We study how the Einstein relation between spontaneous fluctuations and the response to an external perturbation holds in the absence of currents, for the comb model and the elastic single-file, which are examples of systems with subdiffusive transport properties. The relevance of non-equilibrium conditions is investigated: when a stationary current (in the form of a drift or an energy flux) is present, the Einstein relation breaks down, as is known to happen in systems with standard diffusion. In the case of the comb model, a general relation, which has appeared in the recent literature, between the response function and an unperturbed suitable correlation function, allows us to explain the observed results. This suggests that a relevant ingredient in breaking the Einstein formula, for stationary regimes, is not the anomalous diffusion but the presence of currents driving the system out of equilibrium

On anomalous diffusion and the out of equilibrium response function in one-dimensional models

Gradenigo G;
2011-01-01

Abstract

We study how the Einstein relation between spontaneous fluctuations and the response to an external perturbation holds in the absence of currents, for the comb model and the elastic single-file, which are examples of systems with subdiffusive transport properties. The relevance of non-equilibrium conditions is investigated: when a stationary current (in the form of a drift or an energy flux) is present, the Einstein relation breaks down, as is known to happen in systems with standard diffusion. In the case of the comb model, a general relation, which has appeared in the recent literature, between the response function and an unperturbed suitable correlation function, allows us to explain the observed results. This suggests that a relevant ingredient in breaking the Einstein formula, for stationary regimes, is not the anomalous diffusion but the presence of currents driving the system out of equilibrium
2011
Anomalous diffusion, fluctuation-dissipation relation, subdiffusion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/8003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 22
social impact