We consider a point particle moving in a random distribution of obstacles described by a potential barrier. We show that, in a weak-coupling regime, under a diffusion limit suggested by the potential itself, the probability distribution of the particle converges to the solution of the heat equation. The diffusion coefficient is given by the Green-Kubo formula associated to the generator of the diffusion process dictated by the linear Landau equation. © 2014 Springer Science+Business Media New York.

A Diffusion Limit for a Test Particle in a Random Distribution of Scatterers

Nota A.;
2014-01-01

Abstract

We consider a point particle moving in a random distribution of obstacles described by a potential barrier. We show that, in a weak-coupling regime, under a diffusion limit suggested by the potential itself, the probability distribution of the particle converges to the solution of the heat equation. The diffusion coefficient is given by the Green-Kubo formula associated to the generator of the diffusion process dictated by the linear Landau equation. © 2014 Springer Science+Business Media New York.
2014
Lorentz Gas, weak-coupling limit, diffusion limit, Heat equation, linear Landau equation, Green-Kubo formula
File in questo prodotto:
File Dimensione Formato  
2014_JStatPhys_155_Basile.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 493.13 kB
Formato Adobe PDF
493.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/37205
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact