Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
: We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of 105,106,107Mpc3 for binary neutron star, neutron star-black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of 1-1+12 ( 10-10+52 ) for binary neutron star mergers, of 0-0+19 ( 1-1+91 ) for neutron star-black hole mergers, and 17-11+22 ( 79-44+89 ) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.
Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
Abbott, B. P.;Abbott, R.;Abbott, T. D.;Abraham, S.;Acernese, F.;Ackley, K.;Adams, C.;Adya, V. B.;Affeldt, C.;Agathos, M.;Agatsuma, K.;Aggarwal, N.;Aguiar, O. D.;Aiello, L.;Ain, A.;Ajith, P.;Akutsu, T.;Allen, G.;Allocca, A.;Aloy, M. A.;Altin, P. A.;Amato, A.;Ananyeva, A.;Anderson, S. B.;Anderson, W. G.;Ando, M.;Angelova, S. V.;Antier, S.;Appert, S.;Arai, K.;Arai, K.;Arai, Y.;Araki, S.;Araya, A.;Araya, M. C.;Areeda, J. S.;Ar(\`e)ne, M.;Aritomi, N.;Arnaud, N.;Arun, K. G.;Ascenzi, S.;Ashton, G.;Aso, Y.;Aston, S. M.;Astone, P.;Aubin, F.;Aufmuth, P.;AultONeal, K.;Austin, C.;Avendano, V.;Avila-Alvarez, A.;Babak, S.;Bacon, P.;Badaracco, F.;Bader, M. K. M.;Bae, S. W.;Bae, Y. B.;Baiotti, L.;Bajpai, R.;Baker, P. T.;Baldaccini, F.;Ballardin, G.;Ballmer, S. W.;Banagiri, S.;Barayoga, J. C.;Barclay, S. E.;Barish, B. C.;Barker, D.;Barkett, K.;Barnum, S.;Barone, F.;Barr, B.;Barsotti, L.;Barsuglia, M.;Barta, D.;Bartlett, J.;Barton, M. A.;Bartos, I.;Bassiri, R.;Basti, A.;Bawaj, M.;Bayley, J. C.;Bazzan, M.;B('e)csy, B.;Bejger, M.;Belahcene, I.;Bell, A. S.;Beniwal, D.;Berger, B. K.;Bergmann, G.;Bernuzzi, S.;Bero, J. J.;Berry, C. P. L.;Bersanetti, D.;Bertolini, A.;Betzwieser, J.;Bhandare, R.;Bidler, J.;Bilenko, I. A.;Bilgili, S. A.;Billingsley, G.;Birch, J.;Birney, R.;Birnholtz, O.;Biscans, S.;Biscoveanu, S.;Bisht, A.;Bitossi, M.;Bizouard, M. A.;Blackburn, J. K.;Blair, C. D.;Blair, D. G.;Blair, R. M.;Bloemen, S.;Bode, N.;Boer, M.;Boetzel, Y.;Bogaert, G.;Bondu, F.;Bonilla, E.;Bonnand, R.;Booker, P.;Boom, B. A.;Booth, C. D.;Bork, R.;Boschi, V.;Bose, S.;Bossie, K.;Bossilkov, V.;Bosveld, J.;Bouffanais, Y.;Bozzi, A.;Bradaschia, C.;Brady, P. R.;Bramley, A.;Branchesi, M.;Brau, J. E.;Briant, T.;Briggs, J. H.;Brighenti, F.;Brillet, A.;Brinkmann, M.;Brisson, V.;Brockill, P.;Brooks, A. F.;Brown, D. A.;Brown, D. D.;Brunett, S.;Buikema, A.;Bulik, T.;Bulten, H. J.;Buonanno, A.;Buskulic, D.;Buy, C.;Byer, R. L.;Cabero, M.;Cadonati, L.;Cagnoli, G.;Cahillane, C.;Bustillo, J. C.;Callister, T. A.;Calloni, E.;Camp, J. B.;Campbell, W. A.;Canepa, M.;Cannon, K.;Cannon, K. C.;Cao, H.;Cao, J.;Capocasa, E.;Carbognani, F.;Caride, S.;Carney, M. F.;Carullo, G.;Diaz, J. C.;Casentini, C.;Caudill, S.;Cavagli(\`a), M.;Cavalier, F.;Cavalieri, R.;Cella, G.;Cerd('a)-Dur('a)n, P.;Cerretani, G.;Cesarini, E.;Chaibi, O.;Chakravarti, K.;Chamberlin, S. J.;Chan, M.;Chan, M. L.;Chao, S.;Charlton, P.;Chase, E. A.;Chassande-Mottin, E.;Chatterjee, D.;Chaturvedi, M.;Chatziioannou, K.;Cheeseboro, B. D.;Chen, C. S.;Chen, H. Y.;Chen, K. H.;Chen, X.;Chen, Y.;Chen, Y. R.;Cheng, H. -P.;Cheong, C. K.;Chia, H. Y.;Chincarini, A.;Chiummo, A.;Cho, G.;Cho, H. S.;Cho, M.;Christensen, N.;Chu, H. Y.;Chu, Q.;Chu, Y. K.;Chua, S.;Chung, K. W.;Chung, S.;Ciani, G.;Ciobanu, A. A.;Ciolfi, R.;Cipriano, F.;Cirone, A.;Clara, F.;Clark, J. A.;Clearwater, P.;Cleva, F.;Cocchieri, C.;Coccia, E.;Cohadon, P. -F.;Cohen, D.;Colgan, R.;Colleoni, M.;Collette, C. G.;Collins, C.;Cominsky, L. R.;Constancio, M.;Conti, L.;Cooper, S. J.;Corban, P.;Corbitt, T. R.;Cordero-Carri('o)n, I.;Corley, K. R.;Cornish, N.;Corsi, A.;Cortese, S.;Costa, C. A.;Cotesta, R.;Coughlin, M. W.;Coughlin, S. B.;Coulon, J. -P.;Countryman, S. T.;Couvares, P.;Covas, P. B.;Cowan, E. E.;Coward, D. M.;Cowart, M. J.;Coyne, D. C.;Coyne, R.;Creighton, J. D. E.;Creighton, T. D.;Cripe, J.;Croquette, M.;Crowder, S. G.;Cullen, T. J.;Cumming, A.;Cunningham, L.;Cuoco, E.;Canton, T. D.;D('a)lya, G.;Danilishin, S. L.;D?Antonio, S.;Danzmann, K.;Dasgupta, A.;Da Silva Costa, C. F.;Datrier, L. E. H.;Dattilo, V.;Dave, I.;Davier, M.;Davis, D.;Daw, E. J.;DeBra, D.;Deenadayalan, M.;Degallaix, J.;De Laurentis, M.;Del('e)glise, S.;Pozzo, W. D.;DeMarchi, L. M.;Demos, N.;Dent, T.;De Pietri, R.;Derby, J.;De Rosa, R.;De Rossi, C.;DeSalvo, R.;de Varona, O.;Dhurandhar, S.;D('i)az, M. C.;Dietrich, T.;Fiore, L. D.;Giovanni, M. D.;Girolamo, T. D.;Lieto, A. D.;Ding, B.;Pace, S. D.;Palma, I. D.;Renzo, F. D.;Dmitriev, A.;Doctor, Z.;Doi, K.;Donovan, F.;Dooley, K. L.;Doravari, S.;Dorrington, I.;Downes, T. P.;Drago, M.;Driggers, J. C.;Du, Z.;Ducoin, J. -G.;Dupej, P.;Dwyer, S. E.;Easter, P. J.;Edo, T. B.;Edwards, M. C.;Effler, A.;Eguchi, S.;Ehrens, P.;Eichholz, J.;Eikenberry, S. S.;Eisenmann, M.;Eisenstein, R. A.;Enomoto, Y.;Essick, R. C.;Estelles, H.;Estevez, D.;Etienne, Z. B.;Etzel, T.;Evans, M.;Evans, T. M.;Fafone, V.;Fair, H.;Fairhurst, S.;Fan, X.;Farinon, S.;Farr, B.;Farr, W. M.;Fauchon-Jones, E. J.;Favata, M.;Fays, M.;Fazio, M.;Fee, C.;Feicht, J.;Fejer, M. M.;Feng, F.;Fernandez-Galiana, A.;Ferrante, I.;Ferreira, E. C.;Ferreira, T. A.;Ferrini, F.;Fidecaro, F.;Fiori, I.;Fiorucci, D.;Fishbach, M.;Fisher, R. P.;Fishner, J. M.;Fitz-Axen, M.;Flaminio, R.;Fletcher, M.;Flynn, E.;Fong, H.;Font, J. A.;Forsyth, P. W. F.;Fournier, J. -D.;Frasca, S.;Frasconi, F.;Frei, Z.;Freise, A.;Frey, R.;Frey, V.;Fritschel, P.;Frolov, V. V.;Fujii, Y.;Fukunaga, M.;Fukushima, M.;Fulda, P.;Fyffe, M.;Gabbard, H. A.;Gadre, B. U.;Gaebel, S. M.;Gair, J. R.;Gammaitoni, L.;Ganija, M. R.;Gaonkar, S. G.;Garcia, A.;Garc('i)a-Quir('o)s, C.;Garufi, F.;Gateley, B.;Gaudio, S.;Gaur, G.;Gayathri, V.;Ge, G. G.;Gemme, G.;Genin, E.;Gennai, A.;George, D.;George, J.;Gergely, L.;Germain, V.;Ghonge, S.;Ghosh, A.;Ghosh, A.;Ghosh, S.;Giacomazzo, B.;Giaime, J. A.;Giardina, K. D.;Giazotto, A.;Gill, K.;Giordano, G.;Glover, L.;Godwin, P.;Goetz, E.;Goetz, R.;Goncharov, B.;Gonz('a)lez, G.;Castro, J. M. G.;Gopakumar, A.;Gorodetsky, M. L.;Gossan, S. E.;Gosselin, M.;Gouaty, R.;Grado, A.;Graef, C.;Granata, M.;Grant, A.;Gras, S.;Grassia, P.;Gray, C.;Gray, R.;Greco, G.;Green, A. C.;Green, R.;Gretarsson, E. M.;Groot, P.;Grote, H.;Grunewald, S.;Gruning, P.;Guidi, G. M.;Gulati, H. K.;Guo, Y.;Gupta, A.;Gupta, M. K.;Gustafson, E. K.;Gustafson, R.;Haegel, L.;Hagiwara, A.;Haino, S.;Halim, O.;Hall, B. R.;Hall, E. D.;Hamilton, E. Z.;Hammond, G.;Haney, M.;Hanke, M. M.;Hanks, J.;Hanna, C.;Hannam, M. D.;Hannuksela, O. A.;Hanson, J.;Hardwick, T.;Haris, K.;Harms, J.;Harry, G. M.;Harry, I. W.;Hasegawa, K.;Haster, C. -J.;Haughian, K.;Hayakawa, H.;Hayama, K.;Hayes, F. J.;Healy, J.;Heidmann, A.;Heintze, M. C.;Heitmann, H.;Hello, P.;Hemming, G.;Hendry, M.;Heng, I. S.;Hennig, J.;Heptonstall, A. W.;Heurs, M.;Hild, S.;Himemoto, Y.;Hinderer, T.;Hiranuma, Y.;Hirata, N.;Hirose, E.;Hoak, D.;Hochheim, S.;Hofman, D.;Holgado, A. M.;Holland, N. A.;Holt, K.;Holz, D. E.;Hong, Z.;Hopkins, P.;Horst, C.;Hough, J.;Howell, E. J.;Hoy, C. G.;Hreibi, A.;Hsieh, B. H.;Huang, G. Z.;Huang, P. W.;Huang, Y. J.;Huerta, E. A.;Huet, D.;Hughey, B.;Hulko, M.;Husa, S.;Huttner, S. H.;Huynh-Dinh, T.;Idzkowski, B.;Iess, A.;Ikenoue, B.;Imam, S.;Inayoshi, K.;Ingram, C.;Inoue, Y.;Inta, R.;Intini, G.;Ioka, K.;Irwin, B.;Isa, H. N.;Isac, J. -M.;Isi, M.;Itoh, Y.;Iyer, B. R.;Izumi, K.;Jacqmin, T.;Jadhav, S. J.;Jani, K.;Janthalur, N. N.;Jaranowski, P.;Jenkins, A. C.;Jiang, J.;Johnson, D. S.;Jones, A. W.;Jones, D. I.;Jones, R.;Jonker, R. J. G.;Ju, L.;Jung, K.;Jung, P.;Junker, J.;Kajita, T.;Kalaghatgi, C. V.;Kalogera, V.;Kamai, B.;Kamiizumi, M.;Kanda, N.;Kandhasamy, S.;Kang, G. W.;Kanner, J. B.;Kapadia, S. J.;Karki, S.;Karvinen, K. S.;Kashyap, R.;Kasprzack, M.;Katsanevas, S.;Katsavounidis, E.;Katzman, W.;Kaufer, S.;Kawabe, K.;Kawaguchi, K.;Kawai, N.;Kawasaki, T.;Keerthana, N. V.;K('e)f('e)lian, F.;Keitel, D.;Kennedy, R.;Key, J. S.;Khalili, F. Y.;Khan, H.;Khan, I.;Khan, S.;Khan, Z.;Khazanov, E. A.;Khursheed, M.;Kijbunchoo, N.;Kim, C.;Kim, C.;Kim, J. C.;Kim, J.;Kim, K.;Kim, W.;Kim, W. S.;Kim, Y. -M.;Kimball, C.;Kimura, N.;King, E. J.;King, P. J.;Kinley-Hanlon, M.;Kirchhoff, R.;Kissel, J. S.;Kita, N.;Kitazawa, H.;Kleybolte, L.;Klika, J. H.;Klimenko, S.;Knowles, T. D.;Knyazev, E.;Koch, P.;Koehlenbeck, S. M.;Koekoek, G.;Kojima, Y.;Kokeyama, K.;Koley, S.;Komori, K.;Kondrashov, V.;Kong, A. K. H.;Kontos, A.;Koper, N.;Korobko, M.;Korth, W. Z.;Kotake, K.;Kowalska, I.;Kozak, D. B.;Kozakai, C.;Kozu, R.;Kringel, V.;Krishnendu, N.;Kr('o)lak, A.;Kuehn, G.;Kumar, A.;Kumar, P.;Kumar, R.;Kumar, R.;Kumar, S.;Kume, J.;Kuo, C. M.;Kuo, H. S.;Kuo, L.;Kuroyanagi, S.;Kusayanagi, K.;Kutynia, A.;Kwak, K.;Kwang, S.;Lackey, B. D.;Lai, K. H.;Lam, T. L.;Landry, M.;Lane, B. B.;Lang, R. N.;Lange, J.;Lantz, B.;Lanza, R. K.;Lartaux-Vollard, A.;Lasky, P. D.;Laxen, M.;Lazzarini, A.;Lazzaro, C.;Leaci, P.;Leavey, S.;Lecoeuche, Y. K.;Lee, C. H.;Lee, H. K.;Lee, H. M.;Lee, H. W.;Lee, J.;Lee, K.;Lee, R. K.;Lehmann, J.;Lenon, A.;Leonardi, M.;Leroy, N.;Letendre, N.;Levin, Y.;Li, J.;Li, K. J. L.;Li, T. G. F.;Li, X.;Lin, C. Y.;Lin, F.;Lin, F. L.;Lin, L. C. C.;Linde, F.;Linker, S. D.;Littenberg, T. B.;Liu, G. C.;Liu, J.;Liu, X.;Lo, R. K. L.;Lockerbie, N. A.;London, L. T.;Longo, A.;Lorenzini, M.;Loriette, V.;Lormand, M.;Losurdo, G.;Lough, J. D.;Lousto, C. O.;Lovelace, G.;Lower, M. E.;L(\
2020-01-01
Abstract
: We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of 105,106,107Mpc3 for binary neutron star, neutron star-black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of 1-1+12 ( 10-10+52 ) for binary neutron star mergers, of 0-0+19 ( 1-1+91 ) for neutron star-black hole mergers, and 17-11+22 ( 79-44+89 ) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/33264
Citazioni
ND
535
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.