In this paper, we deal with the low Mach number limit for the system of quantum hydrodynamics, far from the vortex nucleation regime. More precisely, in the framework of a periodic domain and ill-prepared initial data we prove strong convergence of the solutions toward regular solutions of the incompressible Euler system. In particular, we will perform a detailed analysis of the time oscillations and of the relative entropy functional related to the system.

Low Mach number limit for the Quantum-Hydrodynamics system

MARCATI, PIERANGELO
2016

Abstract

In this paper, we deal with the low Mach number limit for the system of quantum hydrodynamics, far from the vortex nucleation regime. More precisely, in the framework of a periodic domain and ill-prepared initial data we prove strong convergence of the solutions toward regular solutions of the incompressible Euler system. In particular, we will perform a detailed analysis of the time oscillations and of the relative entropy functional related to the system.
CompressibleandincompressibleNavier–Stokesequation; Quantum fluids; Energy estimates; Relative entropy; Acoustic equation
File in questo prodotto:
File Dimensione Formato  
2016_Res. Math. Sci_3_Donatelli_Marcati.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso gratuito
Dimensione 599.56 kB
Formato Adobe PDF
599.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/3096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact