We consider a one dimensional infinite chain of harmonic oscillators whose dynamics is perturbed by a stochastic term conserving energy and momentum. We prove that in the unpinned case the macroscopic evolution of the energy converges to the solution of the fractional diffusion equation ∂t u = −||3/4u. For a pinned system we prove that its energy evolves diffusively, generalizing some results of Basile and Olla (J. Stat. Phys. 155(6):1126–1142, 2014).
Superdiffusion of Energy in a Chain of Harmonic Oscillators with Noise
Olla, Stefano
2015-01-01
Abstract
We consider a one dimensional infinite chain of harmonic oscillators whose dynamics is perturbed by a stochastic term conserving energy and momentum. We prove that in the unpinned case the macroscopic evolution of the energy converges to the solution of the fractional diffusion equation ∂t u = −||3/4u. For a pinned system we prove that its energy evolves diffusively, generalizing some results of Basile and Olla (J. Stat. Phys. 155(6):1126–1142, 2014).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2015_CommunMathPhys_339_Jara.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Accesso gratuito
Dimensione
861.94 kB
Formato
Adobe PDF
|
861.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.