The design of cyber-physical systems (CPS) is challenging due to the heterogeneity of software and hardware components that operate in uncertain environments (e.g., fluctuating workloads), hence they are prone to performance issues. Software performance antipatterns could be a key means to tackle this challenge since they recognize design problems that may lead to unacceptable system performance. This manuscript focuses on modeling and analyzing a variegate set of software performance antipatterns with the goal of quantifying their performance impact on CPS. Starting from the specification of eight software performance antipatterns, we build a baseline queuing network performance model that is properly extended to account for the corresponding bad practices. The approach is applied to a CPS consisting of a network of sensors and experimental results show that performance degradation can be traced back to software performance antipatterns. Sensitivity analysis investigates the peculiar characteristics of antipatterns, such as the frequency of checking the status of resources, that provides quantitative information to software designers to help them identify potential performance problems and their root causes. Quantifying the performance impact of antipatterns on CPS paves the way for future work enabling the automated refactoring of systems to remove these bad practices.
Modeling more software performance antipatterns in cyber-physical systems
Pinciroli, Riccardo;Trubiani, Catia
2023-01-01
Abstract
The design of cyber-physical systems (CPS) is challenging due to the heterogeneity of software and hardware components that operate in uncertain environments (e.g., fluctuating workloads), hence they are prone to performance issues. Software performance antipatterns could be a key means to tackle this challenge since they recognize design problems that may lead to unacceptable system performance. This manuscript focuses on modeling and analyzing a variegate set of software performance antipatterns with the goal of quantifying their performance impact on CPS. Starting from the specification of eight software performance antipatterns, we build a baseline queuing network performance model that is properly extended to account for the corresponding bad practices. The approach is applied to a CPS consisting of a network of sensors and experimental results show that performance degradation can be traced back to software performance antipatterns. Sensitivity analysis investigates the peculiar characteristics of antipatterns, such as the frequency of checking the status of resources, that provides quantitative information to software designers to help them identify potential performance problems and their root causes. Quantifying the performance impact of antipatterns on CPS paves the way for future work enabling the automated refactoring of systems to remove these bad practices.File | Dimensione | Formato | |
---|---|---|---|
2023_SoSyM_Pinciroli.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.81 MB
Formato
Adobe PDF
|
2.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.