Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc − 3 yr − 1 and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc − 3 yr − 1 , assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc − 3 yr − 1 at a fiducial redshift ( z = 0.2 ). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to ( 1 + z ) κ with κ = 2. 9 + 1.7 − 1.8 for z ≲ 1 . Using both binary neutron star and neutron star–black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2 + 0.1 − 0.2 to 2.0 + 0.3 − 0.3 M ⊙ . We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3 + 0.3 − 0.5 and 27.9 + 1.9 − 1.8 M ⊙ . While we continue to find that the mass distribution of a binary’s more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60 M ⊙ , which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χ i ≈ 0.25 . While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum.
Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
Abbott, R.;Abbott, T. D.;Acernese, F.;Ackley, K.;Adams, C.;Adhikari, N.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;Agarwal, D.;Agathos, M.;Agatsuma, K.;Aggarwal, N.;Aguiar, O. D.;Aiello, L.;Ain, A.;Ajith, P.;Akutsu, T.;De Alarc('o)n, P. F.;Akcay, S.;Albanesi, S.;Allocca, A.;Altin, P. A.;Amato, A.;Anand, C.;Anand, S.;Ananyeva, A.;Anderson, S. B.;Anderson, W. G.;Ando, M.;Andrade, T.;Andres, N.;Andri?, T.;Angelova, S. V.;Ansoldi, S.;Antelis, J. M.;Antier, S.;Antonini, F.;Appert, S.;Arai, K.;Arai, K.;Arai, Y.;Araki, S.;Araya, A.;Araya, M. C.;Areeda, J. S.;Ar(\`e)ne, M.;Aritomi, N.;Arnaud, N.;Arogeti, M.;Aronson, S. M.;Arun, K. G.;Asada, H.;Asali, Y.;Ashton, G.;Aso, Y.;Assiduo, M.;Aston, S. M.;Astone, P.;Aubin, F.;Austin, C.;Babak, S.;Badaracco, F.;Bader, M. K. M.;Badger, C.;Bae, S.;Bae, Y.;Baer, A. M.;Bagnasco, S.;Bai, Y.;Baiotti, L.;Baird, J.;Bajpai, R.;Ball, M.;Ballardin, G.;Ballmer, S. W.;Balsamo, A.;Baltus, G.;Banagiri, S.;Bankar, D.;Barayoga, J. C.;Barbieri, C.;Barish, B. C.;Barker, D.;Barneo, P.;Barone, F.;Barr, B.;Barsotti, L.;Barsuglia, M.;Barta, D.;Bartlett, J.;Barton, M. A.;Bartos, I.;Bassiri, R.;Basti, A.;Bawaj, M.;Bayley, J. C.;Baylor, A. C.;Bazzan, M.;B('e)csy, B.;Bedakihale, V. M.;Bejger, M.;Belahcene, I.;Benedetto, V.;Beniwal, D.;Bennett, T. F.;Bentley, J. D.;Benyaala, M.;Bergamin, F.;Berger, B. K.;Bernuzzi, S.;Berry, C. P. L.;Bersanetti, D.;Bertolini, A.;Betzwieser, J.;Beveridge, D.;Bhandare, R.;Bhardwaj, U.;Bhattacharjee, D.;Bhaumik, S.;Bilenko, I. A.;Billingsley, G.;Bini, S.;Birney, R.;Birnholtz, O.;Biscans, S.;Bischi, M.;Biscoveanu, S.;Bisht, A.;Biswas, B.;Bitossi, M.;Bizouard, M. -A.;Blackburn, J. K.;Blair, C. D.;Blair, D. G.;Blair, R. M.;Bobba, F.;Bode, N.;Boer, M.;Bogaert, G.;Boldrini, M.;Bonavena, L. D.;Bondu, F.;Bonilla, E.;Bonnand, R.;Booker, P.;Boom, B. A.;Bork, R.;Boschi, V.;Bose, N.;Bose, S.;Bossilkov, V.;Boudart, V.;Bouffanais, Y.;Bozzi, A.;Bradaschia, C.;Brady, P. R.;Bramley, A.;Branch, A.;Branchesi, M.;Brandt, J.;Brau, J. E.;Breschi, M.;Briant, T.;Briggs, J. H.;Brillet, A.;Brinkmann, M.;Brockill, P.;Brooks, A. F.;Brooks, J.;Brown, D. D.;Brunett, S.;Bruno, G.;Bruntz, R.;Bryant, J.;Bulik, T.;Bulten, H. J.;Buonanno, A.;Buscicchio, R.;Buskulic, D.;Buy, C.;Byer, R. L.;Cadonati, L.;Cagnoli, G.;Cahillane, C.;Bustillo, J. C.;Callaghan, J. D.;Callister, T. A.;Calloni, E.;Cameron, J.;Camp, J. B.;Canepa, M.;Canevarolo, S.;Cannavacciuolo, M.;Cannon, K. C.;Cao, H.;Cao, Z.;Capocasa, E.;Capote, E.;Carapella, G.;Carbognani, F.;Carlin, J. B.;Carney, M. F.;Carpinelli, M.;Carrillo, G.;Carullo, G.;Carver, T. L.;Diaz, J. C.;Casentini, C.;Castaldi, G.;Caudill, S.;Cavagli(\`a), M.;Cavalier, F.;Cavalieri, R.;Ceasar, M.;Cella, G.;Cerd('a)-Dur('a)n, P.;Cesarini, E.;Chaibi, W.;Chakravarti, K.;Subrahmanya, S. C.;Champion, E.;Chan, C. -H.;Chan, C.;Chan, C. L.;Chan, K.;Chan, M.;Chandra, K.;Chanial, P.;Chao, S.;Chapman-Bird, C. E. A.;Charlton, P.;Chase, E. A.;Chassande-Mottin, E.;Chatterjee, C.;Chatterjee, D.;Chatterjee, D.;Chaturvedi, M.;Chaty, S.;Chatziioannou, K.;Chen, C.;Chen, H. Y.;Chen, J.;Chen, K.;Chen, X.;Chen, Y. -B.;Chen, Y. -R.;Chen, Z.;Cheng, H.;Cheong, C. K.;Cheung, H. Y.;Chia, H. Y.;Chiadini, F.;Chiang, C. -Y.;Chiarini, G.;Chierici, R.;Chincarini, A.;Chiofalo, M. L.;Chiummo, A.;Cho, G.;Cho, H. S.;Choudhary, R. K.;Choudhary, S.;Christensen, N.;Chu, H.;Chu, Q.;Chu, Y. -K.;Chua, S.;Chung, K. W.;Ciani, G.;Ciecielag, P.;Cie?lar, M.;Cifaldi, M.;Ciobanu, A. A.;Ciolfi, R.;Cipriano, F.;Cirone, A.;Clara, F.;Clark, E. N.;Clark, J. A.;Clarke, L.;Clearwater, P.;Clesse, S.;Cleva, F.;Coccia, E.;Codazzo, E.;Cohadon, P. -F.;Cohen, D. E.;Cohen, L.;Colleoni, M.;Collette, C. G.;Colombo, A.;Colpi, M.;Compton, C. M.;Constancio, M.;Conti, L.;Cooper, S. J.;Corban, P.;Corbitt, T. R.;Cordero-Carri('o)n, I.;Corezzi, S.;Corley, K. R.;Cornish, N.;Corre, D.;Corsi, A.;Cortese, S.;Costa, C. A.;Cotesta, R.;Coughlin, M. W.;Coulon, J. -P.;Countryman, S. T.;Cousins, B.;Couvares, P.;Coward, D. M.;Cowart, M. J.;Coyne, D. C.;Coyne, R.;Creighton, J. D. E.;Creighton, T. D.;Criswell, A. W.;Croquette, M.;Crowder, S. G.;Cudell, J. R.;Cullen, T. J.;Cumming, A.;Cummings, R.;Cunningham, L.;Cuoco, E.;Cury?o, M.;Dabadie, P.;Canton, T. D.;Dall(')Osso, S.;D('a)lya, G.;Dana, A.;Daneshgaranbajastani, L. M.;D(')Angelo, B.;Danila, B.;Danilishin, S.;D(')Antonio, S.;Danzmann, K.;Darsow-Fromm, C.;Dasgupta, A.;Datrier, L. E. H.;Datta, S.;Dattilo, V.;Dave, I.;Davier, M.;Davies, G. S.;Davis, D.;Davis, M. C.;Daw, E. J.;Dean, R.;Debra, D.;Deenadayalan, M.;Degallaix, J.;De Laurentis, M.;Del('e)glise, S.;Del Favero, V.;De Lillo, F.;De Lillo, N.;Del Pozzo, W.;Demarchi, L. M.;De Matteis, F.;D(')Emilio, V.;Demos, N.;Dent, T.;Depasse, A.;De Pietri, R.;De Rosa, R.;De Rossi, C.;Desalvo, R.;De Simone, R.;Dhurandhar, S.;D('i)az, M. C.;Diaz-Ortiz, M.;Didio, N. A.;Dietrich, T.;Di Fiore, L.;Di Fronzo, C.;Di Giorgio, C.;Di Giovanni, F.;Di Giovanni, M.;Di Girolamo, T.;Di Lieto, A.;Ding, B.;Di Pace, S.;Di Palma, I.;Di Renzo, F.;Divakarla, A. K.;Dmitriev, A.;Doctor, Z.;D(')Onofrio, L.;Donovan, F.;Dooley, K. L.;Doravari, S.;Dorrington, I.;Drago, M.;Driggers, J. C.;Drori, Y.;Ducoin, J. -G.;Dupej, P.;Durante, O.;D(')Urso, D.;Duverne, P. -A.;Dwyer, S. E.;Eassa, C.;Easter, P. J.;Ebersold, M.;Eckhardt, T.;Eddolls, G.;Edelman, B.;Edo, T. B.;Edy, O.;Effler, A.;Eguchi, S.;Eichholz, J.;Eikenberry, S. S.;Eisenmann, M.;Eisenstein, R. A.;Ejlli, A.;Engelby, E.;Enomoto, Y.;Errico, L.;Essick, R. C.;Estell('e)s, H.;Estevez, D.;Etienne, Z.;Etzel, T.;Evans, M.;Evans, T. M.;Ewing, B. E.;Fafone, V.;Fair, H.;Fairhurst, S.;Farah, A. M.;Farinon, S.;Farr, B.;Farr, W. M.;Farrow, N. W.;Fauchon-Jones, E. J.;Favaro, G.;Favata, M.;Fays, M.;Fazio, M.;Feicht, J.;Fejer, M. M.;Fenyvesi, E.;Ferguson, D. L.;Fernandez-Galiana, A.;Ferrante, I.;Ferreira, T. A.;Fidecaro, F.;Figura, P.;Fiori, I.;Fishbach, M.;Fisher, R. P.;Fittipaldi, R.;Fiumara, V.;Flaminio, R.;Floden, E.;Fong, H.;Font, J. A.;Fornal, B.;Forsyth, P. W. F.;Franke, A.;Frasca, S.;Frasconi, F.;Frederick, C.;Freed, J. P.;Frei, Z.;Freise, A.;Frey, R.;Fritschel, P.;Frolov, V. V.;Fronz('e), G. G.;Fujii, Y.;Fujikawa, Y.;Fukunaga, M.;Fukushima, M.;Fulda, P.;Fyffe, M.;Gabbard, H. A.;Gadre, B. U.;Gair, J. R.;Gais, J.;Galaudage, S.;Gamba, R.;Ganapathy, D.;Ganguly, A.;Gao, D.;Gaonkar, S. G.;Garaventa, B.;Garc('i)a, F.;Garc('i)a-N('u)(\~n)ez, C.;Garc('i)a-Quir('o)s, C.;Garufi, F.;Gateley, B.;Gaudio, S.;Gayathri, V.;Ge, G. -G.;Gemme, G.;Gennai, A.;George, J.;George, R. N.;Gerberding, O.;Gergely, L.;Gewecke, P.;Ghonge, S.;Ghosh, A.;Ghosh, A.;Ghosh, S.;Ghosh, S.;Giacomazzo, B.;Giacoppo, L.;Giaime, J. A.;Giardina, K. D.;Gibson, D. R.;Gier, C.;Giesler, M.;Giri, P.;Gissi, F.;Glanzer, J.;Gleckl, A. E.;Godwin, P.;Golomb, J.;Goetz, E.;Goetz, R.;Gohlke, N.;Goncharov, B.;Gonz('a)lez, G.;Gopakumar, A.;Gosselin, M.;Gouaty, R.;Gould, D. W.;Grace, B.;Grado, A.;Granata, M.;Granata, V.;Grant, A.;Gras, S.;Grassia, P.;Gray, C.;Gray, R.;Greco, G.;Green, A. C.;Green, R.;Gretarsson, A. M.;Gretarsson, E. M.;Griffith, D.;Griffiths, W.;Griggs, H. L.;Grignani, G.;Grimaldi, A.;Grimm, S. J.;Grote, H.;Grunewald, S.;Gruning, P.;Guerra, D.;Guidi, G. M.;Guimaraes, A. R.;Guix('e), G.;Gulati, H. K.;Guo, H. -K.;Guo, Y.;Gupta, A.;Gupta, A.;Gupta, P.;Gustafson, E. K.;Gustafson, R.;Guzman, F.;Ha, S.;Haegel, L.;Hagiwara, A.;Haino, S.;Halim, O.;Hall, E. D.;Hamilton, E. Z.;Hammond, G.;Han, W. -B.;Haney, M.;Hanks, J.;Hanna, C.;Hannam, M. D.;Hannuksela, O.;Hansen, H.;Hansen, T. J.;Hanson, J.;Harder, T.;Hardwick, T.;Haris, K.;Harms, J.;Harry, G. M.;Harry, I. W.;Hartwig, D.;Hasegawa, K.;Haskell, B.;Hasskew, R. K.;Haster, C. -J.;Hattori, K.;Haughian, K.;Hayakawa, H.;Hayama, K.;Hayes, F. J.;Healy, J.;Heidmann, A.;Heidt, A.;Heintze, M. C.;Heinze, J.;Heinzel, J.;Heitmann, H.;Hellman, F.;Hello, P.;Helmling-Cornell, A. F.;Hemming, G.;Hendry, M.;Heng, I. S.;Hennes, E.;Hennig, J.;Hennig, M. H.;Hernandez, A. G.;Vivanco, F. H.;Heurs, M.;Hild, S.;Hill, P.;Himemoto, Y.;Hines, A. S.;Hiranuma, Y.;Hirata, N.;Hirose, E.;Hochheim, S.;Hofman, D.;Hohmann, J. N.;Holcomb, D. G.;Holland, N. A.;Hollows, I. J.;Holmes, Z. J.;Holt, K.;Holz, D. E.;Hong, Z.;Hopkins, P.;Hough, J.;Hourihane, S.;Howell, E. J.;Hoy, C. G.;Hoyland, D.;Hreibi, A.;Hsieh, B. -H.;Hsu, Y.;Huang, G. -Z.;Huang, H. -Y.;Huang, P.;Huang, Y. -C.;Huang, Y. -J.;Huang, Y.;H(\
2023-01-01
Abstract
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc − 3 yr − 1 and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc − 3 yr − 1 , assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc − 3 yr − 1 at a fiducial redshift ( z = 0.2 ). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to ( 1 + z ) κ with κ = 2. 9 + 1.7 − 1.8 for z ≲ 1 . Using both binary neutron star and neutron star–black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2 + 0.1 − 0.2 to 2.0 + 0.3 − 0.3 M ⊙ . We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3 + 0.3 − 0.5 and 27.9 + 1.9 − 1.8 M ⊙ . While we continue to find that the mass distribution of a binary’s more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60 M ⊙ , which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χ i ≈ 0.25 . While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/29776
Citazioni
ND
374
304
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.