In this paper we are concerned with the study of the relaxation of the following system of balance laws: ut + f(u; v)x = 0; vt + g(u; v)x = 1 ((u) − v); (1) with u0(x), v0(x) ∈ L∞ and f, g and smooth functions (for instance, f, g and ∈ C5). We assume that the system is strictly hyperbolic, namely −(u; v) ¡ +(u; v); where −(u; v), +(u; v) are the two characteristic speeds of Eq. (1). We want to prove the convergence of the weak solutions of Eq. (1) toward the solutions of the scalar conservation law ut + f(u; (u))x = 0
The Zero Relaxation Limit for 2x2 Hyperbolic Systems
MARCATI, PIERANGELO
1999-01-01
Abstract
In this paper we are concerned with the study of the relaxation of the following system of balance laws: ut + f(u; v)x = 0; vt + g(u; v)x = 1 ((u) − v); (1) with u0(x), v0(x) ∈ L∞ and f, g and smooth functions (for instance, f, g and ∈ C5). We assume that the system is strictly hyperbolic, namely −(u; v) ¡ +(u; v); where −(u; v), +(u; v) are the two characteristic speeds of Eq. (1). We want to prove the convergence of the weak solutions of Eq. (1) toward the solutions of the scalar conservation law ut + f(u; (u))x = 0File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1999_NonlinearAnalTheoryMethodsAppl_38_Lattanzio.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
124.48 kB
Formato
Adobe PDF
|
124.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.