In this paper we address the Cauchy problem for the incompressible Euler equations in the periodic setting. We prove that the set of Hölder 1 / 5 - ε wild initial data is dense in L 2 , where we call an initial datum wild if it admits infinitely many admissible Hölder 1 / 5 - ε weak solutions. We also introduce a new set of stationary flows which we use as a perturbation profile instead of Beltrami flows in order to show that a general form of the h-principle applies to Hölder-continuous weak solutions of the Euler equations. Our result indicates that in a deterministic theory of three dimensional turbulence the Reynolds stress tensor can be arbitrary and need not satisfy any additional closure relation.
Non-uniqueness and h-Principle for Hölder-Continuous Weak Solutions of the Euler Equations
Daneri S;
2017-01-01
Abstract
In this paper we address the Cauchy problem for the incompressible Euler equations in the periodic setting. We prove that the set of Hölder 1 / 5 - ε wild initial data is dense in L 2 , where we call an initial datum wild if it admits infinitely many admissible Hölder 1 / 5 - ε weak solutions. We also introduce a new set of stationary flows which we use as a perturbation profile instead of Beltrami flows in order to show that a general form of the h-principle applies to Hölder-continuous weak solutions of the Euler equations. Our result indicates that in a deterministic theory of three dimensional turbulence the Reynolds stress tensor can be arbitrary and need not satisfy any additional closure relation.File | Dimensione | Formato | |
---|---|---|---|
2017_ArchRationMechAnal_224_Daneri.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
753 kB
Formato
Adobe PDF
|
753 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.