We investigate the properties of a harmonic chain in contact with a thermal bath at one end and subjected, at its other end, to a periodic force. The particles also undergo a random velocity reversal action, which results in a finite heat conductivity of the system. We prove the approach of the system to a time periodic state and compute the heat current, equal to the time averaged work done on the system, in that state. This work approaches a finite positive value as the length of the chain increases. Rescaling space, the strength and/or the period of the force leads to a macroscopic temperature profile corresponding to the stationary solution of a continuum heat equation with Dirichlet-Neumann boundary conditions.
Heat Flow in a Periodically Forced, Thermostatted Chain
Olla, StefanoMembro del Collaboration Group
2023-01-01
Abstract
We investigate the properties of a harmonic chain in contact with a thermal bath at one end and subjected, at its other end, to a periodic force. The particles also undergo a random velocity reversal action, which results in a finite heat conductivity of the system. We prove the approach of the system to a time periodic state and compute the heat current, equal to the time averaged work done on the system, in that state. This work approaches a finite positive value as the length of the chain increases. Rescaling space, the strength and/or the period of the force leads to a macroscopic temperature profile corresponding to the stationary solution of a continuum heat equation with Dirichlet-Neumann boundary conditions.File | Dimensione | Formato | |
---|---|---|---|
2023_CommunMathPhys_400_Komorowski.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
621.75 kB
Formato
Adobe PDF
|
621.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.