In this paper, we study the linear stability properties of perturbations around the homogeneous Couette flow for a 2D isentropic compressible fluid in the domain ×ℝ. In the inviscid case there is a generic Lyapunov type instability for the density and the irrotational component of the velocity field. More precisely, we prove that their 2 norm grows as 1/2 and this confirms previous observations in the physics literature. On the contrary, the solenoidal component of the velocity field experiences inviscid damping, namely it decays to zero even in the absence of viscosity. For a viscous compressible fluid, we show that the perturbations may have a transient growth of order −1/6 (with −1 being proportional to the Reynolds number) on a time-scale −1/3, after which it decays exponentially fast. This phenomenon is also called enhanced dissipation and our result appears to be the first to detect this mechanism for a compressible flow, where an exponential decay for the density is not a priori trivial given the absence of dissipation in the continuity equation.

Linear stability analysis of the homogeneous Couette flow in a 2D isentropic compressible fluid

Antonelli, Paolo;Dolce, Michele;Marcati, Pierangelo
2021-01-01

Abstract

In this paper, we study the linear stability properties of perturbations around the homogeneous Couette flow for a 2D isentropic compressible fluid in the domain ×ℝ. In the inviscid case there is a generic Lyapunov type instability for the density and the irrotational component of the velocity field. More precisely, we prove that their 2 norm grows as 1/2 and this confirms previous observations in the physics literature. On the contrary, the solenoidal component of the velocity field experiences inviscid damping, namely it decays to zero even in the absence of viscosity. For a viscous compressible fluid, we show that the perturbations may have a transient growth of order −1/6 (with −1 being proportional to the Reynolds number) on a time-scale −1/3, after which it decays exponentially fast. This phenomenon is also called enhanced dissipation and our result appears to be the first to detect this mechanism for a compressible flow, where an exponential decay for the density is not a priori trivial given the absence of dissipation in the continuity equation.
2021
2D compressible Euler
Couette flow
Shear flows
linear stability
hydrodynamic stability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/25022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact