CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ( 0νββ ) of 100Mo . In this article, we detail the CUPID-Mo detector concept, assembly and installation in the Modane underground laboratory, providing results from the first datasets. The CUPID-Mo detector consists of an array of 20 100Mo -enriched 0.2 kg Li2MoO4 crystals operated as scintillating bolometers at ∼20 mK . The Li2MoO4 crystals are complemented by 20 thin Ge optical bolometers to reject α events by the simultaneous detection of heat and scintillation light. We observe a good detector uniformity and an excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Light collection ensures the rejection of α particles at a level much higher than 99.9% – with equally high acceptance for γ / β events – in the region of interest for 100Mo 0νββ . We present limits on the crystals’ radiopurity: ≤3 μBq/kg of 226Ra and ≤2 μBq/kg of 232Th . We discuss the science reach of CUPID-Mo, which can set the most stringent half-life limit on the 100Mo 0νββ decay in half-a-year’s livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology developed by the LUMINEU project and subsequently selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale bolometric 0νββ experiment
The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects
Benato, G.;Marini, L.;Pagnanini, L.;
2020-01-01
Abstract
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ( 0νββ ) of 100Mo . In this article, we detail the CUPID-Mo detector concept, assembly and installation in the Modane underground laboratory, providing results from the first datasets. The CUPID-Mo detector consists of an array of 20 100Mo -enriched 0.2 kg Li2MoO4 crystals operated as scintillating bolometers at ∼20 mK . The Li2MoO4 crystals are complemented by 20 thin Ge optical bolometers to reject α events by the simultaneous detection of heat and scintillation light. We observe a good detector uniformity and an excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Light collection ensures the rejection of α particles at a level much higher than 99.9% – with equally high acceptance for γ / β events – in the region of interest for 100Mo 0νββ . We present limits on the crystals’ radiopurity: ≤3 μBq/kg of 226Ra and ≤2 μBq/kg of 232Th . We discuss the science reach of CUPID-Mo, which can set the most stringent half-life limit on the 100Mo 0νββ decay in half-a-year’s livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology developed by the LUMINEU project and subsequently selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale bolometric 0νββ experimentI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.