XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10−48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10−48 cm2 (5.0×10−48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10−43 cm2 (6.0×10−42 cm2).

Projected WIMP sensitivity of the XENONnT dark matter experiment

Di Giovanni A.;
2020-01-01

Abstract

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10−48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10−48 cm2 (5.0×10−48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10−43 cm2 (6.0×10−42 cm2).
2020
dark matter experiments, dark matter simulations
File in questo prodotto:
File Dimensione Formato  
2020_Aprile_JournalCosmolAstropartPhys_2020_031_Aprile.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 6.56 MB
Formato Adobe PDF
6.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/24614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 246
  • ???jsp.display-item.citation.isi??? 258
social impact