In this paper we are concerned with the study of the relaxation of the following system of balance laws: ut + f(u; v)x = 0; vt + g(u; v)x = 1 ((u) − v); (1) with u0(x), v0(x) ∈ L∞ and f, g and smooth functions (for instance, f, g and ∈ C5). We assume that the system is strictly hyperbolic, namely −(u; v) ¡ +(u; v); where −(u; v), +(u; v) are the two characteristic speeds of Eq. (1). We want to prove the convergence of the weak solutions of Eq. (1) toward the solutions of the scalar conservation law ut + f(u; (u))x = 0

The Zero Relaxation Limit for 2x2 Hyperbolic Systems

MARCATI, PIERANGELO
1999-01-01

Abstract

In this paper we are concerned with the study of the relaxation of the following system of balance laws: ut + f(u; v)x = 0; vt + g(u; v)x = 1 ((u) − v); (1) with u0(x), v0(x) ∈ L∞ and f, g and smooth functions (for instance, f, g and ∈ C5). We assume that the system is strictly hyperbolic, namely −(u; v) ¡ +(u; v); where −(u; v), +(u; v) are the two characteristic speeds of Eq. (1). We want to prove the convergence of the weak solutions of Eq. (1) toward the solutions of the scalar conservation law ut + f(u; (u))x = 0
1999
Conservation laws, Hyperbolic systems, Relaxation problems
File in questo prodotto:
File Dimensione Formato  
1999_NonlinearAnalTheoryMethodsAppl_38_Lattanzio.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 124.48 kB
Formato Adobe PDF
124.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/1924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 18
social impact