The most convincing candidate as main constituent of the dark matter in the Universe consists of Weakly Interacting Massive Particles (WIMPs). WIMPs must be electrically neutral and interact with a very low cross-section (sigma < 10(-40) cm(2)) which makes them detectable in direct searches only through the observation of nuclear recoils induced by the WIMP rare scatterings. In the experiments carried out so far, recoiled nuclei are searched for as a signal over a background produced by Compton electrons and neutron scatterings. Signal found by some experiments have not been confirmed by other techniques. We propose an R&D program for a new experimental method able to observe the track of the scattered nucleus based on new developments in the nuclear emulsion technique. Nuclear emulsions would act both as the WIMP target and as the tracking detector able to reconstruct the direction of the recoiled nucleus. This unique characteristic would provide a new and unambiguous signature of the presence of the dark matter in our galaxy.

NEWS: Nuclear emulsion WIMP search

Di Marco N;
2015

Abstract

The most convincing candidate as main constituent of the dark matter in the Universe consists of Weakly Interacting Massive Particles (WIMPs). WIMPs must be electrically neutral and interact with a very low cross-section (sigma < 10(-40) cm(2)) which makes them detectable in direct searches only through the observation of nuclear recoils induced by the WIMP rare scatterings. In the experiments carried out so far, recoiled nuclei are searched for as a signal over a background produced by Compton electrons and neutron scatterings. Signal found by some experiments have not been confirmed by other techniques. We propose an R&D program for a new experimental method able to observe the track of the scattered nucleus based on new developments in the nuclear emulsion technique. Nuclear emulsions would act both as the WIMP target and as the tracking detector able to reconstruct the direction of the recoiled nucleus. This unique characteristic would provide a new and unambiguous signature of the presence of the dark matter in our galaxy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/7651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact