We study the quasi-static limit for the $L^\infty$ entropy weak solution of scalar one-dimensional hyperbolic equations with strictly concave or convex flux and time dependent boundary conditions. The quasi-stationary profile evolves with the quasi-static equation, whose entropy solution is determined by the stationary profile corresponding to the boundary data at a given time.
Quasi-static limit for a hyperbolic conservation law
Stefano Olla;Lu Xu
2021-01-01
Abstract
We study the quasi-static limit for the $L^\infty$ entropy weak solution of scalar one-dimensional hyperbolic equations with strictly concave or convex flux and time dependent boundary conditions. The quasi-stationary profile evolves with the quasi-static equation, whose entropy solution is determined by the stationary profile corresponding to the boundary data at a given time.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2021_NoDEA_28_Marchesani.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
338.5 kB
Formato
Adobe PDF
|
338.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Postprint_2021_NoDEA_28_Marchesani.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Accesso gratuito
Dimensione
175.79 kB
Formato
Adobe PDF
|
175.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.