṽ + wo · wc),

E̊(1) = R(F ) + (wc ⊗ ṽ + wo ⊗ wc + p̄Id),

F = div (wo ⊗ wo − S) + (∂t + v · ∇)wo + (wo + wc) · ∇v + ∂twc,

E(2) =
1

3

(  
T3

|ṽ|2 − |v|2 − trS
)

Id

and R is the operator defined in (2.7).

By construction (4.1) holds, tr E̊(1) = 0, E(2) is a function of t only, and

div E̊(1) = div (ṽ ⊗ ṽ − v ⊗ v − S) + p̄Id + ∂t(ṽ − v)

= ∂tṽ + div (ṽ ⊗ ṽ − S +R) + p̃ Id.

Therefore (ṽ, p̃, R̃) solves (3.1) as claimed. The estimates in the proof of

[12][Proposition 3.1] apply to E̊(1) and yield then (4.2).

Finally, note that tr (R−R̃−S) = tr E(2) =
ffl
|ṽ|2−|v|2−trS. In order to

estimate
´
|ṽ|2 dx, note that the energy identity for ṽ, deduced from (3.1),

reads

∂t
1
2 |ṽ|

2 + div (ṽ(|ṽ|2/2 + p̃Id) = −ṽ · div R̃,

from which we deduce, after integrating in x and using (4.2)∣∣∣∣ ddt
 

1
2 |ṽ|

2 dx

∣∣∣∣ ≤  
|∇ṽ||˚̃R| dx ≤ Cλᾱ.

This verifies (4.3) and thus concludes the proof. �

We will use this proposition in two situations, as described in the following
corollaries.

Corollary 4.1. Let (v, p,R) be a smooth strict subsolution on [0, T ] and let

ε̃ > 0. There exists δ̃, γ > 0 such that the following holds.
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For any 0 < δ < δ̃ there exists a smooth strong subsolution (ṽ, p̃, R̃) with

R̃(x, t) = ρ̃(t)Id + ˚̃R(x, t) such that, for all t ∈ [0, T ]
3
4δ ≤ρ̃ ≤

5
4δ, (4.4)

|˚̃R| ≤ ρ̃1+γ , (4.5)

‖ṽ − v‖H−1 + ‖v ⊗ v +R− ṽ ⊗ ṽ − R̃‖H−1 ≤ Cδ1+γ , (4.6)ˆ
T3

|v|2 + trRdx =

ˆ
T3

|ṽ|2 + tr R̃ dx, (4.7)

‖ṽ‖j ≤ Cδ−j(1+ε̃) j = 1, 2, (4.8)

|∂tρ̃| ≤ Cδ−ε̃ , (4.9)

where the constant C depends on (v, p,R) and ε̃.

Proof of Corollary 4.1. Let

δ̃ = 1
2 inf{R(x, t)ξ · ξ : |ξ| = 1, x ∈ T3, t ∈ [0, T ]}.

Since R is a smooth positive definite tensor on a compact set, δ̃ > 0. Then
S := R − δId is positive definite for any δ < δ̃. We may in addition as-
sume without loss of generality that δ ≤ 1. We apply Proposition 4.1
with (v, p,R), S, and ᾱ ∈ (0, 1) to be chosen below. Note that condition

(i) is satisfied. The proposition yields a smooth solution (ṽ, p̃, R̃) of (3.1)

with properties (4.1)-(4.3). Observe that R̃ − R + S = R̃ − δ Id, so that

ρ̃ = 1
3tr (R̃−R+ S) + δ is a function of t only.

For γ ∈ (0, 1) (to be specified later) set

λ = (4C)
1

1−ᾱ δ−
1+γ
1−ᾱ

with the constant C from (4.2), so that we obtain (4.6) and

‖R̃−R+ S‖0 ≤ 1
4δ

1+γ .

It follows that |ρ̃ − δ| ≤ 1
4δ, verifying (4.4). From this estimate we can in

turn deduce (4.5).
So far ᾱ, γ was arbitrary - it remains to choose these parameters so that

also (4.8) and (4.9) are valid. Indeed, by choosing 0 < ᾱ, γ � 1 sufficiently

small, so that 1+γ
1−ᾱ < 1 + ε̃ and ᾱ 1+γ

1−ᾱ < ε̃, we easily deduce (4.8) and (4.9).
�

Corollary 4.2. Given 0 < β < 1/3 and γ, ν > 0 there exists δ̃ > 0 such
that the following holds.

Let (v, p,R) be a Cβ-adapted subsolution with parameters γ, ν > 0 and

assume ρ ≤ δ̃. Suppose γ < ν and let γ̃ < γ. For any η > 0 there exists
another Cβ-adapted subsolution (ṽ, p̃, R̃) with parameters γ̃, ν > 0 (with
possibly different constants C and α in (3.4)-(3.5) which may depend on

(v, p,R) but not on η) such that, with R̃ = ρ̃ Id + ˚̃R,

ρ̃ ≤ η and ṽ = v for t = 0.
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Furthermore ˆ
T3

|ṽ|2 + tr R̃ =

ˆ
T3

|v|2 + trR for all t,

‖ṽ − v‖H−1 ≤ η,

‖ṽ ⊗ ṽ + R̃− v ⊗ v −R‖H−1 ≤ η.

(4.10)

Proof of Corollary 4.2. Set δ̃ = 4−1/γ and assume (v, p,R) be a Cβ-adapted

subsolution satisfying (3.4)-(3.5) with parameters γ, ν > 0, such that ρ ≤ δ̃.
Then ργ ≤ 1

4 . We may assume moreover, that η ≤ δ̃.
Let φ ∈ C∞c (0,∞) be a cut-off function such that φ(s) = 1 for s ≥ 1/2,

φ(s) = 0 for s ≤ 1/4, and set

ψ(t) = φ

(
ρ(t)

η

)
.

Then, using the bound on ∂tρ from (3.5) we deduce |∂tψ2| ≤ Cη−(1+ν). Here
and in the subsequent proof we denote by C generic constants which may

depend on (v, p,R). Define S = ψ2(R− η
8 Id). Then S = ψ2(σ̄ Id + ˚̄S), with

ψ2σ̄(t) = ψ2
(
ρ(t)− η

8

)
≥ 1

2
ψ2ρ ≥ ψ2η/8,

since ρ ≥ η/4 on suppψ. Moreover, on suppψ

|S̊| = |ψ2R̊| ≤ ψ2ρ1+γ ≤ 2ργψ2σ̄ ≤ 1

2
ψ2σ̄.

Thus condition (ii) in Proposition 4.1 for S is satisfied.
We apply the proposition with ᾱ > 0, λ ≥ 1 to be chosen below and

obtain a smooth solution (ṽ, p̃, R̃) of (3.1) with properties (4.1)-(4.3). In
particular we obtain

R̃ = R− S − E = (1− ψ2)R+
ψ2η

8
Id− E ,

ρ̃ = (1− ψ2)ρ+
ψ2η

8
− 1

3
tr E ,

where ‖E‖0 ≤ Cλ−1+ᾱ. Choose

λ = (4C)
1

1−ᾱ η−
1+γ
1−ᾱ ,

so that ‖E‖0 ≤ 1
4η

1+γ ≤ 1
16η. Then, observing that ρ ≥ η/4 on suppψ, we

deduce
ρ̃ ≥ (1− ψ2)

η

4
+ ψ2 η

8
− η

16
≥ η

16
on suppψ,

whereas ρ̃ = ρ otherwise. Furthermore, since ψ = 1 if ρ ≥ η/2,

ρ̃ ≤ (1− ψ2)
η

2
+ ψ2 η

8
+

η

16
≤ η.

Similarly, on suppψ

|˚̃R| ≤ (1− ψ2)|R̊|+ 1

4
η1+γ ≤ 1

2
η1+γ +

1

4
η1+γ ≤ C̃ρ̃1+γ .
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Thus, by choosing η > 0 sufficiently small (such that ηγ−γ̃ < 1/C̃), we

obtain |˚̃R| ≤ ρ̃1+γ̃ , so that (ṽ, p̃, R̃) is a strong subsolution with parameter
γ̃. Moreover, it is easy to see that (4.10) holds. It remains to verify (3.4)-
(3.5). Since ṽ = v and ρ̃ = ρ outside suppψ, in the following we restrict to
times t ∈ suppψ.

From (4.2) and interpolation we obtain for any α ∈ [0, 1]

‖ṽ‖1+α ≤ η−(1+α) 1+γ
1−ᾱ , |∂ttr E| ≤ η−ᾱ

1+γ
1−ᾱ ,

whereas from the definition of ρ̃ we have that

|∂tρ̃| ≤ |∂tρ|+ |∂tψ|η + |∂ttr E| ≤ C(1 + η−ν + η−ᾱ
1+γ
1−ᾱ ).

Therefore (3.4)-(3.5) holds with constant C and α > 0 provided

(1 + α)
1 + γ

1− ᾱ
< 1 + ν, ᾱ

1 + γ

1− ᾱ
< ν.

Both inequalities can be satisfied by choosing ᾱ, α > 0 sufficiently small,
provided γ < ν. This concludes the proof. �

5. Guide to the subsequent sections

Let us briefly recall the convex integration scheme in [3], in which an ap-
proximating sequence (vq, pq, Rq) of subsolutions is constructed. The various
C0 and C1 norms of the subsolution are controlled in terms of parameters

δq, λq, where we can think of δ
1/2
q as an amplitude and λq as a (spatial)

frequency. This sequence of parameters is defined as

λq = 2π[ab
q
], δq = λ−2β

q , (5.1)

where

• [x] denotes the smallest integer n ≥ x.
• β ∈ (0, 1/3) and b ∈ (1, 3/2) control the Hölder exponent of the

scheme and are required to satisfy

1 < b <
1− β

2β
; (5.2)

• a� 1 is chosen sufficiently large in the course of the proofs (in order
to absorb various constants in the estimates).

In [3] the stage q 7→ q + 1 amounts to the statement that there exists
a universal constant M > 1 such that for 0 < α sufficiently small and
sufficiently large a � 1 the following holds: given (vq, pq, Rq) satisfying
(3.1) and satisfying the estimates

‖R̊q‖0 ≤ δq+1λ
−3α
q (5.3)

‖vq‖1 ≤Mδ1/2
q λq (5.4)

δq+1λ
−α
q ≤ 1

3
trRq(t) ≤ δq+1, (5.5)
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then there exists a solution (vq+1, pq+1, Rq+1) to (3.1) satisfying (5.3)-(5.5)
with q replaced by q + 1. Moreover, we have

‖vq+1 − vq‖0 +
1

λq+1
‖vq+1 − vq‖1 ≤Mδ

1/2
q+1.

The proof of this statement consists of three steps:

(1) Mollification: (vq, Rq) 7→ (v`, R`);

(2) Gluing: (v`, R`) 7→ (v̄q, R̄q);

(3) Perturbation (v̄q, R̄q) 7→ (vq+1, Rq+1).

In Section 6 we prove a localized (in time) version of the first two stages,
and in Section 7 a localized version of the perturbation. We recall that the
gluing stage, first introduced in [23], is able to produce a Reynolds stress
˚̄Rq which has support in pairwise disjoint temporal regions of some suitable
length in time. This will allow to define perturbations through Mikado
flows which are disjoint in time and therefore disjoint in space-time (see
[14] for the use of a space discretization in order to achieve the space-time
disjointness of the Mikado flows without the above condition on the support
of the Reynolds stress).

In the sequel we work with a sequence (λq, δq), q = 0, 1, 2, . . . . Moreover,
we fix α > 0, γ > 0 and define

`q =
δ

(1+γ)/2
q+2

δ
1/2
q λqλ

3α/2
q+1

, (5.6)

and

τq =
`4αq

δ
1/2
q λq

. (5.7)

As in [3], we will require several inequalities between these parameters. First
of all, we assume

δ
1/2
q+1δ

1/2
q λq

λ1−8α
q+1

≤ δq+2. (5.8)

To verify this, we use (5.1) and take logarithm base λq to see that (5.8)
follows for sufficiently large a� 1 provided

(b− 1)
[
1− β(1 + 2b)] > 8αb.

Thus, after fixing b, β as in (5.2), (5.8) will be valid for sufficiently small
α > 0 (depending on b, β). Next, we assume

λ−1
q+1 ≤ `q ≤ λ

−1
q . (5.9)

The second inequality is immediate from the definition. Concerning the first,
as in [3] we will in fact need the following sharpening: there exists N ∈ N
such that

λ1−N
q+1 ≤ `

N+1
q . (5.10)
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To verify (5.10) we argue as above: use (5.1) and (5.6) and take logarithm
base λq to see that (5.10) follows for sufficiently large a� 1 provided

N
[
(b− 1)(1− β(b+ 1))− γβb2 − 3

2αb
]
> 1 + b+ (1 + γ)βb2 + 3

2αb− β.
It is easy to see that this inequality is valid, provided we choose (in this
order):

• b, β as in (5.2), so that in particular β(1 + b) < 1;
• 0 < α, γ are sufficiently small depending on b, β;
• N ∈ N sufficiently large, depending on b, β, α, γ.

In the following sections we will use the symbol A . B to denote A ≤ CB,
where C is a constant whose value may change from line to line, but only
depends on the universal constant M , on the parameters b, β, α, γ chosen
as above, and, if norms depending on N ∈ N are involved, also on N . In
particular, C will never depend on the choice of a� 1.

6. Localized gluing step

The aim of this section is to prove a time-localized version of the gluing
procedure of Sections 3 and 4 in [3]: on intervals [T1, T2] ⊂ [0, T ] instead of
on the whole interval [0, T ]. The main proposition is Proposition 6.1, which
combines the mollification and gluing steps indicated in Section 5

In the the statement of Proposition 6.1, we will need the following defi-
nitions.

Definition 6.1. Let 0 ≤ T1 < T2 ≤ T such that T2 − T1 > 4τq. We define
sequences of intervals {Ii} and {Ji} as follows. Let

ti = iτq, Ii =
[
ti +

1

3
τq, ti +

2

3
τq

]
∩ [0, T ], (6.1)

and let

n =

{
min

{
i : ti − 2

3τq ≥ T1

}
if T1 > 0

0 if T1 = 0,

n = max
{
i : ti + 2

3τq ≤ T2

}
.

(6.2)

Moreover, define

Ji =
(
ti −

1

3
τq, ti +

1

3
τq

)
∩ [0, T ], n ≤ i ≤ n ,

and

Jn−1 = [0, tn −
2

3
τq), Jn+1 = (tn +

2

3
τq, T ].

Note that

[0, T ] = Jn−1 ∪ In−1 ∪
[
Jn ∪ · · · ∪ Jn

]
∪ In ∪ Jn+1 (6.3)

is a pairwise disjoint decomposition into intervals and

tn < T1 + 5
3τq < T2 − 5

3τq < tn. (6.4)
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Observe also that n ≥ 1 if T1 > 0, whereas n = 0 and Jn−1 ∪ In−1 = ∅ if
T1 = 0. In the following we denote, as usual, for R whose trace depends
only on time,

R(x, t) = ρ(t)Id + R̊(x, t).

Proposition 6.1 (Localized gluing step). Let b, β, α, γ and (δq, λq, `q, τq) be
as in Section 5 with α/γ < β/b. Let [T1, T2] ⊂ [0, T ] with |T2 − T1| > 4τq.
Let (vq, pq, Rq) be a strong subsolution on [0, T ] which on [T1, T2] satisfies
the estimates

3
4δq+2 ≤ ρq ≤ 7

2δq+1 , (6.5)

‖R̊q‖0 ≤ ρ1+γ
q , (6.6)

‖vq‖1+α ≤Mδ1/2
q λ1+α

q , (6.7)

|∂tρq| ≤ ρqδ1/2
q λq , (6.8)

with some constant M > 0. Then, provided a� 1 is sufficiently large, there
exists (v̄q, p̄q, R̄q) solution of (3.1) on [0, T ] such that

(v̄q, p̄q, R̄q) = (vq, pq, Rq) on [0, T ] \ [T1, T2], (6.9)

and on [T1, T2] the following estimates hold:

‖v̄q − vq‖α . ρ̄(1+γ)/2
q `α/3q , (6.10)

‖v̄q‖1+α . δ
1/2
q λ1+α

q , (6.11)

‖˚̄Rq‖0 . ρ̄1+γ
q `−αq , (6.12)

7
8ρq ≤ ρ̄q ≤

9
8ρq , (6.13)

|∂tρ̄q| . ρ̄qδ1/2
q λq , (6.14)

and ∣∣∣∣ˆ
T3

|vq|2 − |v̄q|2 dx
∣∣∣∣ . ρ̄1+γ

q `2αq . (6.15)

Moreover, on [tn, tn] the additional estimates

‖v̄q‖N+1+α . δ
1/2
q λ1+α

q `−Nq , (6.16)∥∥∥˚̄Rq

∥∥∥
N+α

. ρ̄1+γ
q `−N−αq , (6.17)

‖(∂t + v̄q · ∇)˚̄Rq‖N+α . ρ̄
1+γ
q δ1/2

q λq`
−N−5α
q (6.18)

hold for any N ≥ 0. Finally,

˚̄Rq ≡ 0 for t ∈
n⋃
i=n

Ji. (6.19)
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Proof of Proposition 6.1.
The proof of Proposition 6.1 follows closely the gluing procedure [3][Sections

3 and 4], with two main differences. One is that the subsolution has to be
changed only inside the interval [T1, T2] and stay unchanged outside [T1, T2].
More precisely, recalling the decomposition (6.3),

• the gluing procedure as in [3] will be performed in the interval[
Jn ∪ · · · ∪ Jn

]
=
(
tn − 1

3τq, tn + 1
3τq

)
; (6.20)

• the subsolution will remain unchanged in Jn−1 ∪ Jn+1;
• the intervals In−1 and In will be cutoff regions between the “glued”

and “unglued” subsolutions.

The other one is that, since the trace part of Rq, namely ρq, has different
lower and upper bounds on [T1, T2] (respectively of the order δq+2 and δq+1),
one needs to mollify with different parameters `q,i depending on ρq(ti) on
τq-neighbourhoods of the points {ti}.

Step 1 - Mollification. For all n ≤ i ≤ n, define

ρq,i = ρq(ti), `q,i =
ρ

(1+γ)/2
q,i

δ
1/2
q λ

1+3α/2
q

.

Using (6.5) and assuming a� 1 is sufficiently large (as in (5.9), depending
on α, γ, b) we may ensure that

λ−1
q+1 ≤ `q ≤ `q,i ≤ λ

−1
q . (6.21)

Let φ be a standard mollification kernel in space and define

v`q,i := vq ∗ φ`q,i ,
p`q,i := pq ∗ φ`q,i + 1

3(|vq|2 ∗ φ`q,i − |v`q,i |
2) ,

R̊`q,i := R̊q ∗ φ`q,i + (vq⊗̊vq) ∗ φ`q,i − v`q,i⊗̊v`q,i .

Observe that with this definition the triple (v`q,i , p`q,i , R̊`q,i) is a solution
of (3.1). Using the estimates (6.6)-(6.7) together with the mollification
estimates in Proposition 2.1 and the choice of the mollification parameters
we deduce as in [3, Proposition 2.2]:

‖v`q,i − vq‖α . δ
1/2
q λ1+α

q `q,i . ρ
(1+γ)/2
q,i `α/3q , (6.22)

‖v`q,i‖N+1+α . δ
1/2
q λ1+α

q `−Nq,i , (6.23)

‖R̊`q,i‖N+α . ρ
1+γ
q `−N−αq,i + δqλ

2+2α
q `2−N−αq,i

. ρ1+γ
q `−N−αq + ρ1+γ

q,i `
−N−α
q , (6.24)∣∣∣ˆ

T3

|vq|2 − |v`q,i |
2
∣∣∣ . δqλ2+2α

q `2q,i = ρ1+γ
q,i λ

−α
q . (6.25)
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Step 2 - Gluing procedure. Let {Ii}n≤i≤n be the sequence of intervals
corresponding to [T1, T2] according to Definition 6.1, We define now a par-
tition of unity on [0, T ]

n+1∑
i=n−1

χi ≡ 1

subordinate to the decomposition in (6.3). More precisely, for each n− 1 ≤
i ≤ n+ 1 the function χi ≥ 0 satisfies

suppχi ⊂ Ii−1 ∪ Ji ∪ Ii ,
χi(t) = 1 for t ∈ Ji ,
|∂Nt χi| . τ−Nq for all N ≥ 0.

We define

v̄q =
n+1∑
i=n−1

χivi, p̄(1)
q =

n+1∑
i=n−1

χipi, (6.26)

where (vi, pi) is defined as follows. For n ≤ i ≤ n we define (vi, pi) as the
solution of 

∂tvi + div (vi ⊗ vi) +∇pi = 0 ,

div vi = 0 ,

vi(·, ti) = v`q,i(·, ti),
(6.27)

and set (vi, pi) = (vq, pq) for i ∈ {n + 1, n − 1}. Thus, we note first of all
that div v̄q = 0 and moreover

(v̄q, p̄q) = (vq, pq) for t ∈ [0, T ] \ [T1, T2].

Next, we define R̄q. As in Section 4.1 of [3], for t ∈ Ii ∪ Ji+1 we have
χi + χi+1 = 1 and therefore

∂tv̄q + div (v̄q ⊗ v̄q) +∇p̄q =

=∂tχi(vi − vi+1)− χi(1− χi)div ((vi − vi+1)⊗ (vi − vi+1))

− div (χiRi + (1− χi)Ri+1),

where we wrote Ri = 0 for n ≤ i ≤ n and Ri = Rq otherwise. Thus, recalling
the operator R defined in Proposition 4.1 [3] (see also (2.7)), set

R̄(1)
q =

{
−∂tχiR(vi − vi+1) + χi(1− χi)(vi − vi+1)⊗̊(vi − vi+1) t ∈ Ii,
0 t ∈ Ji,

R̄(2)
q =

n+1∑
i=n−1

χiRi = (χn−1 + χn+1)Rq,

and

p̄(2)
q = χi(1− χi)

(
|vi − vi+1|2 −

 
T3

|vi − vi+1|2 dx
)
.
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Finally, we define

R̄q = ˚̄R(1)
q + ˚̄R(2)

q + ρ̄qId, p̄q = p̄(1)
q + p̄(2)

q ,

where

ρ̄q = ρq +
1

3

( 
T3

|vq|2 − |v̄q|2
)
. (6.28)

By construction

∂tv̄q + div (v̄q ⊗ v̄q) +∇p̄q = −div R̄q

and (6.9) holds. Moreover

˚̄Rq = 0 for all t ∈
n⋃
i=n

Ji.

Step 3 - Stability estimates on classical solutions. Let us consider
for the moment n ≤ i ≤ n. We recall from [3, Proposition 3.1] that by the
classical existence results on solutions of (6.27), (vi, pi) in (6.26) above is
defined at least on an interval of length ∼ ‖v`q,i‖

−1
1+α. By (6.23) and (5.7)

‖v`q,i‖1+α . δ
1/2
q λ1+α

q ≤ `3αq τ−1
q ,

therefore indeed, provided a� 1 is sufficiently large, vi is defined on Ii−1 ∪
Ji ∪ Ii so that (6.26) is well defined.

Next, we deduce from (6.8) that |∂t log ρq| ≤ δ1/2
q λq = τ−1

q `4αq , so that, by
assuming a� 1 is sufficiently large we may ensure that

ρ(t1) ≤ 4ρ(t2) for all t1, t2 ∈ Ii−1 ∪ Ji ∪ Ii (6.29)

for any i. In particular ρq ∼ ρq,i in the interval Ii−1∪Ji∪Ii. Then, reasoning
as in [3][Proposition 3.3], namely writing the transport equation along v`q,i
for vi − v`q,i and estimating the various terms on the left hand side (with
the help of (6.23) and (6.24)), one reduces to a Grönwall type inequality for
the CN+α norms of vi − v`q,i, namely

‖vi − v`q,i‖N+α .
ˆ t

ti

(
τ−1
q ‖v`q,i − vi‖N+α + `−N−1−α

q,i ρ1+γ
q

)
ds.

Using now the estimate (6.29), one obtains on Ii−1∪Ji∪Ii, as in [3][Proposition
3.3],

‖vi − v`q,i‖N+α . τqρ
1+γ
q,i `

−N−1−α
q,i

. ρ(1+γ)/2
q,i `−N+α

q,i .
(6.30)

The case N = 0, together with (6.22) leads to (6.10), whereas the case N = 1
leads to

‖vi − v`q,i‖1+α . δ
1/2
q λ1+3α/2

q `αq,i ≤ δ1/2
q λ1+α

q ,
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so that, combining with (6.7) and with (6.23) we deduce that (6.11) is ver-
ified. More generally, following [3][Proposition 4.3] we deduce from (6.23)
and (6.30) that

‖v̄q‖1+N+α . δqλ
1+α
q `−Nq,i

for all t in the region defined by (6.20). Thus (6.16) is verified.

Step 4 - Estimates on the new Reynolds stress.
Following [3] we define the vector potentials zi = (−∆)−1curl vi, z`q,i =

(−∆)−1curl v`q,i and obtain, as in [3][Proposition 3.4] the analogous esti-
mates to (6.30):

‖zi − z`q,i‖N+α . τqρ
1+γ
q,i `

−N−α
q,i ,

‖(∂t + v`q,i · ∇)(zi − z`q,i)‖N+α . ρ
1+γ
q,i `

−N−α
q,i

valid in Ii−1 ∪ Ji ∪ Ii for any n ≤ i ≤ n. Proceeding as in the proof of
[3][Proposition 4.4] we deduce, using (6.29), that on Jn ∪ · · · ∪ Jn

‖˚̄Rq‖N+α . τ
−1
q ‖zi − zi+1‖N+α + ‖vi − vi+1‖N+α‖vi − vi+1‖α

. ρ1+γ
q `−N−αq,i ,

(6.31)

and similarly

‖(∂t + v̄q · ∇)˚̄Rq‖N+α . τ
−1
q ρ1+γ

q `−N−αq,i

for all t as in (6.20). This shows that (6.17) and (6.18) hold.
Next, we estimate ρ̄q, recalling its definition in (6.28). As in Proposition

4.5 of [3] one has that∣∣∣ d
dt

ˆ
T3

|v̄q|2 − |v`q,i |
2
∣∣∣ . ‖v`q,i‖1‖˚̄R`q,i‖0 . δ1/2

q λ1+α
q `−αq,i ρ

1+γ
q . (6.32)

Integrating (6.32) in t ∈ Ii−1 ∪ Ji ∪ Ii and using (6.25) and (5.6) we deduce

|ρ̄q − ρq| . ρ1+γ
q `3αq λ

α
q . ρ

1+γ
q `2αq .

This proves in particular that ρ̄q ∼ ρq and (6.13). Similarly, using the

equation (3.1) for (vq, pq, Rq) and (v`q,i , p`q,i , R̊`q,i), we also deduce∣∣∣ d
dt

ˆ
T3

|v`q,i |
2 − |vq|2

∣∣∣ . δ1/2
q λ1+α

q `−αq,i ρ
1+γ
q , (6.33)

hence ∣∣∣ ˆ
T3

|v`q,i |
2 − |vq|2

∣∣∣ ≤ ρ1+γ
q `2αq
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and together with (6.32) (6.15) is proved. Combining (6.33) with (6.32),
(6.21) and (6.5) we obtain

|∂tρ̄q − ∂tρq| . ρ1+γ
q δ1/2

q `−αq,i λ
1+α
q

. ρqδ
1/2
q λq(δ

γ
q+1λ

α(1+b)
q )

. ρqδ
1/2
q λq,

where we have used (5.1) and the assumption αb < βγ in the last line. This
shows (6.14).

It remains to estimate ‖˚̄Rq(t)‖0 on [T1, T2] in order to verify (6.12) for the
Reynolds stress. Observe that we already obtained (6.31) on Jn ∪ · · · ∪ Jn
(recall (6.3)). Moreover, on Jn−1∪Jn+1 the subsolution remains unchanged,
so there is nothing to prove. Finally, in the cut-off regions In−1 and In
we need to carry on the estimate (6.31) with zi = zq and vi = vq, zq =
(−4)−1curl vq. In particular we need to estimate ‖z`q,i − zq‖α. One has
that, by (2.1), Schauder estimates and (6.7),

‖z`q,i − zq‖α . ‖zq‖2+α`
2
q,i

. ‖curl vq‖α`2q,i

. τqρ
1+γ
q,i `

−α
q .

Therefore, (6.12) follows.
�

Remark 6.1. Proposition 6.1 can easily be extended to a pairwise disjoint

union of intervals [T
(i)
1 , T

(i)
2 ] ⊂ [0, T ] with T

(i)
2 −T

(i)
1 ≥ 4τq and T

(i)
2 < T

(i+1)
1 .

7. Perturbation step

Proposition 7.1. Let b, β, α, γ and (δq, λq, `q, τq) be as in Section 5 with
α/γ < 2β. Let [T1, T2] ⊂ [0, T ] and let (v, p,R) be a smooth strong subsolu-
tion on [T1, T2]. Further, let S ∈ C∞(T3× [T1, T2];S3×3) be a smooth matrix
field with

S(x, t) = ψ2(t)(σ̄(t)Id + ˚̄S(x, t)), (7.1)

where ψ ∈ C∞c ([T1, T2]; [0, T ]), ˚̄S is traceless and σ̄ satisfies

0 < σ̄(t) ≤ 4δq+1 on suppψ , (7.2)

|∂tσ̄| . σ̄δ1/2
q λq . (7.3)

Moreover, assume that for any N ≥ 0

‖˚̄S‖N+α . σ̄
γ+1`−N−αq , (7.4)

‖v‖N+1+α . δ
1/2
q λ1+α

q `−Nq , (7.5)

‖(∂t + v · ∇)˚̄S‖N+α . σ̄
γ+1`−N−5α

q δ1/2
q λq . (7.6)
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Finally, assume that

suppψ ⊂
⋃
i

Ii, (7.7)

where {Ii}i are the intervals defined in (6.1).
Then, provided a� 1 is sufficiently large (depending on the implicit con-

stants in (7.3)-(7.6)), there exist smooth (ṽ, p̃) ∈ C∞(T3 × [T1, T2]; R3 × R)
and a smooth matrix field E ∈ C∞(T3× [T1, T2];S3×3), supp E ⊂ T3×suppψ

such that, setting R̃ = R− S − E, the triple (ṽ, p̃, R̃) is a strong subsolution
with ˆ

T3

|ṽ|2 + tr R̃ dx =

ˆ
T3

|v|2 + trRdx ∀ t. (7.8)

Moreover, we have the estimates

‖ṽ − v‖0 ≤
M

2
δ

1/2
q+1 (7.9)

‖ṽ − v‖1+α ≤
M

2
δ

1/2
q+1λ

1+α
q+1 (7.10)

where M is a geometric constant, and the error E satisfies the estimates

‖E‖0 ≤ δq+2λ
−3α
q+1 , (7.11)

|∂ttr E| ≤ δq+2δ
1/2
q+1λ

1−3α
q+1 . (7.12)

Proof. The proof is a localization of the argument carried on in Section 5
of [3]. The point is that the matrix field that has to be “absorbed” by the
perturbation flow is not the whole R as in [3] but S.

Step 1 - Squiggling Stripes and the Stress Tensor S̃i. Let {Ii}i be
the intervals in (6.1) so that (7.7) holds, and set

Ji =
(
ti −

1

3
τq, ti +

1

3
τq

)
.

Following [3][Lemma 5.3], we choose a family of smooth nonnegative ηi =
ηi(x, t) with the following properties:

(i) ηi ∈ C∞(T3 × [T1, T2]) with 0 ≤ ηi(x, t) ≤ 1 for all (x, t);

(ii) supp ηi ∩ supp ηj = ∅ for i 6= j;

(iii) T3 × Ii ⊂ {(x, t) : ηi(x, t) = 1};

(iv) supp ηi ⊂ T3 × Ji ∪ Ii ∪ Ji+1 = T3 × (ti − 1
3τq, ti+1 + 1

3τq) ∩ [0, T ];

(v) There exists a positive geometric constant c0 > 0 such that, for any
t ∈ [0, T ] ∑

i

ˆ
T3

η2
i (x, t) dx ≥ c0.
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(vi) For N,m ≥ 0, ‖∂Nt ηi‖m ≤ C(N,m)τ−Nq

Define

σ̄i(x, t) := |T3| η2
i (x, t)∑

j

´
η2
j (y, t) dy

σ̄(t),

so that
∑

i

´
T3 σ̄i dx =

´
T3 σ̄ dx, and, using the inverse flow Φi starting at

time ti {
(∂t + v · ∇)Φi = 0

Φi(x, ti) = x

set

S̄i = σ̄iId + η2
i
˚̄S,

S̃i =
∇ΦiS̄i(∇Φi)

T

σ̄i
.

One can check from the properties of ηi and from (7.2) that

‖σ̄i‖0 ≤
4δq+1

c0

‖σ̄i‖N . δq+1 ,

and moreover, using (7.7),

1

3
tr
∑
i

ˆ
T3

S̄i dx = σ̄ =
1

3
tr S̄. (7.13)

We next claim that for all (x, t)

S̃i(x, t) ∈ B1/2(Id) ⊂ S3×3
+ , (7.14)

where B1/2(Id) is the ball of radius 1/2 centred at the identity Id in S3×3.
Indeed, by classical estimates on transport equations (see e.g. [3][Appendix
B])

‖∇Φi − Id‖0 . τqδ1/2
q λ1+α

q ≤ `αq (7.15)

for t ∈ Ji ∪ Ii ∪ Ji+1, since this is an interval of length ∼ τq. Using (7.2),
(7.4) and (5.9) we also have, for any N ≥ 0∥∥∥∥η2

i
˚̄S

σ̄i

∥∥∥∥
N

.

∥∥∥∥ ˚̄S

σ̄

∥∥∥∥
N

. σ̄γ`−N−αq . δγq+1λ
α
q+1`

−N
q = λα−2βγ

q+1 `−Nq . (7.16)

Thus, using the decomposition

S̃i − Id = ∇Φi
η2
i
˚̄S

σ̄i
∇ΦT

i +∇Φi∇ΦT
i − Id

we deduce

|S̃i − Id| . λα−2βγ
q+1 + `αq ≤

1

2
,

provided a� 1 is sufficiently large, since we assumed α < 2βγ. This verifies
(7.14).
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Step 2 - The perturbation w. Now we can define the perturbation term
as

wo :=
∑
i

ψ(σ̄i)
1/2(∇Φi)

−1W (S̃i, λq+1Φi) =
∑
i

woi,

where W are the Mikado flows defined in Section 2.2, see also Remark 2.1.
Notice that the supports of the woi are disjoint and, using the Fourier series
representation of the Mikado flows (2.5),

woi :=
∑
k 6=0

(∇Φi)
−1bi,ke

iλq+1k·Φi , (7.17)

where we write

bi,k(x, t) := ψ(t)(σi(x, t))
1/2ak(S̃i(x, t))Ak.

We define wc so that w = wo + wc is divergence free:

wc :=
−i
λq+1

∑
i,k 6=0

ψ∇((σ̄i)
1/2ak(S̃i))×

∇ΦT
i (k ×Ak)
|k|2

eiλq+1k·Φi =
∑
i,k 6=0

ci,ke
iλq+1k·Φi .

Define then

w = wo + wc

ṽ = v + w

p̃ = p+ |w|2 −
∑
i

σi,

E(x, t) = E̊(1)(x, t) + E(2)(t),

where

E̊(1) := R
[
∂tṽ + div (ṽ ⊗ ṽ) +∇p̃+ div (R− S)

]
, (7.18)

with R being the operator defined in (2.7), and

E(2)(t) :=
1

3

( 
T3

|ṽ|2 − |v|2 − trS dx
)

Id.

Equations (7.8) and (3.1) follow by construction.

Step 3 - Estimates on the perturbation. The estimates on ṽ and E̊(1)

follow similarly to the ones for vq+1 and R̊q+1 in Section 5 and 6 of [3]. As

E̊(1) is defined through the operator R, in order to estimate its parts we use
the stationary phase Proposition 2.2. In order to bound the terms involved
we require analogous estimates to the ones in Section 5 of [3]. First of all,
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generalizing (7.15), for all N ≥ 0 and t ∈ Ji ∪ Ii ∪ Ji+1

‖(∇Φi)
−1 − Id‖N + ‖∇Φi − Id‖N . τqδ1/2

q λ1+α
q `−Nq

. `α−Nq (7.19)

‖(∂t + v · ∇)∇Φi‖N ≤ ‖∇Φi‖0‖v‖N+1 + ‖∇Φi‖N‖v‖1
. `α−Nq δ1/2

q λ1+α
q

. δ1/2
q λq`

−N
q , (7.20)

where we used the identity (∂t + v · ∇)∇Φi = DvT∇Φi, estimates (7.5) and
(7.15) and the fact the flow Φi is defined on a time interval of length τq.
Then, the following estimates follow precisely as in [3][Propositions 5.7 and
5.9]:

‖S̃i‖N . `−Nq , (7.21)

‖bi,k‖N . δ
1/2
q+1|k|

−6`−Nq (7.22)

‖ci,k‖N . δ
1/2
q+1λ

−1
q+1|k|

−6`−N−1
q (7.23)

‖DtS̃i‖N . τ−1
q `−Nq (7.24)

‖Dtci,k‖N . δ
1/2
q+1τ

−1
q `−N−1

q λ−1
q+1|k|

−6. (7.25)

In obtaining (7.21) we use (7.16) and the assumption that α < 2βγ. In turn,
from these estimates the estimates on ṽ in (7.9)-(7.10) follow precisely as in
[3][Corollary 5.8].

Step 4 - Estimates on the new Reynolds term E̊(1). The estimates for
E̊(1) are analogous to those obtained for the new Reynolds stress in Section
6 of [3]. Therefore we obtain, using (5.8),

‖E̊(1)‖0 .
δ

1/2
q+1δ

1/2
q λq

λ1−5α
q+1

≤ δq+2λ
−3α
q+1 . (7.26)

Step 5 - Estimates on the new Reynolds term E(2). Now we turn to
E(2), consider the decomposition

|E(2)| = 1

3

∣∣∣  
T3

|ṽ|2 − |v|2 − trS
∣∣∣

≤ 1

3

∣∣∣  
T3

|wo|2 − trS
∣∣∣+

1

3

∣∣∣ 
T3

wo · wc + wc · wo + wc ⊗ wc
∣∣∣

+
1

3

∣∣∣ 
T3

w · v + v · w
∣∣∣

(7.27)

and proceed as in [3][Proposition 6.2]. Concerning the first term in (7.27),
using (7.17) and (2.6) we have

wo⊗wo =
∑
i

woi⊗woi =
∑
i

ψ2S̄i+
∑
i,k 6=0

ψ2σ̄i∇Φ−1
i Ck(S̃i)∇Φ−Ti eiλq+1k·Φi .
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Using (2.8), the properties of Ck in (2.6) and (5.10) we obtain∣∣∣ˆ
T3

∑
i,k 6=0

ψ2σ̄i∇Φ−1
i Ck(S̃i)∇Φ−Ti eiλq+1k·Φi

∣∣∣ .∑
k 6=0

δq+1`
−N
q

λNq+1|k|N
.
δq+1

λq+1
.

Furthermore, as in [3][Proposition 6.2], we also obtain∣∣∣  
T3

wo ⊗wc +wc ⊗wo +wc ⊗wc
∣∣∣+ ∣∣∣  

T3

w ⊗ v + v ⊗w
∣∣∣ . δ

1/2
q δ

1/2
q+1λ

1+2α
q

λq+1
.

Thus, combining with (7.13) and (5.8) we arrive at

|E(2)| .
δ

1/2
q δ

1/2
q+1λ

1+2α
q

λq+1
≤ δq+2

λ6α
q+1

.

Combining with (7.26) and taking a � 1 sufficiently large we thus verify
(7.11).

Step 6 - Estimates on ∂ttr E. Observe that E̊(1) is traceless, whereas E(2)

is a function of t only. In order to estimate the time derivative of E(2),
observe that, since v is solenoidal, for every F = F (x, t)

d

dt

ˆ
T3

F =

ˆ
T3

DtF,

where Dt = ∂t + v · ∇. Therefore, using again the decomposition in (7.27),
we have∣∣∣ d

dt

ˆ
T3

ṽ ⊗ ṽ−v ⊗ v − S
∣∣∣ ≤ ∣∣∣ˆ

T3

Dt

(
wo ⊗ wc + wc ⊗ wo + wc ⊗ wc

)∣∣∣
+
∣∣∣ˆ

T3

Dt

(
w ⊗ v + v ⊗ w

)∣∣∣ (7.28)

+
∣∣∣ˆ

T3

Dt

( ∑
i,k 6=0

ψ2σ̄i∇Φ−1
i Ck(S̃i)∇Φ−Ti eiλq+1k·Φi

)∣∣∣ .
Let us first estimate ‖Dtwo‖0.

Dtwo =
∑
i,k 6=0

Dt

(
ψ(σ̄i)

1/2ak(S̃i)
)
∇Φ−1

i Ake
iλq+1k·Φi

+
∑
i,k 6=0

ψ(σ̄i)
1/2ak(S̃i)(∇v)T∇Φ−1

i Ake
iλq+1k·Φi

=
∑
i,k 6=0

dn,ke
iλq+1k·Φi +

∑
i,k 6=0

gi,ke
iλq+1k·Φi .

First notice that, by using (7.5), (7.2), (7.19), the estimates on the Fourier
coefficients of the Mikado flows, and arguing as in (7.20), we obtain

‖gi,k‖0 .
δ

1/2
q+1δ

1/2
q λq

|k|6
.
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As for the coefficients di,k, the estimate follows from (7.24) and from

‖Dt(σ̄
1/2
i )‖0 . τ−1

q δ
1/2
q+1.

Therefore

‖Dtwo‖0 . δ1/2
q+1δ

1/2
q λq`

−4α
q .

Similarly we can deduce

‖Dtwc‖0 . δ1/2
q+1δ

1/2
q λq`

−4α
q λ−1

q+1 .

Combining with ‖wo‖0 + ‖wc‖0 . δ1/2
q+1 and using (5.8)-(5.9), we arrive at∣∣∣ ˆ

T3

Dt

(
wo ⊗ wc + wc ⊗ wo + wc ⊗ wc

)∣∣∣ . δq+1δ
1/2
q λq`

−4α
q

. δq+2δ
1/2
q+1λ

1−3α
q+1

The estimate of the third term in (7.28) is entirely similar. Finally, the
estimate of the term involving Dt(w ⊗ v) follows by the estimates above on
the terms given by Dtwo and the stationary phase Proposition 2.2. More
precisely, we write

Dt

(
w ⊗ v

)
=
∑
i,k 6=0

hi,ke
iλq+1k·Φi ,

with

‖hi,k‖N . δ
1/2
q+1δ

1/2
q λq`

−4α−N
q ,

leading to ∣∣∣ ˆ
T3

Dt

(
w ⊗ v

)∣∣∣ . δ
1/2
q+1δ

1/2
q λq`

−4α−N
q

λNq+1

≤
δ

1/2
q+1δ

1/2
q λq

λq+1

. δq+2δ
1/2
q+1λ

1−6α
q+1

as before, using (5.10) and the trivial estimate 1 ≤ δ
1/2
q+1λq+1. As a result,

we obtain the estimate (7.12).
�

8. From strict to adapted subsolutions

The aim of this section is to prove Proposition 3.1. The proof is based
on an iterative convex integration scheme similar in structure to that imple-
mented in [12]. Here however, each stage contains an additional localized
gluing step and the estimates in the localized perturbation step are 1/3-type
estimates.

Proof of Proposition 3.1.
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Step 1 - Setting the parameters of the scheme. Let (v, p,R) be a
smooth strict subsolution and let 0 < β < 1/3, ν > 0 be as in the statement
of the proposition. Choose b > 1 according to (5.2), furthermore let ε̄ > 0
such that

b(1 + ε̄) <
1− β

2β
. (8.1)

Then, let δ̃, γ̃ > 0 be the constants obtained in Corollary 4.1, and choose
0 < α < 1 and 0 < γ < γ̂ ≤ γ̃ so that the conditions in Section 5 and the
inequalities (5.8)-(5.10) are satisfied,

ν >
1− 3β + α

2β
(8.2)

and furthermore
αb

β
< γ̂ <

3α

2β
, 0 < γ < γ̂ − α

2β
. (8.3)

Having fixed b, β, α, γ, γ̂ we may choose N ∈ N so that (5.10) is also valid.
For a� 1 sufficiently large (to be determined) we then define (λq, δq) as in
(5.1). Thus we are in the setting of Section 5.

Step 2 - From strict to strong subsolution. We apply Corollary 4.1
to obtain from (v, p,R) a strong subsolution (v0, p0, R0) with δ = δ1 such
that the properties (4.4)-(4.9) hold. We claim that, with such a choice of
the parameters, (v0, p0, R0) satisfies

3

4
δ1 ≤ ρ0 ≤

5

4
δ1 (8.4)

‖R̊0(t)‖0 ≤ ρ1+γ̂
0 (8.5)

‖v0‖1+α ≤ δ1/2
0 λ1+α

0 (8.6)

|∂tρ0| ≤ δ1δ
1/2
0 λ0 . (8.7)

Indeed, (8.4) and (8.5) follow directly from (4.4)-(4.5) since δ = δ1. In order
to verify (8.6)-(8.7) we need to choose ε̃ > 0 in (4.8)-(4.9) so that

δ
−(1+ε̃)
1 ≤ δ1/2

0 λ0.

According to the definition of (λq, δq) this is valid by our choice of ε̃ in (8.1)
above. In turn, the constants in (4.8)-(4.9) can be absorbed by a sufficiently
large a� 1.

Step 3 - Inductive construction of (vq, pq, Rq). Starting from (v0, p0, R0),
we show how to construct inductively a sequence {(vq, pq, Rq)}q∈N of smooth
strong subsolutions with

Rq(x, t) = ρq(t)Id + R̊q(x, t)

which satisfy the following properties:
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(aq) For all t ∈ [0, T ]
ˆ

T3

|vq|2 + trRq =

ˆ
T3

|v0|2 + trR0;

(bq) For all t ∈ [0, T ]

‖R̊q(t)‖0 ≤ ρ1+γ
q ;

(cq) If 2−jT < t ≤ 2−j+1T for some j = 1, . . . , q, then

3

8
δj+1 ≤ ρq ≤ 4δj ;

(dq) For all t ≤ 2−qT

‖R̊q(t)‖0 ≤ ρ1+γ̂
q , 3

4δq+1 ≤ ρq ≤ 5
4δq+1;

(eq) If 2−jT < t ≤ 2−j+1T for some j = 1, . . . , q, then

‖vq‖1+α ≤Mδ
1/2
j λ1+α

j ,

|∂tρq| ≤ δj+1δ
1/2
j λj ,

whereas if t ≤ 2−qT ,

‖vq‖1+α ≤Mδ1/2
q λ1+α

q ,

|∂tρq| ≤ δq+1δ
1/2
q λq .

(fq) For all t ∈ [0, T ] and q ≥ 1

‖vq − vq−1‖0 ≤
M

2
δ1/2
q .

Thanks to our choice of parameters in Step 1 above, (v0, p0, R0) satisfies
(8.4)-(8.7) and therefore our inductive assumptions (a0)− (f0).

Suppose then (vq, pq, Rq) is a smooth strong subsolution satisfying (aq)−
(fq). The construction of (vq+1, pq+1, Rq+1) is done in two steps: first a
localized gluing step performed using Proposition 6.1 to get from (vq, pq, Rq)
a smooth strong subsolution (v̄q, p̄q, R̄q), then a localized perturbation step
done using Proposition 7.1 to get (vq+1, pq+1, Rq+1) from (v̄q, p̄q, R̄q).

We apply Proposition 6.1 with

[T1, T2] = [0, 2−qT ].

Then T2 − T1 ≥ 4τq, provided a� 1 sufficiently large. Moreover, by (dq)−
(eq) and (8.3), (vq, pq, Rq) fulfils the requirements of Proposition 6.1 on
[T1, T2] with parameters α, γ̂ > 0.

Then, by Proposition 6.1 we obtain a smooth strong subsolution (v̄q, p̄q, R̄q)
on [0, T ] such that (v̄q, p̄q, R̄q) is equal to (vq, pq, Rq) on [2−qT, T ] and on
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[0, 2−qT ] satisfies

‖v̄q − vq‖α . ρ̄(1+γ̂)/2
q `α/3q ,

‖v̄q‖1+α . δ
1/2
q λq1 + α ,

‖˚̄Rq‖0 ≤ ρ̄1+γ̂
q `−αq ,

5
8δq+1 ≤ ρ̄q ≤ 3

2δq+1 ,

|∂tρ̄q| . δq+1δ
1/2
q λq .

(8.8)

Moreover, on [0, tn] one has

‖v̄q‖N+1+α . δ
1/2
q λ1+α

q `−Nq ,

‖˚̄Rq‖N+α . ρ̄
1+γ̂
q `−N−αq ,

‖(∂t + v̄q · ∇)˚̄Rq‖N+α . ρ̄
1+γ̂
q `−N−αq δ1/2

q λq.

(8.9)

and

˚̄Rq ≡ 0 for t ∈
n⋃
i=0

Ji. (8.10)

Recalling Definition 6.1 and (6.4) observe that

[0, 3
42−qT ] ⊂ [0, tn], (8.11)

provided a � 1 is chosen sufficiently large. Then, fix a cut-off function
ψq ∈ C∞c ([0, 3

42−qT ); [0, 1]) such that

ψq(t) =

{
1 t ≤ 2−(q+1)T,

0 t > 3
42−qT,

(8.12)

and such that |ψ′q(t)| . 2q. By choosing a � 1 sufficiently large, we may
assume that

|ψ′q(t)| ≤
1

2
δ1/2
q λq (8.13)

for all q. Then, set
S = ψ2

q (R̄q − δq+2Id).

Using (8.13), (8.3) and (8.8)-(8.11) we see that S and (v̄q, p̄q, R̄q) satisfy
the assumptions of Proposition 7.1 on the interval [0, tn] with parameters
α, γ̂ > 0.

Proposition 7.1 gives then a new subsolution (vq+1, pq+1, R̄q − S − Ẽq+1)
with

‖vq+1 − v̄q‖0 + λ−1−α
q+1 ‖vq+1 − v̄q‖1+α ≤

M

2
δ

1/2
q+1 ,ˆ

T3

|vq+1|2 − trS − tr Ẽq+1 =

ˆ
T3

|v̄q|2 for all t ∈ [0, T ],

and such that the estimates (7.11)-(7.12) hold for Ẽq+1. Let

Rq+1 := R̄q − S − Ẽq+1.
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We claim that (vq+1, pq+1, Rq+1) is a smooth strong subsolution satisfy-
ing (aq+1) − (fq+1). Notice that (aq+1) is satisfied by construction. Since
(vq+1, pq+1, Rq+1) = (vq, pq, Rq) for t ≥ 2−qT , we may restrict to t ≤ 2−qT
in the following, so that in particular (8.8) holds.

Let us now prove (bq+1). On the one hand

‖R̊q+1‖0 = ‖(1− ψ2
q )

˚̄Rq − E̊q+1‖0
≤ (1− ψ2

q )ρ̄
1+γ̂
q `−αq + δq+2λ

−3α
q+11{ψq>0},

on the other hand

ρq+1 = (1− ψ2
q )ρ̄q + ψ2

qδq+2 + 1
3tr Eq+11{ψq>0}

≥ (1− ψ2
q )ρ̄q + ψ2

qδq+2 − δq+2λ
−3α
q+11{ψq>0}.

The question is then whether there exists a suitable γ such that

(1− ψ2
q )ρ̄

1+γ̂
q `−αq + δq+2λ

−3α
q+11{ψq>0}

≤ [(1− ψ2
q )ρ̄q + ψ2

qδq+2 − δq+2λ
−3α
q+11{ψq>0}]

1+γ .
(8.14)

To this end set

F (s) = (1− s)ρ̄1+γ̂
q `−αq + δq+2λ

−3α
q+1 ,

G(s) = (1− s)ρ̄q + sδq+2 − δq+2λ
−3α
q+1 ,

and observe that (8.14) is equivalent to F (ψ2
q ) ≤ G1+γ(ψ2

q ) if ψq > 0, and
follows from this inequality also in case ψq = 0. In particular, (8.14) follows
from

(i) F (0) ≤ G1+γ(0);
(ii) F ′(s) ≤ (1 + γ)Gγ(s)G′(s).

We note next that, since 2βγ̂ < 3α,

δq+2λ
−3α
q+1 . ρ̄

1+γ̂
q ,

so that we have the estimates

F (0) . ρ̄1+γ̂
q `−αq , G(0) & ρ̄q

and also clearly G(s) ≤ ρ̄q. Then is it easy to check that (i) amounts to

ρ̄1+γ̂
q `−αq . ρ̄1+γ

q , and hence (using (5.9)) follows from

γ̂ − α

2β
> γ

whereas (ii) follows from γ < γ̂, provided a� 1 is sufficiently large to absorb
geometric constants. Thus, our choice of γ in (8.3) guarantees that (8.14),
and hence (bq+1) is satisfied.

Consider now (cq+1), where we only need to consider the case j = q + 1,
i.e. the estimate on [2−q−1T, 2−qT ]. Arguing as above, we see that

δq+2(1− λ−3α
q+1 ) ≤ ρq+1(t) ≤ ρ̄q(t) + δq+2λ

−3α
q+1 ≤ 3

2δq+1 + δq+2λ
−3α
q+1 .

Therefore (cq+1) holds, provided a� 1 is sufficiently large.
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Similarly, concerning (dq+1) note that for t ≤ 2−(q+1)T we have ψq(t) = 1,
so that

δq+2(1− λ−3α
q+1 ) ≤ ρq+1 ≤ δq+2(1 + λ−3α

q+1 ).

Moreover, as above, for t ≤ 2−(q+1)T

‖R̊q+1‖0 ≤ δq+2λ
−3α
q+1 ≤ (3

4δq+1)1+γ̂ ,

since 2βγ̄ < 3α and by choosing a � 1 sufficiently large. Therefore (dq+1)
holds.

Concerning (eq+1) it suffices again to restrict to t ≤ 2−qT , i.e. the case
j = q + 1. From (8.8) and (7.10) we deduce

‖vq+1‖1+α ≤ ‖vq+1 − v̄q‖1+α + ‖v̄q‖1+α

≤ M

2
δ

1/2
q+1λ

1+α
q+1 + Cδ1/2

q λ1+α
q

≤Mδ
1/2
q+1λ

1+α
q+1 ,

where C is the implicit constant in (8.8) which can be absorbed by choosing
a� 1 sufficiently large. In a similar manner the estimate on |∂tρq+1| follows
from (eq) and (7.12). Finally, (fq+1) follows from (8.8) and (7.9).

Step 4. Convergence to an adapted subsolution. We have then ob-
tained a sequence (vq, pq, Rq) satisfying (aq)− (fq).

From (fq), it follows that (vq, pq) is a Cauchy sequence in C0. Indeed, for
{vq} this is clear. Regarding {pq} we may use (3.1) to write

∆(pq+1−pq) = −div div
(
R̊q+1 − R̊q + (vq+1 − vq)⊗ vq + vq+1 ⊗ (vq+1 − vq)

)
,

and use Schauder estimates. Similarly, also {Rq} converges in C0. Indeed,
from the definition and using (6.15) and we have

‖Rq+1 −Rq‖0 = ‖R̄q −Rq − S − Ẽq+1‖0
≤ ‖R̄q −Rq‖0 + ‖S‖0 + ‖Ẽq+1‖0
. δq+1.

Since for all t > 0 there exists q(t) ∈ N such that

(vq, pq, Rq)(·, t) = (vq(t), pq(t), Rq(t))(·, t) ∀ q ≥ q(t),

then (vq, pq, Rq) converges uniformly to (v̂, p̂, R̂) where (v̂, p̂, R̂) is a strong
subsolution with

‖R̂‖0 ≤ ρ̂1+γ

and, using (4.7) and (aq)ˆ
T3

|v̂|2 + tr R̂ =

ˆ
T3

|v|2 + trR for all t ∈ [0, T ].
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Furthermore, using (4.6) and (fq)

‖v̂ − v‖H−1 ≤ ‖v0 − v‖H−1 + ‖v0 − v̂‖H−1

. δ1 +

∞∑
q=0

‖vq+1 − vq‖0

. δ1/2
1 ,

and similarly

‖v̂ ⊗ v̂ + R̂− v ⊗ v −R‖H−1 ≤ ‖v0 ⊗ v0 +R0 − v ⊗ v −R‖H−1+

+ ‖v̂ ⊗ v̂ + R̂− v0 ⊗ v0 −R0‖H−1

. δ1 + ‖v̂ ⊗ v̂ − v0 ⊗ v0‖0 + ‖R̂‖0 + ‖R‖0

. δ1.

Concerning the initial datum, from (eq) and (fq) we obtain by interpola-

tion that v̂(·, 0) ∈ Cβ, and from (dq) we obtain that R̂(·, 0) = 0.
Finally, we verify conditions (3.4)-(3.5) for being an adapted subsolution.

Let t > 0. Then there exists q ∈ N such that t ∈ [2−qT, 2−q+1T ]. By (cq)
and (eq)

3

8
δq+1 ≤ ρ̂ ≤ 4δq,

‖v̂‖1+α ≤Mδ1/2
q λ1+α

q .

Therefore ρ̂−1 ≥ 1
4δ
−1
q and hence, using (5.1) and (8.2), we deduce

‖v̂‖1+α ≤ ρ̂−(1+ν)

for a� 1 sufficiently large. Similarly, using (eq) and (8.2) we deduce

|∂tρ̂| ≤ δq+1δ
1/2
q λq ≤ δ

1− 1−β
2β

q ≤ ρ̂−ν .

This completes the proof of Proposition 3.1. �

9. From adapted subsolutions to solutions

The aim of this section is to prove Proposition 3.2. We will start now
from an adapted subsolution and we will build through a convex integra-
tion scheme a sequence of strong subsolutions converging to a solution of
the incompressible Euler equations. Here as in Proposition 3.1 the convex
integration scheme will need localized gluing and perturbation arguments,
namely Propositions 6.1 and 7.1. However, the choice of the cut-off functions
will be, as in [12], dictated by the shape of the trace part of the Reynolds
stress and not fixed a priori as in Proposition 3.1.

Proof of Proposition 3.2:
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Step 1 - Setting of parameters in the scheme. Let (v̂, p̂, R̂) be a Cβ-
adapted subsolution on [0, T ] satisfying (3.2) for some γ > 0 and (3.4)-(3.5)
for some α, ν > 0 as in Definition 3.3, with

1− β
2β

< 1 + ν <
1− β̂

2β̂
.

Fix b > 1 so that

b2(1 + ν) <
1− β̂

2β̂
, 2β̂(b2 − 1) < 1. (9.1)

Observe that both (3.2) and (3.4)-(3.5) remain valid for any γ′ ≤ γ and
α′ ≤ α (c.f. Remark 3.1). Then, we may assume that α, γ > 0 are sufficiently
small, so that (v̄, p̄, R̄) satisfies (3.2) and (3.4)-(3.5) with these parameters,
and furthermore choose γ̃ > 0 so that

αb

β
< γ <

3α

2β
,

αb

β
< γ̃ < γ − α

2β
. (9.2)

Finally, having fixed b, β, β̂, α, γ, γ̃ we may choose N ∈ N so that (5.10)
holds. For a� 1 sufficiently large (to be determined) we then define (λq, δq)
as in (5.1). Thus, we are in the setting of Section 5.

Step 2 - The first approximation. Let (v̂, p̂, R̂) be as in the statement
of the proposition and fix η = δ1 (observe that δ1 depends on our choice of
a� 1 which will be chosen sufficiently large in the subsequent proof; thus, if
necessary we choose η smaller than given in the statement of the proposition
- this is certainly no loss of generality). We apply Corollary 4.2 to obtain
another Cβ-adapted subsolution (v0, p0, R0) with parameters γ, ν such that

ρ0 ≤ η/4 and v0 = v̂ for t = 0.

Observe that strictly speaking in applying Corollary 4.2 we would obtain a
parameter γ′ < γ. However, without loss of generality we may assume that
the parameter is γ, since in Step 1 above we already chose γ “sufficiently
small”. Furthermoreˆ

T3

|v0|2 + trR0 =

ˆ
T3

|v̂|2 + tr R̂ for all t,

‖v0 − v̂‖H−1 ≤ η/2,

‖v0 ⊗ v0 +R0 − v̂ ⊗ v̂ − R̂‖H−1 ≤ η/2.

We claim that then the following holds: for any q ∈ N and any t ∈ [0, T ]
such that ρ0(t) ≥ δq+2, we have

‖v0‖1+α ≤ δ1/2
q λ1+α

q ,

|∂tρ0| ≤ ρ0δ
1/2
q λq .

(9.3)
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Indeed, assuming ρ(t) ≥ δq+2 for some q, we obtain using (5.1) and (9.1)

ρ
−(1+ν)
0 (t) . λ2βb2(1+ν)

q ≤ δ1/2
q λq ,

ρ−ν0 (t) . λ2βb2ν
q ≤ δq+2δ

1/2
q λq ,

provided a� 1 is sufficiently large to absorb constants.

Step 3 - Inductive construction of (vq, pq, Rq). Starting with (v0, p0, R0)
we construct inductively a sequence of (vq, pq, Rq) of smooth strong subso-
lutions q = 1, 2 . . . with

Rq(x, t) = ρq(t)Id + R̊q(x, t)

satisfying the following properties:

(aq) For all t ∈ [0, T ]ˆ
T3

|vq|2 + trRq =

ˆ
T3

|v0|2 + trR0; (9.4)

(bq) For all t ∈ [0, T ]

ρq ≤ 5
4δq+1; (9.5)

(cq) For all t ∈ [0, T ]

‖R̊q‖0 ≤

{
ρ1+γ̃
q if ρq ≥ 3

2δq+2,

ρ1+γ
q if ρq ≤ 3

2δq+2;
(9.6)

(dq) If ρq ≥ δj+2 for some j ≥ q, then

‖vq‖1+α ≤Mδ
1/2
j λ1+α

j , (9.7)

|∂tρq| ≤ ρqδ1/2
j λj ; (9.8)

(eq) For all t ∈ [0, T ] and q ≥ 1

‖vq − vq−1‖0 . δ1/2
q . (9.9)

Thanks to our choice of parameters in Step 1 above, (v0, p0, R0) satisfies
(9.3) and therefore our inductive assumptions (a0)− (f0).

Suppose now (vq, pq, Rq) satisfies (aq)-(eq) above. Let

Jq :=
{
t ∈ [0, T ] : ρq(t) >

3
2δq+2

}
, Kq := {t ∈ [0, T ] : ρq(t) ≥ 2δq+2}.

Being (relatively) open in [0, T ], Jq is a disjoint, possibly countable, union

of (relatively) open intervals (T
(i)
1 , T

(i)
2 ). Let

Iq :=
{
i : (T

(i)
1 , T

(i)
2 ) ∩Kq 6= ∅

}
and let t0 ∈ (T

(i)
1 , T

(i)
2 ) ∩Kq for some i ∈ Iq. Since Kq is compact, we may

assume that the open interval (T
(i)
1 , t0) is contained in Jq \Kq. Using (dq)
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we then have
3
2δq+2 = ρq(T

(i)
1 ) ≥ ρq(t0)− |T (i)

1 − t0| sup
Jq

|∂tρq|

≥ 2δq+2 − 2δq+2δ
1/2
q λq|T (i)

1 − t0|,
hence

|T (i)
1 − t0| ≥ 1

4(δ1/2
q λq)

−1 > 4τq, (9.10)

provided a� 1 is chosen sufficiently large. Similar estimate holds with T
(i)
2 .

Therefore T
(i)
2 − T

(i)
1 > 4τq for any i ∈ Iq, so that Iq is a finite index set.

Next, we apply Proposition 6.1 (in the form of Remark 6.1) to (vq, pq, Rq)
on the intervals ⋃

i∈Iq

Jq,i.

Since ρq >
3
2δq+2 on Jq, from (aq) − (eq) we see that the assumptions of

Proposition 6.1 on (vq, pq, Rq) hold with parameter γ̃. Then we obtain
(v̄q, p̄q, R̄q) such that

‖v̄q(t)− vq(t)‖α . ρ̄(1+γ̃)/2
q `α/3q ,

‖v̄q‖1+α . δ
1/2
q λ1+α

q ,

‖˚̄Rq‖0 ≤ ρ̄1+γ̃
q `−αq ,

7
8ρq ≤ρ̄q ≤

9
8ρq,

|∂tρ̄q| . ρ̄qδ1/2
q λq .

Moreover, recalling (6.4), for any i ∈ Iq we have the following additional

estimates valid for t ∈ [T
(i)
1 + 2τq, T

(i)
2 − 2τq]:

‖v̄q‖N+1+α . δ
1/2
q λ1+α

q `−Nq ,∥∥∥˚̄Rq

∥∥∥
N+α

. ρ̄1+γ̃
q `−N−αq ,

‖(∂t + v̄q · ∇)˚̄Rq‖N+α . ρ̄
1+γ̃
q `−N−αq δ1/2

q λq ,

(9.11)

and the traceless part S̊ of S satisfies

supp S̊ ⊂ T3 ×
⋃
i

Ii, (9.12)

where {Ii}i are the intervals defined in (6.1). Let us choose a cut-off function
ψq ∈ C∞c (Jq; [0, 1]) such that

suppψq ⊂
⋃
i∈Iq

(T
(i)
1 + 2τq, T

(i)
2 − 2τq) (9.13)

Kq ⊂ {ψq = 1} (9.14)

|ψ′q| .
1

δ
1/2
q λq

. (9.15)
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Such choice is made possible by (9.10). We want then to apply Proposition
7.1 to (v̄q, p̄q, R̄q) with

S = ψ2
q (R̄q − δq+2Id)

hence σ = ψ2
q (ρ̄q − δq+2). Using (9.15), (9.2) and (9.11)-(9.12) we see that

S and (v̄q, p̄q, R̄q) satisfy the assumptions of Proposition 7.1 on the interval

[T
(i)
1 + 2τq, T

(i)
2 − 2τq] with parameters α, γ̃ > 0. Proposition 7.1 gives then

a new subsolution (vq+1, pq+1, R̄q − S − Ẽq+1) with

‖vq+1 − v̄q‖0 + λ−1−α
q+1 ‖vq+1 − v̄q‖1+α ≤

M

2
δ

1/2
q+1 ,ˆ

T3

|vq+1|2 − trS − tr Ẽq+1 =

ˆ
T3

|v̄q|2 for all t ∈ [0, T ].

and such that the estimates (7.11)-(7.12) hold for Ẽq+1. Let

Rq+1 := R̄q − S − Ẽq+1.

We claim that (vq+1, pq+1, Rq+1) is a smooth strong subsolution satisfying
(aq+1)−(fq+1). Notice that (aq+1) is satisfied by construction. By definition
of S, one has then

ρq+1 = ρ̄q(1− ψ2
q ) + ψ2

qδq+2 − 1
3tr Ẽq+1 ,

R̊q+1 = ˚̄Rq(1− ψ2
q )−

˚̃Eq+1 .

Then (bq+1) follows directly from (7.11) and the fact that Kq ⊂ {ψq = 1}.
Next, observe that if ρq+1 ≤ 3

2δq+3, then t /∈ Jq, hence ρq+1 = ρq, R̊q+1 =

R̊q. Therefore in verifying conditions (cq+1)− (dq+1) it suffices to restrict to
the case when ρq+1 ≥ 3

2δq+3 and j = q + 1, respectively.
If t ∈ Jq then the argument for showing (cq+1) is precisely as the proof of

(bq+1) in Step 3 of Proposition 3.1 above. Also, the estimates in (dq+1) for
j = q + 1 follow from (7.10) and (7.12). Finally, (eq+1) follows precisely as
(fq+1) in the proof of Proposition 3.1 above.

Thus, the inductive step is proved.

Finally, the convergence of {vq} to a solution of the Euler equations as in
the statement of Proposition 3.2 follows easily from the sequence of estimates
in (a)q − (f)q, analogously to Step 4 of Proposition 3.1 above.

�
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[1] [BDS] Brenier, Y., De Lellis, C. and Székelyhidi Jr., L. Weak-strong uniqueness for
measure-valued solutions Comm. Math. Phys. 305, 351–361 (2011)

[2] [BDIS] Buckmaster, T., De Lellis, C., Isett, P. and Székelyhidi Jr., L. Anomalous
dissipation for 1/5-Hölder Euler flows Ann. of Math. 182, 1, 127–172 (2015)

[3] [BDSV] Buckmaster, T., De Lellis, C., Székelyhidi Jr., L. and Vicol, V. Onsager’s
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