Neutrinoless double beta decay (0νββ) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νββ) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νββ decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.07±0.02(stat)±0.11(syst)]×10^{18}  yr by the CUPID-Mo experiment. With a relative precision of ±1.6% this is the most precise measurement to date of a 2νββ decay rate in ^{100}Mo. In addition, we constrain higher-order corrections to the spectral shape, which provides complementary nuclear structure information. We report a novel measurement of the shape factor ξ_{3,1}=0.45±0.03(stat)±0.05(syst) based on a constraint on the ratio of higher-order terms from theory, which can be reliably calculated. This is compared to theoretical predictions for different nuclear models. We also extract the first value for the effective axial vector coupling constant obtained from a spectral shape study of 2νββ decay.

Measurement of the 2νββ Decay Rate and Spectral Shape of ^{100}Mo from the CUPID-Mo Experiment

Danevich, F A;Pagnanini, L
Software
;
2023-01-01

Abstract

Neutrinoless double beta decay (0νββ) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νββ) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νββ decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.07±0.02(stat)±0.11(syst)]×10^{18}  yr by the CUPID-Mo experiment. With a relative precision of ±1.6% this is the most precise measurement to date of a 2νββ decay rate in ^{100}Mo. In addition, we constrain higher-order corrections to the spectral shape, which provides complementary nuclear structure information. We report a novel measurement of the shape factor ξ_{3,1}=0.45±0.03(stat)±0.05(syst) based on a constraint on the ratio of higher-order terms from theory, which can be reliably calculated. This is compared to theoretical predictions for different nuclear models. We also extract the first value for the effective axial vector coupling constant obtained from a spectral shape study of 2νββ decay.
2023
Double beta decay, Neutrinoless double beta decay, Nuclear structure & decays
File in questo prodotto:
File Dimensione Formato  
2023_PhysRevLett_131_162501_Augier.pdf

non disponibili

Licenza: Non pubblico
Dimensione 307.4 kB
Formato Adobe PDF
307.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/29245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact