The combined quasineutral and relaxation time limit for a bipolar hydrodynamic model is considered. The resulting limit problem is a nonlinear diffusion equation describing a neutral fluid. We make use of various entropy functions and the related entropy productions in order to obtain strong enough uniform bounds. The necessary strong convergence of the densities is obtained by using a generalized version of the “div-curl” Lemma and monotonicity methods.

A quasi-neutral limit in the hydrodynamic model for charged fluids

PIERANGELO
2003

Abstract

The combined quasineutral and relaxation time limit for a bipolar hydrodynamic model is considered. The resulting limit problem is a nonlinear diffusion equation describing a neutral fluid. We make use of various entropy functions and the related entropy productions in order to obtain strong enough uniform bounds. The necessary strong convergence of the densities is obtained by using a generalized version of the “div-curl” Lemma and monotonicity methods.
Bipolar hydrodynamic model, quasineutral limit
File in questo prodotto:
File Dimensione Formato  
2003_MonatshMath_138_Gasser_Marcati.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 160.29 kB
Formato Adobe PDF
160.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12571/1680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact