We consider a scalar conservation law with source in a bounded open interval $\Omega \subseteq \mathbb R$. The equation arises from the macroscopic evolution of an interacting particle system. The source term models an external effort driving the solution to a given function $\varrho$ with an intensity function $V: \Omega \rightarrow \mathbb R_+$ that grows to infinity at $\partial \Omega$ . We define the entropy solution $u \in L^\infty$ and prove the uniqueness. When V is integrable, u satisfies the boundary conditions introduced by F. Otto (C. R. Acad. Sci. Paris, 322(1):729–734, 1996), which allows the solution to attain values at $\partial \Omega$ different from the given boundary data. When the integral of V blows up, u satisfies an energy estimate and presents essential continuity at $\partial\Omega$ in a weak sense.

Scalar conservation law in a bounded domain with strong source at boundary

Lu Xu
2024-01-01

Abstract

We consider a scalar conservation law with source in a bounded open interval $\Omega \subseteq \mathbb R$. The equation arises from the macroscopic evolution of an interacting particle system. The source term models an external effort driving the solution to a given function $\varrho$ with an intensity function $V: \Omega \rightarrow \mathbb R_+$ that grows to infinity at $\partial \Omega$ . We define the entropy solution $u \in L^\infty$ and prove the uniqueness. When V is integrable, u satisfies the boundary conditions introduced by F. Otto (C. R. Acad. Sci. Paris, 322(1):729–734, 1996), which allows the solution to attain values at $\partial \Omega$ different from the given boundary data. When the integral of V blows up, u satisfies an energy estimate and presents essential continuity at $\partial\Omega$ in a weak sense.
2024
scalar balance law, initial–boundary value problem, energy estimate, doubling variable method
File in questo prodotto:
File Dimensione Formato  
2024_NoDEA_31_Xu.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 499.59 kB
Formato Adobe PDF
499.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/31186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact