In this paper we investigate a quasineutral type limit for the Navier–Stokes–Poisson system. We prove that the projection of the approximating velocity fields on the divergence-free vector field is relatively compact and converges to a Leray weak solution of the incompressible Navier–Stokes equation. By exploiting the wave equation structure of the density fluctuation we achieve the convergence of the approximating sequences by means of a dispersive estimate of the Strichartz type.

A quasineutral type limit for the Navier Stokes Poisson system with large data

MARCATI, PIERANGELO
2008

Abstract

In this paper we investigate a quasineutral type limit for the Navier–Stokes–Poisson system. We prove that the projection of the approximating velocity fields on the divergence-free vector field is relatively compact and converges to a Leray weak solution of the incompressible Navier–Stokes equation. By exploiting the wave equation structure of the density fluctuation we achieve the convergence of the approximating sequences by means of a dispersive estimate of the Strichartz type.
Quasineutral limit; Navier Stokes Poisson; dispersive estimates
File in questo prodotto:
File Dimensione Formato  
2008_Nonlinearity_21_Donatelli_Marcati.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso gratuito
Dimensione 274.65 kB
Formato Adobe PDF
274.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12571/1505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 75
social impact