CUPID-Mo is a cryogenic detector array designed to search for neutrinoless double-beta decay (0νββ) of 100Mo. It uses 20 scintillating 100Mo-enriched Li2MoO4 bolometers instrumented with Ge light detectors to perform active suppression of α backgrounds, drastically reducing the expected background in the 0νββ signal region. As a result, pileup events and small detector instabilities that mimic normal signals become non-negligible potential backgrounds. These types of events can in principle be eliminated based on their signal shapes, which are different from those of regular bolometric pulses. We show that a purely data-driven principal component analysis based approach is able to filter out these anomalous events, without the aid of detector response simulations.
Pulse shape discrimination in CUPID-Mo using principal component analysis
Benato, G.;Marini, L.;Pagnanini, L.;
2021-01-01
Abstract
CUPID-Mo is a cryogenic detector array designed to search for neutrinoless double-beta decay (0νββ) of 100Mo. It uses 20 scintillating 100Mo-enriched Li2MoO4 bolometers instrumented with Ge light detectors to perform active suppression of α backgrounds, drastically reducing the expected background in the 0νββ signal region. As a result, pileup events and small detector instabilities that mimic normal signals become non-negligible potential backgrounds. These types of events can in principle be eliminated based on their signal shapes, which are different from those of regular bolometric pulses. We show that a purely data-driven principal component analysis based approach is able to filter out these anomalous events, without the aid of detector response simulations.File | Dimensione | Formato | |
---|---|---|---|
2021_JInst_16_Huang.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
787 kB
Formato
Adobe PDF
|
787 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.