We search for single-photon decays of the Gamma(1S) resonance, Gamma -> gamma + invisible, where the invisible state is either a particle of definite mass, such as a light Higgs boson A(0), or a pair of dark matter particles, chi(chi) over bar. Both A(0) and chi are assumed to have zero spin. We tag Gamma(1S) decays with a dipion transition Gamma(1S) -> pi(+)pi Y-(1S) and look for events with a single energetic photon and significant missing energy. We find no evidence for such processes in the mass range m(A0) <= 9.2 GeV and m(chi) <= 4.5 GeV in the sample of 98 x 10(6) Gamma(2S) decays collected with the BABAR detector and set stringent limits on new physics models that contain light dark matter states.

We search for single-photon decays of the Gamma(1S) resonance, Gamma -> gamma + invisible, where the invisible state is either a particle of definite mass, such as a light Higgs boson A(0), or a pair of dark matter particles, chi(chi) over bar. Both A(0) and chi are assumed to have zero spin. We tag Gamma(1S) decays with a dipion transition Gamma(1S) -> pi(+)pi(-)Y(1S) and look for events with a single energetic photon and significant missing energy. We find no evidence for such processes in the mass range m(A0) <= 9.2 GeV and m(chi) <= 4.5 GeV in the sample of 98 x 10(6) Gamma(2S) decays collected with the BABAR detector and set stringent limits on new physics models that contain light dark matter states.

Search for Production of Invisible Final States in Single-Photon Decays of Gamma(1S)

Baracchini E;Ferroni F;
2011-01-01

Abstract

We search for single-photon decays of the Gamma(1S) resonance, Gamma -> gamma + invisible, where the invisible state is either a particle of definite mass, such as a light Higgs boson A(0), or a pair of dark matter particles, chi(chi) over bar. Both A(0) and chi are assumed to have zero spin. We tag Gamma(1S) decays with a dipion transition Gamma(1S) -> pi(+)pi(-)Y(1S) and look for events with a single energetic photon and significant missing energy. We find no evidence for such processes in the mass range m(A0) <= 9.2 GeV and m(chi) <= 4.5 GeV in the sample of 98 x 10(6) Gamma(2S) decays collected with the BABAR detector and set stringent limits on new physics models that contain light dark matter states.
2011
We search for single-photon decays of the Gamma(1S) resonance, Gamma -&gt; gamma + invisible, where the invisible state is either a particle of definite mass, such as a light Higgs boson A(0), or a pair of dark matter particles, chi(chi) over bar. Both A(0) and chi are assumed to have zero spin. We tag Gamma(1S) decays with a dipion transition Gamma(1S) -&gt; pi(+)pi Y-(1S) and look for events with a single energetic photon and significant missing energy. We find no evidence for such processes in the mass range m(A0) &lt;= 9.2 GeV and m(chi) &lt;= 4.5 GeV in the sample of 98 x 10(6) Gamma(2S) decays collected with the BABAR detector and set stringent limits on new physics models that contain light dark matter states.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/1557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 43
social impact