We obtain, using semianalytical transfer operator techniques, the Edwards thermodynamics of a one-dimensional model of blocks connected by harmonic springs and subjected to dry friction. The theory is able to reproduce the linear divergence of the correlation length as a function of energy density observed in direct numerical simulations of the model under tapping dynamics. We further characterize analytically this divergence using a Gaussian approximation for the distribution of mechanically stable configurations, and show that it is related to the existence of a peculiar infinite temperature critical point.

Edwards thermodynamics for a driven athermal system with dry friction

Gradenigo G
;
2015-01-01

Abstract

We obtain, using semianalytical transfer operator techniques, the Edwards thermodynamics of a one-dimensional model of blocks connected by harmonic springs and subjected to dry friction. The theory is able to reproduce the linear divergence of the correlation length as a function of energy density observed in direct numerical simulations of the model under tapping dynamics. We further characterize analytically this divergence using a Gaussian approximation for the distribution of mechanically stable configurations, and show that it is related to the existence of a peculiar infinite temperature critical point.
2015
Edwards thermodynamics, dry friction, non-equilibrium statistical mechanics
File in questo prodotto:
File Dimensione Formato  
2015_SM_PhysRevLett_115_Gradenigo.pdf

non disponibili

Descrizione: Supplementary Material
Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 294.84 kB
Formato Adobe PDF
294.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2015_PhysRevLett_115_140601_Gradenigo.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 301.85 kB
Formato Adobe PDF
301.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/7818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact