This work introduces Loop-Free Routing (LFR), a new loop-free distance-vector routing algorithm, which is able to update the shortest paths of a distributed network in fully dynamic scenarios. This work also provides an evaluation based on simulations of LFR and Diffuse Update ALgorithm (DUAL), one of the most popular loop-free distance-vector algorithms, which is part of CISCO's widely used Enhanced Interior Gateway Routing Protocol (EIGRP). The simulations are performed on dynamic scenarios based on both real-world and controlled instances. The simulations show that LFR is always the best choice in terms of memory requirements, while in terms of messages sent LFR outperforms DUAL on real-world networks, whereas DUAL is the best choice on controlled scenarios. (C) 2013 Elsevier B.V. All rights reserved.
A loop-free shortest-path routing algorithm for dynamic networks
D'Angelo G;
2014-01-01
Abstract
This work introduces Loop-Free Routing (LFR), a new loop-free distance-vector routing algorithm, which is able to update the shortest paths of a distributed network in fully dynamic scenarios. This work also provides an evaluation based on simulations of LFR and Diffuse Update ALgorithm (DUAL), one of the most popular loop-free distance-vector algorithms, which is part of CISCO's widely used Enhanced Interior Gateway Routing Protocol (EIGRP). The simulations are performed on dynamic scenarios based on both real-world and controlled instances. The simulations show that LFR is always the best choice in terms of memory requirements, while in terms of messages sent LFR outperforms DUAL on real-world networks, whereas DUAL is the best choice on controlled scenarios. (C) 2013 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.