The analysis of the Parker–Moffatt problem, recently revisited in Pezzi et al. (Astrophys. J., vol. 834, 2017, p. 166), is here extended by including Hall magnetohydrodynamics and two hybrid kinetic Vlasov–Maxwell numerical models. The presence of dispersive and kinetic features is studied in detail and a comparison between the two kinetic codes is also reported. Focus on the presence of non-Maxwellian signatures shows that – during the collision – regions characterized by strong temperature anisotropy are recovered and the proton distribution function displays a beam along the direction of the magnetic field, similar to some recent observations of the solar wind.
Colliding Alfvénic wave packets in magnetohydrodynamics, Hall and kinetic simulations
Pezzi O.;
2017-01-01
Abstract
The analysis of the Parker–Moffatt problem, recently revisited in Pezzi et al. (Astrophys. J., vol. 834, 2017, p. 166), is here extended by including Hall magnetohydrodynamics and two hybrid kinetic Vlasov–Maxwell numerical models. The presence of dispersive and kinetic features is studied in detail and a comparison between the two kinetic codes is also reported. Focus on the presence of non-Maxwellian signatures shows that – during the collision – regions characterized by strong temperature anisotropy are recovered and the proton distribution function displays a beam along the direction of the magnetic field, similar to some recent observations of the solar wind.File | Dimensione | Formato | |
---|---|---|---|
2017_JPlasmaPhys_83_Pezzi.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
5.23 MB
Formato
Adobe PDF
|
5.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.