The OPERA experiment was designed to study ν_{μ}→ν_{τ} oscillations in the appearance mode in the CERN to Gran Sasso Neutrino beam (CNGS). In this Letter, we report the final analysis of the full data sample collected between 2008 and 2012, corresponding to 17.97×10^{19} protons on target. Selection criteria looser than in previous analyses have produced ten ν_{τ} candidate events, thus reducing the statistical uncertainty in the measurement of the oscillation parameters and of ν_{τ} properties. A multivariate approach for event identification has been applied to the candidate events and the discovery of ν_{τ} appearance is confirmed with an improved significance level of 6.1σ. |Δm_{32}^{2}| has been measured, in appearance mode, with an accuracy of 20%. The measurement of the ν_{τ} charged-current cross section, for the first time with a negligible contamination from ν[over ¯]_{τ}, and the first direct evidence for the ν_{τ} lepton number are also reported.
Final Results of the OPERA Experiment on ν_{τ} Appearance in the CNGS Neutrino Beam
Di Marco, N;
2018-01-01
Abstract
The OPERA experiment was designed to study ν_{μ}→ν_{τ} oscillations in the appearance mode in the CERN to Gran Sasso Neutrino beam (CNGS). In this Letter, we report the final analysis of the full data sample collected between 2008 and 2012, corresponding to 17.97×10^{19} protons on target. Selection criteria looser than in previous analyses have produced ten ν_{τ} candidate events, thus reducing the statistical uncertainty in the measurement of the oscillation parameters and of ν_{τ} properties. A multivariate approach for event identification has been applied to the candidate events and the discovery of ν_{τ} appearance is confirmed with an improved significance level of 6.1σ. |Δm_{32}^{2}| has been measured, in appearance mode, with an accuracy of 20%. The measurement of the ν_{τ} charged-current cross section, for the first time with a negligible contamination from ν[over ¯]_{τ}, and the first direct evidence for the ν_{τ} lepton number are also reported.File | Dimensione | Formato | |
---|---|---|---|
2018_PhysRevLett_120_Agafonova.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
307.52 kB
Formato
Adobe PDF
|
307.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.