Cosmic rays (CRs) leave their sources mainly along the local magnetic field; in doing so they excite both resonant and nonresonant modes through streaming instabilities. The excitation of these modes leads to enhanced scattering and in turn to a large pressure gradient that causes the formation of bubbles of gas, CRs, and self-generated magnetic fields expanding into the interstellar medium. By means of hybrid particle-in-cell simulations, we show that, by exciting the nonresonant instability, CRs excavate a cavity around their source where the diffusivity is strongly suppressed. This finding invalidates the so far largely adopted flux-tube assumption, under which particles move along magnetic lines even in the nonlinear regime. This phenomenon is general and is expected to occur around any sufficiently powerful CR source in the Galaxy. Our results might provide a physical explanation of the numerous claims of suppressed CR diffusion around Galactic sources such as supernova remnants, pulsar wind nebulae, and stellar clusters.
Dynamical Effects of Cosmic Rays on the Medium Surrounding Their Sources
Schroer, Benedikt;Blasi, Pasquale
2021-01-01
Abstract
Cosmic rays (CRs) leave their sources mainly along the local magnetic field; in doing so they excite both resonant and nonresonant modes through streaming instabilities. The excitation of these modes leads to enhanced scattering and in turn to a large pressure gradient that causes the formation of bubbles of gas, CRs, and self-generated magnetic fields expanding into the interstellar medium. By means of hybrid particle-in-cell simulations, we show that, by exciting the nonresonant instability, CRs excavate a cavity around their source where the diffusivity is strongly suppressed. This finding invalidates the so far largely adopted flux-tube assumption, under which particles move along magnetic lines even in the nonlinear regime. This phenomenon is general and is expected to occur around any sufficiently powerful CR source in the Galaxy. Our results might provide a physical explanation of the numerous claims of suppressed CR diffusion around Galactic sources such as supernova remnants, pulsar wind nebulae, and stellar clusters.File | Dimensione | Formato | |
---|---|---|---|
PrePrint_2021_ApJL_914_Schroer.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Accesso gratuito
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
2021_ApJL_914_Schroer.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.