The thermal evolution of isolated neutron stars is a key element in unravelling their internal structure and composition and establishing evolutionary connections among different observational subclasses. Previous studies have predominantly focused on one-dimensional or axisymmetric two-dimensional models. In this study, we present the thermal evolution component of the novel three-dimensional magnetothermal code MATINS (MAgneto-Thermal evolution of Isolated Neutron Star). MATINS employs a finite volume scheme and integrates a realistic background structure, along with state-of-the-art microphysical calculations for the conductivities, neutrino emissivities, heat capacity, and superfluid gap models. This paper outlines the methodology employed to solve the thermal evolution equations in MATINS, along with the microphysical implementation that is essential for the thermal component. We test the accuracy of the code and present simulations with non-evolving magnetic fields of different configurations (all with electrical currents confined to the crust and a magnetic field that does not thread the core), to produce temperature maps of the neutron star surface. Additionally, for a specific magnetic field configuration, we show one fully coupled evolution of magnetic field and temperature. Subsequently, we use a ray-tracing code to link the neutron star surface temperature maps obtained by MATINS with the phase-resolved spectra and pulsed profiles that would be detected by distant observers. This study, together with our previous article focused on the magnetic formalism, presents in detail the most advanced evolutionary code for isolated neutron stars, with the aim of comparison with their timing properties, thermal luminosities and the associated X-ray light curves.

3D code for MAgneto-Thermal evolution in Isolated Neutron Stars, MATINS: thermal evolution and light curves

Ascenzi, Stefano
;
2024-01-01

Abstract

The thermal evolution of isolated neutron stars is a key element in unravelling their internal structure and composition and establishing evolutionary connections among different observational subclasses. Previous studies have predominantly focused on one-dimensional or axisymmetric two-dimensional models. In this study, we present the thermal evolution component of the novel three-dimensional magnetothermal code MATINS (MAgneto-Thermal evolution of Isolated Neutron Star). MATINS employs a finite volume scheme and integrates a realistic background structure, along with state-of-the-art microphysical calculations for the conductivities, neutrino emissivities, heat capacity, and superfluid gap models. This paper outlines the methodology employed to solve the thermal evolution equations in MATINS, along with the microphysical implementation that is essential for the thermal component. We test the accuracy of the code and present simulations with non-evolving magnetic fields of different configurations (all with electrical currents confined to the crust and a magnetic field that does not thread the core), to produce temperature maps of the neutron star surface. Additionally, for a specific magnetic field configuration, we show one fully coupled evolution of magnetic field and temperature. Subsequently, we use a ray-tracing code to link the neutron star surface temperature maps obtained by MATINS with the phase-resolved spectra and pulsed profiles that would be detected by distant observers. This study, together with our previous article focused on the magnetic formalism, presents in detail the most advanced evolutionary code for isolated neutron stars, with the aim of comparison with their timing properties, thermal luminosities and the associated X-ray light curves.
2024
neutron stars
magnetic fields
magnetars
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/33074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact