In a series of joint works with S. Bianchini, we proved a quadratic interaction estimate for general systems of conservation laws. Aim of this paper is to present the results obtained in the mentioned articles, discussing how they are related with the general theory of hyperbolic conservation laws. To this purpose, first we explain why this quadratic estimate is interesting, then we give a brief overview of the techniques we used to prove it and finally we present some related open problems.

A quadratic interaction estimate for conservation laws: motivations, techniques and open problems

Modena, Stefano
2016-01-01

Abstract

In a series of joint works with S. Bianchini, we proved a quadratic interaction estimate for general systems of conservation laws. Aim of this paper is to present the results obtained in the mentioned articles, discussing how they are related with the general theory of hyperbolic conservation laws. To this purpose, first we explain why this quadratic estimate is interesting, then we give a brief overview of the techniques we used to prove it and finally we present some related open problems.
2016
Quadratic interaction estimate, conservation laws, hyperbolic systems, Lyapunov potentials
File in questo prodotto:
File Dimensione Formato  
2016_BullBrazMathSoc_47_Modena.pdf

non disponibili

Descrizione: Editorial version of the paper
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 132.04 kB
Formato Adobe PDF
132.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2016_BullBrazMathSoc_47_Modena_Postprint.pdf

accesso aperto

Descrizione: Post-print version of the paper
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 308.53 kB
Formato Adobe PDF
308.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/36365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact