We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

Cosmogenic neutrinos and ultra-high energy cosmic ray models

Aloisio R;
2015-01-01

Abstract

We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.
2015
ultra high energy cosmic rays, ultra high energy photons and neutrinos
File in questo prodotto:
File Dimensione Formato  
2015_JCosmolAstropartPhys_2015_006_Aloisio.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/2882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 49
social impact