The paper describes the derivation of fragility curves useful for the seismic risk analyses of existing unreinforced masonry buildings inserted in aggregate. The L-shaped examined aggregate consists of three adjacent structural units that may mutually interact during seismic events. The seismic assessment is focused on the corner unit. The effects of different connection types between the adjacent units on the structural response were investigated. The seismic vulnerability of the masonry aggregate was assessed through nonlinear dynamic analyses (NDA) performed according to the multi-stripes approach. Both the in-plane and out-of-plane mechanisms were analyzed. The in-plane response of the corner unit is assessed through a 3D equivalent frame model of the entire aggregate, while the evaluation of its out-of-plane response makes use of the rigid-block assumption. Although evaluated in a separate way, the NDAs performed on the latter are based on the time histories derived from the global 3D model. The results are then processed in order to derive fragility curves, firstly, of the single failure mechanisms and, then, of the overall combined behavior. To this aim, various performance conditions are examined. For the reference building, the damage limit state is mainly governed by the in-plane behavior, while the collapse limit state by out-of-plane mechanisms. Moreover, the higher the connection level between adjacent structural units, the higher the interaction between in-plane and out-of-plane mechanisms at the collapse limit state.

Seismic fragility assessment of existing masonry buildings in aggregate

Michele Angiolilli;
2021-01-01

Abstract

The paper describes the derivation of fragility curves useful for the seismic risk analyses of existing unreinforced masonry buildings inserted in aggregate. The L-shaped examined aggregate consists of three adjacent structural units that may mutually interact during seismic events. The seismic assessment is focused on the corner unit. The effects of different connection types between the adjacent units on the structural response were investigated. The seismic vulnerability of the masonry aggregate was assessed through nonlinear dynamic analyses (NDA) performed according to the multi-stripes approach. Both the in-plane and out-of-plane mechanisms were analyzed. The in-plane response of the corner unit is assessed through a 3D equivalent frame model of the entire aggregate, while the evaluation of its out-of-plane response makes use of the rigid-block assumption. Although evaluated in a separate way, the NDAs performed on the latter are based on the time histories derived from the global 3D model. The results are then processed in order to derive fragility curves, firstly, of the single failure mechanisms and, then, of the overall combined behavior. To this aim, various performance conditions are examined. For the reference building, the damage limit state is mainly governed by the in-plane behavior, while the collapse limit state by out-of-plane mechanisms. Moreover, the higher the connection level between adjacent structural units, the higher the interaction between in-plane and out-of-plane mechanisms at the collapse limit state.
2021
Buildings in aggregate, Unreinforced masonry, Seismic assessment, Fragility curves, Non-linear dynamic analysis, Unit interactions, In-plane response, Out-of-plane mechanisms
File in questo prodotto:
File Dimensione Formato  
2021_EngStruct_247_Angiolilli.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 3.87 MB
Formato Adobe PDF
3.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PostPrint_2021_EngStruct_247_Angiolilli.pdf

accesso aperto

Descrizione: post-print version
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/32344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 41
social impact