To properly describe heating in weakly collisional turbulent plasmas such as the solar wind, interparticle collisions should be taken into account. Collisions can convert ordered energy into heat by means of irreversible relaxation towards the thermal equilibrium. Recently, Pezzi et al. (Phys. Rev. Lett., vol. 116, 2016a, 145001) showed that the plasma collisionality is enhanced by the presence of fine structures in velocity space. Here, the analysis is extended by directly comparing the effects of the fully nonlinear Landau operator and a linearized Landau operator. By focusing on the relaxation towards the equilibrium of an out of equilibrium distribution function in a homogeneous force-free plasma, here it is pointed out that it is significant to retain nonlinearities in the collisional operator to quantify the importance of collisional effects. Although the presence of several characteristic times associated with the dissipation of different phase space structures is recovered in both the cases of the nonlinear and the linearized operators, the influence of these times is different in the two cases. In the linearized operator case, the recovered characteristic times are systematically larger than in the fully nonlinear operator case, this suggesting that fine velocity structures are dissipated more slowly if nonlinearities are neglected in the collisional operator.

Solar wind collisional heating

Pezzi, Oreste
2017-01-01

Abstract

To properly describe heating in weakly collisional turbulent plasmas such as the solar wind, interparticle collisions should be taken into account. Collisions can convert ordered energy into heat by means of irreversible relaxation towards the thermal equilibrium. Recently, Pezzi et al. (Phys. Rev. Lett., vol. 116, 2016a, 145001) showed that the plasma collisionality is enhanced by the presence of fine structures in velocity space. Here, the analysis is extended by directly comparing the effects of the fully nonlinear Landau operator and a linearized Landau operator. By focusing on the relaxation towards the equilibrium of an out of equilibrium distribution function in a homogeneous force-free plasma, here it is pointed out that it is significant to retain nonlinearities in the collisional operator to quantify the importance of collisional effects. Although the presence of several characteristic times associated with the dissipation of different phase space structures is recovered in both the cases of the nonlinear and the linearized operators, the influence of these times is different in the two cases. In the linearized operator case, the recovered characteristic times are systematically larger than in the fully nonlinear operator case, this suggesting that fine velocity structures are dissipated more slowly if nonlinearities are neglected in the collisional operator.
2017
Plasma heating
Plasma simulation
Space plasma physics
Condensed Matter Physics
File in questo prodotto:
File Dimensione Formato  
2017_JPlasmaPhys_83_Pezzi.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso gratuito
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/7908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact