Optical readout of large Time Projection Chambers (TPCs) with multiple Gas Electron Multipliers (GEMs) amplification stages has shown to provide very interesting performances for high energy particle tracking. Proposed applications for low-energy and rare event studies, such as Dark Matter search, ask for demanding performance in the keV energy range. The performance of such a readout was studied in details as a function of the electric field configuration and GEM gain by using a 55Fe source within a 7 litre sensitive volume detector developed as a part of the R&D for the CYGNUS project. Results reported in this paper show that the low noise level of the sensor allows to operate with a 2 keV threshold while keeping a rate of fake-events lesser than 10 per year. In this configuration, a detection efficiency well above 95% along with an energy resolution (σ) of 18% is obtained for the 5.9 keV photons demonstrating the very promising capabilities of this technique.

Performance of Optically Readout GEM-based TPC with a 55Fe source

Baracchini E;
2019-01-01

Abstract

Optical readout of large Time Projection Chambers (TPCs) with multiple Gas Electron Multipliers (GEMs) amplification stages has shown to provide very interesting performances for high energy particle tracking. Proposed applications for low-energy and rare event studies, such as Dark Matter search, ask for demanding performance in the keV energy range. The performance of such a readout was studied in details as a function of the electric field configuration and GEM gain by using a 55Fe source within a 7 litre sensitive volume detector developed as a part of the R&D for the CYGNUS project. Results reported in this paper show that the low noise level of the sensor allows to operate with a 2 keV threshold while keeping a rate of fake-events lesser than 10 per year. In this configuration, a detection efficiency well above 95% along with an energy resolution (σ) of 18% is obtained for the 5.9 keV photons demonstrating the very promising capabilities of this technique.
2019
Dark Matter detectors (WIMPs, axions, etc.); Charge transport and multiplication in gas; Optical detector readout concepts; Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc)
File in questo prodotto:
File Dimensione Formato  
2019_JInst_14_Costa.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 3.39 MB
Formato Adobe PDF
3.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact