Cosmology is making impressive progress and it is producing stringent bounds on the sum of the neutrino masses Σ, a parameter of great importance for the current laboratory experiments. In this letter, we exploit the potential relevance of the analysis of Palanque-Delabrouille et al. [JCAP 02 (2015) 045] to the neutrinoless double beta decay (0νββ) search. This analysis indicates small values for the lightest neutrino mass, since the authors find Σ < 84 meV at 1σ C.L., and provides a 1σ preference for the normal hierarchy. The allowed values for the Majorana effective mass, probed by 0νββ, turn out to be < 75 meV at 3σ C.L. and lower down to less than 20 meV at 1σ C.L. . If this indication is confirmed, the impact on the 0νββ experiments will be tremendous since the possibility of detecting a signal will be out of the reach of the next generation of experiments.

The contribution of light Majorana neutrinos to neutrinoless double beta decay and cosmology

Vissani F
2015-01-01

Abstract

Cosmology is making impressive progress and it is producing stringent bounds on the sum of the neutrino masses Σ, a parameter of great importance for the current laboratory experiments. In this letter, we exploit the potential relevance of the analysis of Palanque-Delabrouille et al. [JCAP 02 (2015) 045] to the neutrinoless double beta decay (0νββ) search. This analysis indicates small values for the lightest neutrino mass, since the authors find Σ < 84 meV at 1σ C.L., and provides a 1σ preference for the normal hierarchy. The allowed values for the Majorana effective mass, probed by 0νββ, turn out to be < 75 meV at 3σ C.L. and lower down to less than 20 meV at 1σ C.L. . If this indication is confirmed, the impact on the 0νββ experiments will be tremendous since the possibility of detecting a signal will be out of the reach of the next generation of experiments.
2015
neutrino masses from cosmology; double beta decay
File in questo prodotto:
File Dimensione Formato  
2015_JCosmolAstropartPhys_2015_DellOro.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/18518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 27
social impact