An important step in the planning of future gravitational-wave (GW) detectors and of the networks they will form is the estimation of their detection and parameter-estimation capabilities, which is the basis of science-case studies. Several future GW detectors have been proposed or are under development, which might also operate and observe in parallel. These detectors include terrestrial, lunar, and space-borne detectors. In this paper, we present gwfish,1 a new software to simulate GW detector networks and to calculate measurement uncertainties based on the Fisher-matrix approximation. gwfish models the impact of detector motion on PE and makes it possible to analyze multiband scenarios, i.e., observation of a GW signal by different detectors in different frequency bands. We showcase a few examples for the Einstein Telescope (ET) including the sky-localization of binary neutron stars, and ET’s capability to measure the polarization of GWs.
GWFISH: A simulation software to evaluate parameter-estimation capabilities of gravitational-wave detector networks
U. Dupletsa;J. Harms
;B. Banerjee;M. Branchesi;B. Goncharov;A. Maselli;J. Tissino
2023-01-01
Abstract
An important step in the planning of future gravitational-wave (GW) detectors and of the networks they will form is the estimation of their detection and parameter-estimation capabilities, which is the basis of science-case studies. Several future GW detectors have been proposed or are under development, which might also operate and observe in parallel. These detectors include terrestrial, lunar, and space-borne detectors. In this paper, we present gwfish,1 a new software to simulate GW detector networks and to calculate measurement uncertainties based on the Fisher-matrix approximation. gwfish models the impact of detector motion on PE and makes it possible to analyze multiband scenarios, i.e., observation of a GW signal by different detectors in different frequency bands. We showcase a few examples for the Einstein Telescope (ET) including the sky-localization of binary neutron stars, and ET’s capability to measure the polarization of GWs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.