We prove a quadratic interaction estimate for approximate solutions to scalar conservation laws obtained by the wavefront tracking approximation or the Glimm scheme. This quadratic estimate has been used in the literature to prove the convergence rate of the Glimm scheme. The proof is based on the introduction of a quadratic functional Q(t), decreasing at every interaction, and such that its total variation in time is bounded. Differently from other interaction potentials present in the literature, the form of this functional is the natural extension of the original Glimm functional, and coincides with it in the genuinely nonlinear case.

On a quadratic functional for scalar conservation laws

Modena, Stefano
2014-01-01

Abstract

We prove a quadratic interaction estimate for approximate solutions to scalar conservation laws obtained by the wavefront tracking approximation or the Glimm scheme. This quadratic estimate has been used in the literature to prove the convergence rate of the Glimm scheme. The proof is based on the introduction of a quadratic functional Q(t), decreasing at every interaction, and such that its total variation in time is bounded. Differently from other interaction potentials present in the literature, the form of this functional is the natural extension of the original Glimm functional, and coincides with it in the genuinely nonlinear case.
2014
Quadratic functional, Lyapunov potential, Glimm scheme, wavefront tracking, conservation laws
File in questo prodotto:
File Dimensione Formato  
2014_JHDE_11_Bianchini_PostPrint.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 867.63 kB
Formato Adobe PDF
867.63 kB Adobe PDF Visualizza/Apri
2014_JHDE_11_Bianchini.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 860.08 kB
Formato Adobe PDF
860.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/36367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact