We consider linear dynamical systems with a structure of a multigraph. The vertices are associated to linear spaces and the edges correspond to linear maps between those spaces. We analyse the asymptotic growth of trajectories (associated to paths along the multigraph), the stability and the stabilizability problems. This generalizes the classical linear switching systems and their recent extensions to Markovian systems, to systems generated by regular languages, etc. We show that an arbitrary system can be factorized into several irreducible systems on strongly connected multigraphs. For the latter systems, we prove the existence of invariant (Barabanov) multinorm and derive a method for its construction. The method works for a vast majority of systems and finds the joint spectral radius (Lyapunov exponent). Numerical examples are presented and applications to the study of fractals, attractors, and multistep methods for ODEs are discussed.

Linear switched dynamical systems on graphs

Guglielmi, Nicola;
2018-01-01

Abstract

We consider linear dynamical systems with a structure of a multigraph. The vertices are associated to linear spaces and the edges correspond to linear maps between those spaces. We analyse the asymptotic growth of trajectories (associated to paths along the multigraph), the stability and the stabilizability problems. This generalizes the classical linear switching systems and their recent extensions to Markovian systems, to systems generated by regular languages, etc. We show that an arbitrary system can be factorized into several irreducible systems on strongly connected multigraphs. For the latter systems, we prove the existence of invariant (Barabanov) multinorm and derive a method for its construction. The method works for a vast majority of systems and finds the joint spectral radius (Lyapunov exponent). Numerical examples are presented and applications to the study of fractals, attractors, and multistep methods for ODEs are discussed.
2018
Constrained linear switching systems; Joint spectral radius; Markovian systems; Multigraph; Polytope; Control and Systems Engineering; Analysis; Computer Science Applications1707 Computer Vision and Pattern Recognition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/1768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact